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Abstract

Introduction: Despite important advances in many areas of hepatobiliary surgical practice during the past decades, posthepatectomy 
liver failure (PHLF) still represents an important clinical challenge for the hepatobiliary surgeon. The aim of this review is to present the 
current body of evidence regarding different aspects of PHLF.

Methods: A literature review was conducted to identify relevant articles for each topic of PHLF covered in this review. The literature 
search was performed using Medical Subject Heading terms on PubMed for articles on PHLF in English until May 2022.

Results: Uniform reporting on PHLF is lacking due to the use of various definitions in the literature. There is no consensus on optimal 
preoperative assessment before major hepatectomy to avoid PHLF, although many try to estimate future liver remnant function. Once 
PHLF occurs, there is still no effective treatment, except liver transplantation, where the reported experience is limited.

Discussion: Strict adherence to one definition is advised when reporting data on PHLF. The use of the International Study Group of 
Liver Surgery criteria of PHLF is recommended. There is still no widespread established method for future liver remnant function 
assessment. Liver transplantation is currently the only effective way to treat severe, intractable PHLF, but for many indications, 
this treatment is not available in most countries.
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Introduction
Despite important advances in many areas of hepatobiliary 
surgical practice during the last decades, posthepatectomy liver 
failure (PHLF) still represents an important clinical challenge for 
the hepatobiliary surgeon. Even if clinically relevant PHLF is not 
the most common complication after a liver resection, it 
continues to be the leading cause for postoperative fatalities 
even in modern practice at tertiary centres1,2.

There are several challenges regarding PHLF. First, there are no 
universal diagnostic criteria for reporting on PHLF in the literature 
making comparison of published articles difficult. Even with 
an increased usage of the PHLF criteria presented by the 
International Study Group of Liver Surgery (ISGLS) in 20113, 
numerous variations still occur in recent publications. Second, 
accurate preoperative methods for assessing whether the 
remnant liver after surgery will be sufficient to sustain function 
in the postoperative regenerative interval are lacking. Third, 
although liver regeneration has been studied extensively (mostly 
in animal models) and many pathways have been identified4,5, 
there is still no clear way to transfer this knowledge into 

clinically useful methods. Fourth, once PHLF occurs, we have no 
effective means to treat this condition despite many different 
attempts to support the regenerating remnant liver. So, presently 
the best way to treat PHLF is to avoid it from occurring.

A literature review was conducted to identify relevant articles for 
each topic of PHLF covered. The literature search was performed 
using Medical Subject Heading terms on PubMed for articles on 
PHLF in English until May 2022. A formal systematic literature 
search according to the PRISMA guidelines6 was not undertaken.

The aim of this review is to present the current body of evidence 
regarding several aspects of PHLF, provide insight into the 
pathophysiology of this condition, which measures can be 
undertaken before surgery to prevent PHLF from occurring and 
how to handle the patient if this feared complication still occurs.

Definitions and epidemiology
Definitions and prediction
Since the beginning of the 21st century, a lot of scientific effort has 
been undertaken to describe, classify, and predict PHLF. In the 
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1960s, there was a remarkable amount of knowledge about 
the physiological effects of major hepatic resections on liver 
function7; however, since that time, liver dysfunction has been 
described and measured in numerous ways, making it difficult 
to compare scientific reports in this field. In 2005, Balzan et al. 
published an article in which they were the first to 
systematically describe clinically relevant liver failure. Based 
on blood samples (bilirubin and prothrombin time) on 
postoperative day five, they could predict 60-day fatalities8. 
Another definition was proposed by Mullen et al. in 2010, 
focusing only on peak bilirubin in the postoperative course9. The 
major weakness of these two criteria was their binarity, only 
comparing PHLF to non-PHLF. To overcome this, the ISGLS 
developed a new definition based on an expert consensus 
meeting, providing criteria containing three different grades of 
PHLF (grade A–C)3. The grading is based on bilirubin and 
prothrombin time on or after postoperative day five and changes 
in the clinical course of patients undergoing hepatectomy. 
Presently, the ISGLS PHLF criteria are the most frequently used 
in literature to define PHLF. Several aspects of the ISGLS criteria 
have been discussed, such as the potentially lacking clinical 
relevance of grade A10,11 and that the criteria do not contain a 
distinction between primary and secondary liver failure1. 
A major problem of the definitions and predictive models 
mentioned above is their time point of applicability. On or after 
postoperative day five, there are limited possibilities left to 
substantially influence and potentially treat postoperative liver 
dysfunction, given the immediate onset of liver regeneration 
after hepatectomy13. Recently, perioperative lactate dynamics 
were found to be suitable for early recognition of PHLF and 
prediction of both rate and fatalities14; however, these attempts 
have not resulted in new and widely used definitions. Thus, to 
allow comparability of reported results, many suggest using the 
ISGLS criteria until a new definition, based on a broad 
international agreement, is available. New definitions should, 
however, address an urgent need to develop predictive models 
and definitions that can be applied in the first 48 h after surgery, 

to guide possible treatment decisions for these patients. The 
most used criteria of PHLF are presented in Table 1.

Epidemiology
The incidence of PHLF is highly dependent on which definition is 
used and the reported cohort of patients (for example 
demographic data, diagnosis, and extent of resection)15. Using 
the ISGLS criteria, the incidence of PHLF in recent publications 
ranges between 9 per cent16 and about 20 per cent in western 
cohorts at tertiary centres14; however, in population-based 
studies, a significant difference in 90-day fatalities following 
hepatectomy has been reported when comparing low- and 
high-volume centres1,17. As PHLF has been found to be the 
single most important cause for 90-day fatalities2 and research 
regarding PHLF mostly originates from high-volume centres, a 
different incidence of PHLF in other settings could be possible. 
For example, in a recent study facilitating data from the 
National Surgical Quality Improvement Program database in the 
USA on both minor and major hepatectomies, the incidence of 
all ISGLS grades of PHLF was under 5 per cent18.

Several approaches have been undertaken to risk stratify 
patients before surgery. One PHLF risk score found that simple 
blood tests and extent of surgery could predict PHLF19. 
The combination of the aspartate aminotransferase/platelet 
ratio index (APRI) and albumin–bilirubin grade (ALBI) score, 
demonstrated good preoperative risk assessment of postoperative 
outcome, both in eastern hepatocellular cancer cohorts20, as well 
as in a population-based western setting, including PHLF (ISGLS 
grade C) and 30-day fatalities18. Another interesting approach has 
been undertaken in a French multicentre study, that developed a 
risk calculator for PHLF in patients with cirrhosis, considering 
both pre-, peri-, and postoperative variables21. The study tried to 
reflect the fact that the incidence of PHLF is not only influenced 
by preoperative factors, but also by peri- and postoperative 
events. Finally, there are some promising circulating factors in 
blood that have been assessed as preoperative predictors for 

Table 1 Summary of the most important definitions of posthepatectomy liver failure

Definition 
(original 
publication)

Description Predictive value 
(original publication)

Study population Validation 
studies

ISGLS criteria 
(Rahbari 
et al.3)

Severity grading (PHLF grade A, 
B and C) based on clinical and 
laboratory parameters on or 
after postoperative day 5

Grade A–C: perioperative (30-day) 
fatalities OR 13.80; 95% c.i. 4.27– 
44.61; 99% sensitivity and 91% 
specificity for detection of 
fatalities

Definition based on literature 
review and consensus of ISGLS 
members. Original publication 
refers to data from single-centre 
experience, 835 patients, year 
2002–2010, 9% cirrhosis

Calthorpe 
et al.10

Sultana 
et al.16

Skrzypczyk 
et al.219

Rahbari 
et al.15

50:50, Balzan 
criteria 
(Balzan 
et al.8)

Bilirubin and PT on 
postoperative day 5

If bilirubin >50 μmol/l and PT 
<50% on postoperative day 5: 
Relative risk of death 66 (95% c.i. 
30,147) 
59% 60-day fatalities

Single-centre, 775 patients, years 
1998–2002, 12% cirrhosis

Calthorpe 
et al.10

Sultana 
et al.16

Skrzypczyk 
et al.219

Mullen, peak 
bilirubin 
criteria 
(Mullen 
et al.9)

Postoperative peak serum 
bilirubin concentration more 
than 7 mg/dl

Prediction of liver-related death: 
sensitivity 93%; specificity 94% 
90-day mortality (OR 10.8), 
90-day liver-related fatalities 
(OR 250)

Three centres, 1059 non-cirrhotic 
patients, years 1995–2005

Calthorpe 
et al.10

Skrzypczyk 
et al.219

Sultana 
et al.16

ISGLS, International Study Group of Liver Surgery; PT, prothrombin time.
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PHLF22,23, but they will require further validation before their 
clinical use can be established.

It is presently unclear as to what extent these tools have been 
introduced in general clinical practice and whether some of 
these predictive methods are widely used for preoperative 
patient selection. Thus, it still is difficult to accurately predict 
the incidence and individual risk of patients to develop PHLF 
before surgery24; however, preoperative prediction might help to 
guide preventive measures and even treatments before 
hepatectomy in the future.

Aetiology
Basic science, loss of function, and liver 
regeneration
Modern liver surgery is only made possible by the liver’s unique 
ability to regenerate. While most patients recover rapidly after 
liver resection, some develop PHLF. In this context, it is 
important to note that the liver is challenged on multiple levels 
after hepatic resection. When there is significant liver volume 
loss, resulting in a significant reduction of available hepatocytes 
to maintain liver metabolic function (excretory and synthetic), 
regenerative activity also demands significant energy, ultimately 
potentially resulting in an ‘energy crisis’. Particularly, mitotic 
activity appears with a trade-off in functional activity25. With 
ongoing liver regeneration, energy levels of the liver slowly 
recover and allow the return of metabolic function. The higher 
hepatic tissue loss, the higher the mitotic rate26. This reduction 
of metabolic function affects multiple mechanisms relevant for 
physiological homeostasis. In this context, it is important to 
note that postoperative volumetry can be affected by oedema 
and therefore correlates poorly with postoperative liver 
dysfunction and functional liver recovery27.

An increase in portal venous pressure has been postulated as a 
critical initiator of postoperative liver regeneration28. Increased 
portal inflow, in comparison with liver volume, produces 
vascular shear stress and increased intrahepatic vascular 
resistance. This shear stress acts mainly on liver sinusoidal 
endothelial cells, as it changes levels of sinusoidal perfusion and 
leads to the release of nitric oxide and other hepatotrophic 
factors. Nitric oxide primes hepatocytes for proliferation by 
inhibiting S-adenosyl methionine, which in turn leads to 
upregulation of cyclins D1 and D229,30. Accumulating evidence 
suggests that after liver resection, an overwhelming increase 
in portal pressure results in deleterious effects on liver 
regeneration31. Some authors have even challenged the 
concept of the ‘small-for-size’ syndrome and argued that it is 
rather a ‘small-for-flow’ process. After transplantation, portal 
hyperperfusion and sinusoidal congestion are critically involved 
in hepatic failure32. The negative effects of an increase in portal 
venous pressure are further aggravated by the activation of the 
hepatic arterial buffer response, with a reduction of hepatic 
arterial perfusion and concomitant parenchymal ischaemia33. In 
line with this hypothesis, portal venous pressure increase after 
hepatic resection has recently been documented to correlate 
with hepatic dysfunction34. It is important to note that 
exploratory evidence has suggested that preoperative portal 
vein embolization (PVE) might alleviate sudden postresectional 
increase of portal venous pressure and might have an additional 
benefit if major resection is planned34. Further, changes in 
hepatic blood flow during liver resection lead to postoperative 
increased intrahepatic vascular resistance and in turn, to 
endogenous vasopressor release. An ‘acute hepatorenal-like 

syndrome’ because of arterial vasoconstriction can induce acute 
kidney injury35. Around 15 per cent of patients subjected to 
hepatic resections suffer from acute kidney injury, and this 
complication is associated with a mortality rate of up to 23 per 
cent. Through the haemodynamic and haemostatic changes 
explained above, development of acute kidney injury and 
hepatorenal syndrome is promoted by PHLF and often ends in 
multiple organ failure and sepsis.

Initiation of liver regeneration occurs by a combination of 
several key signalling pathways, including mitogenic growth 
factors as well as multiple non-mitogenic cytokines. The growth 
factor receptors of hepatocyte growth factor and epidermal 
growth factor are key mitogenic receptors for both hepatocytes 
and progenitor cells36. The early phase of liver regeneration is 
initiated mainly by cytokines. An increase in tumour necrosis 
factor (TNF)-α activates transcription factors nuclear factor 
(NF)-κB in Kupffer cells and STAT-3 in hepatocytes37. Activated 
Kupffer cells in turn produce interleukin (IL)-6. IL-6 activates 
hepatocytes by binding to its receptors initiating proliferation38. 
Downstream activation of IL-6 and TNF-α is also amplified 
through an increased bacterial translocation into the liver. 
Bacterial endotoxins and blood-derived enteric microorganisms 
bind to Toll-like receptors in the liver, which also lead to the 
expression of these cytokines; however, while endotoxins like 
lipopolysaccharide induce cytokine expression, increased 
bacterial load in the liver, mainly because of hepatic inflow 
occlusion and reduced clearance of toxins, inhibits Kupffer cell 
function39,40. Disturbance of Kupffer cell function can lead to 
upregulated apoptosis and irreversible necrosis. Overshooting 
cytokines show a detrimental effect on liver regeneration41. 
An increased inflammatory response can induce systemic 
inflammatory response syndrome and ultimately end in PHLF 
and multiorgan failure42. An overwhelming immune response 
may be triggered through excessive bleeding or hepatic in- or 
outflow exclusion, which can induce hepatic ischaemia– 
reperfusion injury. Hepatic ischaemia and reperfusion lead to 
activation of the liver’s innate immune system. NF-κB, IL-6, 
TNF-α, reactive oxygen species, and chemokines are produced 
by Kupffer and endothelial cells. Although this is intended to 
facilitate liver regeneration, a disproportionate immune 
response can aggravate liver injury43. An important regulator of 
surgery-associated inflammatory signals is Kupffer cell 
plasticity. During the regenerative process, Kupffer cells switch 
from the pro-inflammatory M1 to the anti-inflammatory, 
pro-regenerative M2 phenotype. Inhibited phenotype change in 
Kupffer cells has been shown to negatively impact postoperative 
liver regeneration and promote occurrence of PHLF44. See Fig. 1
for a schematic presentation of healthy and dysfunctional liver 
regeneration.

From bench to bedside
Up to now, to study the mechanisms of liver regeneration, animal 
models have been paramount. The 70 per cent partial 
hepatectomy model in rodents has given important insights 
into the physiological processes needed for postresection 
liver regeneration. A 90 per cent partial hepatectomy seems 
to approximate the human situation of a severe PHLF and 
mimics the ‘small-for-flow’ or ‘small-for-size’ syndrome45. As in 
humans, extensive resection leads to increased vascular stress 
and inhibited liver regeneration, due to sinusoidal endothelial 
cell damage and overshooting inflammation46. The use of 
mouse models has greatly increased the understanding of the 
role of various genes in human liver regeneration. Through 
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different transgenic mouse strains, overexpression or depletion of 
target genes and the associated effect on liver regeneration after 
partial hepatectomy can be assessed47. While animal models 
have been shown to be very informative, there is still a gap in 
translation of these data into human relevance.

Clinical risk factors
Parameters associated with PHLF can be categorized into patient-, 
liver-, or surgery-associated factors. A summary of these factors 
can be found in Table 2.

Patient-associated

• Sex: the likelihood to develop PHLF is almost double in men 
and the risk of postoperative complications is also generally 
higher9. A possible explanation may be inhibition of 
immunocompetence through testosterone levels48. In a rat 
model, 17β-oestradiol injection led to accelerated liver 
regeneration49. In a study examining 13,401 patients, the 
risk for PHLF associated with men was especially 
pronounced in patients with hepatocellular carcinoma50. A 
possible explanation could be that the incidence of 
non-alcoholic fatty liver disease in postmenopausal 
women is higher than in men of the same age. In 
comparison with other chronic liver diseases such as viral 
hepatitis or alcoholic steatohepatitis, non-alcoholic fatty 
liver disease is associated with a lower postoperative risk50.

• Age: it is still not fully understood how advanced age 
negatively impacts liver regeneration. With advanced age, 
bile flow and lower production of acute-phase proteins 

change and could influence liver regeneration51. Another 
explanation may be that age-related pseudocapillarization 
in the liver, leading to loss of fenestration in the sinusoidal 
space, inhibits liver regeneration. In a mouse model, liver 
regeneration could be rescued by injection of a serotonin 
receptor agonist, with the hypothesis that serotonin- 
mediated vascular endothelial growth factor release 
relaxes the sinusoidal lining52.

• Sepsis: bacterial endotoxins interact with Kupffer cells and 
hepatocytes, inhibiting cytokine production needed in the 
early phase of liver regeneration53.

• Metabolism: insulin is an important inducer of growth 
factors such as insulin-like growth factor and hepatocyte 
growth factor54. Animal models have shown that insulin 
depletion inhibits liver regeneration55. BMI and 
malnutrition also show an association with PHLF56,57.

• Other: preoperative reduced renal function and 
cardiopulmonary disease also show a correlation with 
PHLF58, presumably as a reflection of the overall physical 
condition of the patient.

Liver-associated

• Steatosis: hepatic steatosis leads to haemodynamic changes 
in liver sinusoids leading to an increased risk for ischaemia– 
reperfusion injury and raises the risk of postoperative 
complications59.

• Neoadjuvant chemotherapy: neoadjuvant regimens 
containing irinotecan or oxaliplatin can cause chemotherapy- 
associated liver injury and have been shown to have an 

Healthy regeneration

Hepatocyte
Mitotic activity

LSEC

NO

Kupffer cell

Neutrophil

Increased
inflammatory
response

Apoptotic
hepatocyte

TNF-a
IL-1, IL-6
ROS

‘Small-for-flow’

Portal
hyperperfusion

Shear stress

Fig. 1 Schematic overview of normal and dysfunctional liver regeneration 

Left side shows functional liver regeneration. Major hepatectomy induces drastic changes in the haemodynamic environment of the liver. An increase in shear stress 
leads to activation of liver sinusoidal endothelial cells, which in turn release nitric oxide (NO). NO together with cytokines released from Kupffer cells, such as tumour 
necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 promote liver regeneration. Right side shows dysfunctional liver regeneration. An overwhelming increase in portal 
pressure can cause ‘small-for-flow‘ syndrome. Excessive shear stress induces an overshooting inflammatory response, followed by neutrophil recruitment into the 
liver. This causes inhibition of liver regeneration, parenchymal necrosis, and hepatocyte apoptosis. LSEC, liver sinusoidal endothelial cells; ROS, reactive oxygen 
species.
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adverse effect on liver physiology and regeneration. Irinotecan 
has been associated with steatosis as well as steatohepatitis 
and patients receiving oxaliplatin-containing regimens are 
more likely to develop sinusoidal obstruction syndrome and 
biliary complications60,61.

• Fibrosis grade: the presence of high-grade fibrosis or cirrhosis 
has a detrimental effect on patient outcome. The risk of 
fatalities rises with the extent of fibrosis62. Patients suffering 

from high-grade fibrosis or cirrhosis often also present with a 
plethora of co-morbidities such as portal hypertension, 
jaundice, or coagulopathy, which all increase PHLF risk63. 
Because of the advanced stage of chronic liver disease, 
functional liver tissue and liver reserve is reduced64 resulting 
in significantly reduced postoperative liver regeneration65.

• Cholestasis: jaundice can significantly increase the risk of 
morbidity after surgery66. For example, animal models 
show a decrease in growth factor expression after bile duct 
ligation, which negatively impacts liver regeneration67. In 
addition, external bile duct drainage might lead to loss of 
bile salts and influence fibroblast growth factor 19, which 
could in turn hamper postoperative liver regeneration68,69.

• Portal hypertension: patients with cirrhosis and portal 
hypertension have an increased risk of developing PHLF 
compared with patients with normal portal pressure70. 
Several attempts to predict and prevent PHLF in these 
patients have been proposed, such as the use of digital 
twins71. More commonly, invasive measurement of the 
hepatic vein pressure gradient is applied before surgery to 
predict PHLF72.

Surgery-associated

• Future liver remnant (FLR): as explained above, ‘small-for- 
flow’ syndrome is responsible for drastic haemodynamic 
changes in the liver. Mainly induced by an intraoperative 
increase in portal pressure, microcirculation in the liver is 
altered, and hepatocyte damage occurs73,74.

• Blood loss: excessive intraoperative blood loss leads to 
intravascular fluid shifts. This can lead to the introduction 
of bacteria and bacterial endotoxins to the hepatic 
microenvironment, increasing the risk of sepsis, 
coagulopathy, and PHLF. Intraoperative blood loss is 
directly associated with postoperative morbidity75.

• Surgical technique: intermittent inflow occlusion or total 
vascular occlusion are surgical strategies that cause 
ischaemia–reperfusion injury during hepatic resection, 
which might increase the risk for PHLF76. Mechanistically, 
during vascular occlusion, Kupffer cells are activated and 
release pro-inflammatory cytokines such as TNF-α and IL-1 
and reactive oxygen species. Lengthy vascular occlusion 
time leads to increased oxidant stress and immune 
response after reperfusion. Overshooting inflammatory 
response and oxidative stress can injure the liver and 
inhibit liver regeneration. Further, extensive vascular 
resection and reconstruction of the inferior vena cava has 
been shown to negatively impact postoperative outcome 
and cause PHLF. Extensive resection in the portal area and 
the hepatoduodenal ligament is also associated with 
PHLF77. Frequently used surgical devices in liver resection 
include the cavitron ultrasonic surgical aspirator and 
surgical staplers. Studies comparing the two did not show 
significant differences in postoperative morbidity or blood 
loss78. The stapler technique was, however, shown to be 
significantly faster than the cavitron ultrasonic surgical 
aspirator and was associated with lower levels of 
inflammatory cytokines, possibly due to shorter time 
under anaesthesia. This study, however, suffered from 
small a sample size, and a statement about specific 
mechanisms cannot be made79. Furthermore, selecting a 

Table 2 Risk factors for posthepatectomy liver failure

Patient-associated
Sex Risk double in males, especially males with 

HCC
Female hormones show proliferative effect 

in animal models, inhibiting effect of 
testosterone on immune system

NAFLD, lower postoperative risk than other 
chronic liver diseases, higher incidence in 
postmenopausal women

Age Still unclear, possible changes in bile flow 
and acute-phase protein production

Age-related sinusoidal 
pseudocapillarization, rescue in animal 
models through serotonin agonist 
injection

Sepsis Bacterial endotoxins decrease cytokine 
production needed for liver regeneration

Kupffer cell and hepatocyte function in liver 
regeneration inhibited

Metabolism Insulin induces expression of IGF and HGF
High BMI and malnutrition associated with 

PHLF
Other Serum bilirubin, low platelets, insufficient 

renal function, cardiopulmonary disease, 
associated with PHLF

Liver-associated
Steatosis Leads to changes in the hepatic 

microenvironment and higher risk for 
ischaemia–reperfusion injury

Neoadjuvant 
chemotherapy

Chemotherapy-associated liver injury and 
steatohepatitis are known complications 
after neoadjuvant chemotherapy

Fibrosis grade Functional liver tissue reserve is reduced, 
patients often present with several 
comorbidities

Cholestasis Jaundice increases morbidity after surgery; 
in animal models, bile duct ligation leads 
to reduced growth factor expression

Portal 
hypertension

High preoperative portal pressure in 
cirrhosis associated with increased risk of 
PHLF

Surgery-associated
Future liver 
remnant

‘Small-for-flow’ syndrome negatively 
impacts hepatic haemodynamics

Increase in portal pressure leads to altered 
hepatic microcirculation and hepatocyte 
damage

Blood loss Leads to intravascular fluid shifts, 
introduction of bacterial endotoxins into 
the hepatic microenvironment

Increased risk of sepsis, coagulopathy and 
PHLF

Surgical technique Vascular occlusion can cause ischaemia– 
reperfusion injury and in increases PHLF 
risk

Long Pringle manoeuvre leads to increased 
oxidative stress and overshooting 
inflammatory response

Extensive vascular resection can cause PHLF

HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; IGF, 
insulin-like growth factor; HGF, hepatocyte growth factor; PHLF, 
posthepatectomy liver failure.
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laparoscopic approach when operating on cirrhotic patients 
with hepatocellular carcinoma seems to reduce the risk for 
PHLF compared with open resection80,81. In addition, 
laparoscopic resection of hepatocellular carcinoma in 
cirrhotic patients with portal hypertension and even Child– 
Pugh grade B seems feasible82,83, although high-grade 
evidence is missing.

Prevention
FLR volume and formulas
The risk of PHLF after liver resection is related to the size of the 
remnant liver; the smaller the remnant liver, the higher the 
odds of PHLF84–86. Preoperative estimation of liver volume based 
on three-dimensional reconstructions of contrast-enhanced CT 
images has been shown to correlate with actual liver weight and 
is the standard approach to estimate the risk of liver failure 
after resection84,87. FLR volume is usually expressed as the 
proportion of liver volume that remains after resection relative 
to the total liver volume excluding tumour volume and is 
expressed as a percentage as measured on CT images88. 
Alternatively, the measured FLR volume can be related to a 
calculated total estimated liver volume value using body 
composition parameters, resulting in a standardized FLR 
volume. The calculation of total estimated liver volume avoids 
the segmentation of liver tumours, which can be laborsome88–90. 
Similarly, FLR volume can be related to bodyweight to calculate 
the remnant liver volume to bodyweight ratio91. Despite small 
differences in predictive values across cohorts, all these 
calculations aim to guide clinicians towards safe liver resection. 
Table 3 describe the most common methods to calculate FLR 
volume in relation to the total liver volume or other body 
composition parameters.

Numerous analyses have tried to establish a safe FLR volume 
cut-off above which PHLF can be avoided. For patients with 
otherwise healthy liver parenchyma, these cut-offs range from 
20 to 30 per cent92,93. Most studies report low rates of liver 
failure (0–6 per cent) when the FLR volume is above the cut-off, 
and high rates (20–90 per cent) when the FLR volume is 
smaller92,94.

For patients with parenchymal liver disease, a similar size liver 
remnant is compromised in function; and consequently, the risk 
of PHLF is increased. When liver resection is performed in 
patients that suffer or have suffered from cholestasis or 
cirrhosis, the risk of PHLF increases95,96. FLR volume is a 
predictor of PHLF in both cirrhotic and cholestatic patients who 
undergo liver resection21,96. In these patients, a FLR volume of at 
least 40 per cent is suggested, and some studies recommend 
even 50 per cent in case of established cirrhosis21,84,85,95–98; 
however, the evidence to substantiate these cut-off levels is 
limited. The increasing risk of PHLF with a decreasing FLR size is 
evident. Most studies have tried to establish a cut-off value to 
select patients for liver resection; yet, the risk of PHLF in a 

patient with an FLR 1 per cent below any binary cut-off is likely 
not very different from a patient with a FLR 1 per cent above the 
same cut-off. Furthermore, the onset of PHLF is multifactorial 
and many risk factors have been identified, many of which are 
specific to disease subgroups99.

FLR volume is perhaps the most important and readily 
available preoperative parameter to estimate the risk for liver 
failure, but risk assessment using multiple factors is likely to be 
essential to truly stratify patients at risk for PHLF.

Methods for preoperative liver function 
assessment
FLR volume may provide an estimate of the remnant capacity for 
function and regeneration100; however, this only works under the 
assumption that the total liver function is intact and that its 
distribution is homogenous. Parenchymal damage and 
diminished liver function due to chemotherapy or underlying 
liver disease is not accounted for in normal volumetry and can 
only be assessed by preoperative liver function tests. In addition, 
after FLR augmentative procedures such as PVE distribution of 
function is no longer homogenous and volumetry in these 
situations is known to both under- and overestimate remnant 
function101. In these circumstances functional tests of the liver 
have the higher clinical value.

Although the liver is responsible for a wide range of functions, 
all methods for functional liver assessment focus on one specific 
part of liver function as a predictor of actual global liver 
function and of regenerative potential. For practical use, a test 
should be able to estimate the risk of PHLF, assess the need for 
FLR augmentative procedures, and be used to estimate the 
effect after such procedures. Based on the aforementioned 
practical issues with volumetry, two parts of functional tests are 
essential: estimation of total liver function and its distribution 
in the FLR. When both are combined, this leads to an estimate 
of the actual remnant function as a potential predictor for PHLF.

Laboratory tests and models such as ALBI and Model for 
End-stage Liver Disease provide screening tools for poor liver 
function but are only useful in the low range of total 
function102. The same can be said about the use of biopsies and 
elastography103. This makes these tests of limited value for 
providing information on the FLR function. Nevertheless, 
because of low costs and high availability, simple laboratory 
tests can be used as a screening tool for poor general liver 
function or limited regenerative potential due to an underlying 
liver condition.

A wide range of tests and imaging methods is available to 
measure liver function before surgery (Table 4). There are no 
randomized trials or high-level evidence to support the use of 
any of these tests to predict PHLF better than volumetry; 
however, based on retrospective series and use in daily practice, 
there is consensus among experts that functional assessment of 
the remnant liver is essential for predicting PHLF in 
compromised and FLR-augmented livers (with European 
consensus guidelines in preparation). To understand the value 

Table 3 Most common methods to assess future liver remnant size

Formula Method to calculate Strengths Limitations

FLR/TLV (FLR ml/TLV ml)×100 Accurate Complicated, time-consuming
sFLR (FLR ml/TELV ml (794–1267×BSA)) ×100 Easy to perform, widely used currently Potentially inaccurate for large tumours
FLR/BW-ratio FLR in ml/BW in kg Easy to perform Rarely used

FLR; future liver remnant; TLV, total liver volume; sFLR, standardized FLR; TELV, total estimated liver volume; BSA, body surface area; BW, bodyweight.
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of functional tests, it is important to explain the mechanisms 
behind commonly used methods, their respective advantages, 
and their drawbacks. First, there are tests that measure 
clearance or metabolism of a certain substance. The outcome is 
calculated in a multi-compartment model, and the outcome 
gives a measure of total function104,105. Examples are the 
indocyanine green (ICG) clearance and LIMAX (13C-methacetin 
breath) metabolic tests106,107. As the goal is to estimate FLR 
function, total liver function tests should always be 
accompanied by volumetric correlation, dividing the total 
function by the remnant volume share under the assumption of 
homogeneity of distribution within the liver. After FLR 
augmentative procedures, this method cannot measure the 
effect of the intervention on FLR function as it only gives 
information on total function and not regional functional 
distribution. A second group of tests combines clearance of an 
imageable agent, for instance 99mTc-Mebrofenin or 99mTc-GSA 
(DTPA-galactosyl serum albumin) and gadoxetic acid, with a 
three-dimensional structural scan (for hepatobiliary 
scintigraphy (HBS) and MRI)108–111. These methods provide 
accurate information about distribution of function, which is a 
clear advantage over total liver function tests; however, routine 
use is not widely adopted due to the complexity of acquisition, 
processing, and interpretation. The advantage of the MRI 
technique is that it could potentially serve as a one-stop-shop 
solution, providing structural diagnostic scans and functional 
information in one examination. A potential, but unusual, 
limitation is that some patients do not tolerate MRI scanning 
due to severe anxiety112. Basically, there are two ways that MRI 
can be used for clearance-based assessment. The most 
straightforward method is to measure relative enhancement of 
the liver compared with another organ, such as the spleen or 
muscle. In daily practice, this method seems to be able to 
predict PHLF quite well110; however besides the influence of flow 
and cardiac output, the technical nature of MRI scanning 
implies that measured values are, by definition, estimated and 
not absolute. The patient as well as the multitude of different 
types of MRI scanners and vendors combined with local 
conditions further complicate inter-patient and inter-centre 
comparability. The result is an uncalibrated value of 
enhancement, and thus a function measurement that cannot be 
compared between patients and no clear cut-offs for safe 
resections can be given. An alternative to relative methods is to 
measure the clearance over time using a dynamic scanning 
protocol. This provides a slope ‘K-value’, and therefore, an 
actual estimate of the speed of clearance and more closely 

resembles other clearance measurements (such as the ICG test 
or HBS); however, these protocols require longer acquisition 
times, are highly complex and difficult to implement110. 
Hepatobiliary scintigraphy is based on clearance of an 
isotope-labelled, liver-specific agent such as 
99mTc-Mebrofenin113. Processing is similar to a dynamic MRI, 
however, acquisition is much less complex108. Interpretation is 
straightforward, and due to good comparability between centres, 
it has been validated more systematically, which has led to a 
practical clinical cut-off value114. When combined with 
single-photon emission CT, some anatomical mapping and FLR 
calculation can also be acquired115, although with clearly inferior 
quality compared with MRI. All described clearance methods may 
suffer from accumulation of the cleared agent in the bile ducts, 
and masking of this signal is sometimes needed to compensate 
for interference. This significantly adds to the complexity of the 
processing and interpretation108. Another drawback is that 
the clearance may be hampered in patients with cholestasis116. 
The transporter proteins are dysregulated, and the agent must 
compete with bilirubin for transport in and out from the 
hepatocyte resulting in a low measure of function. This does not 
mean that the measurement is impossible to use in jaundiced 
patients, it just clearly shows that these patients suffer from 
hepatic dysfunction. After biliary drainage and restoration to 
normal levels of bilirubin, the test can be repeated and should 
show a normalized function, more accurately resembling the 
actual postoperative remnant function. An alternative for 
99mTc-mebrofenin is 99mTc-GSA. 99mTc-GSA is albumin-bound and 
liver specific and not dependent of bilirubin levels, making its 
application less complicated in jaundiced patients; however, GSA 
is not registered in most western countries, limiting its use. The 
information on regional distribution of function supplied by HBS 
and MRI can be very useful in jaundiced or insufficiently drained 
patients, showing dysfunctional or poorly drained segments that 
may require further interventions to improve remnant function. 
Fig. 2 shows a 99mTc-Mebrofenin scan with poor biliary drainage of 
the right posterior sector, remnant function was below the safe 
threshold for resection and improved sufficiently after additional 
biliary drainage.

For practical use, volumetry combined with a general 
functional test as screening tool for a compromised liver might 
work well in daily practice; however, when augmentative 
procedures are used, the advantage of imaging of distribution of 
function is evident and more complex methods are required. 
Choice of functional modality depend largely on local 
availability and expertise.

Table 4 Overview preoperative tests to estimate adequate remnant liver function

Test Agent used FLR volume TL function FLR function Distribution FLR function after Complexity Validated for PHLF

Volumetry Yes No No No – – ++
Laboratory scores No No* No No – – +
ICG test Indocyanine green No Yes No No – + ++
LIMAX 13C-methacetin No Yes No No – + +
LIMAX+volumetry 13C-methacetin Yes Yes Yes No + ++ +
ICG+volumetry Indocyanine green Yes Yes Yes No + ++ ++
HBS 99mTc-Mebrofenin Yes Yes Yes Yes ++ ++ ++
RLE-MRI Gadoxetic Acid Yes Limited† Limited† Yes +† + +
DCE-MRI Gadoxetic Acid Yes Yes Yes Yes ++ +++ –

ICG, Indocyanine green; HBS, hepatobiliary scintigraphy; RLE, relative liver enhancement; MRI, magnetic resonance imaging; DCE, dynamic contrast-enhanced; 
FLR, future liver remnant; TL, total liver; PHLF, posthepatectomy liver failure; +, low; ++, medium; +++, high. *Only sensitive in low liver function/cirrhosis. †Not 
absolute.
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Modulation of the FLR
When the remnant liver is deemed insufficient for safe liver 
resection, a preoperative procedure to increase the liver 
remnant volume, and hopefully the corresponding function, can 
be performed. Preoperative PVE is the most accepted approach. 
The embolization of the portal branches to the segments 
intended for resection results in a compensatory growth of the 
FLR. While there are many studies on PVE that focus on the 
hypertrophic response and outcome after surgery following PVE, 
true comparative analysis on the impact of PVE on liver failure 
are sparse117–119. In the only prospective trial to date, PVE was 
associated with fewer complications in patients with chronic 
liver disease, but not in those with normal liver parenchyma; 
however, the trial did not include an FLR cut-off for inclusion, 
and the mean FLR volume was 30 per cent before PVE which 
might indicate that study population was not at a high risk of 
liver failure. Indeed, there was no liver failure in patients with 
normal liver parenchyma, and only two patients with liver 
failure in the chronic liver disease group, one with and one 
without PVE120. In patients with biliary tumours who have a 
high risk of liver failure, a matched study showed that PVE was 
associated with substantial reductions in PHLF rates121. Indeed, 
a more liberal approach towards PVE in these patients probably 
results in better outcomes122,123. Most other studies are 
non-comparative studies that show that liver resection can be 
performed with acceptable outcomes in patients in whom 
resection was not feasible without PVE124–128. The ability of the 
FLR to grow after PVE has been identified as an important 
predictor of a good outcome after resection129. When limited 
FLR growth is observed after PVE, subsequent resection has been 
shown to be associated with poor outcomes and can be a reason 
not to proceed to surgery. While tumour progression is the main 
reason for patients not to proceed to surgery after PVE, the 
absence of hypertrophy in some patients has fuelled the search 
for more effective liver regenerative strategies.

Before the introduction of associating liver partition and portal 
vein ligation for staged hepatectomy (ALPPS), two-stage 
hepatectomies had been used for more than a decade130,131. 
ALPPS is an accelerated two-stage procedure, combining portal 
vein occlusion with (partial) parenchymal transection to induce 
a rapid growth of the FLR132. The rapid hypertrophy allows for 
an earlier final resection, thereby increasing the resection rate 
compared with that of PVE133,134. Yet, liver failure and mortality 
rates remain higher with ALPPS despite the rapid liver 
growth133,135. Interestingly, none of the parameters on liver 
growth are related to postoperative outcomes. Only baseline FLR 
size is correlated to the overall outcomes136. Therefore, it can be 
argued that to make ALPPS safer, PVE should be attempted first 
to minimize the risk of PHLF137,138; however, such an approach 
would probably result in a lower resection rate, but it can be 
questioned whether the resection rate is worth the high 90-day 
fatalities134,139, even if recent publications on the use of ALPPS 
in patients with colorectal liver metastases show improved 
safety compared with initial series140.

In the search for more and faster hypertrophy without the 
increased risk of liver failure and fatalities seen in ALPPS, a 
simultaneous PVE and hepatic vein embolization (HVE) has 
emerged as promising alternative141. This combination (PVE/ 
HVE) means that PVE (generally right-sided) is combined with 
occlusion of the hepatic vein that drains the deportalized side of 
the liver. Although it is thought that PVE/HVE results in greater 
hypertrophy compared with PVE alone, comparative studies 
have still not shown a difference42–146. Resection rates and 
outcomes after resection following PVE/HVE were also similar to 
PVE alone147. PVE/HVE seems a safe alternative, and future 
studies should show whether this new technique provides a 
benefit over PVE alone. Radiological examples of PVE, ALPPS, 
and PVE/HVE are depicted in Fig. 3.

Intraoperative and postoperative techniques for 
prevention of PHLF
Pringle manoeuvre
The Pringle manoeuvre was initially described to temporarily 
occlude the inflow to the liver with a soft clamp to control 
bleeding from the liver injury in the setting of liver trauma148. 
Over the years, liver surgeons widely adopted the Pringle 
manoeuvre in liver resection surgery and demonstrated reduced 
intraoperative bleeding and operative time149,150; however, 
ischaemia followed by reperfusion of the liver has been argued 
to cause injury to the hepatocyte metabolism151, resulting in 
cytolysis. The ischaemia–reperfusion injury results in 
insufficient hepatic synthesis of acute-phase proteins and 
coagulation factors. The resulting changes in the inflammatory 
cascade increase the rates of posthepatectomy liver dysfunction 
and an impaired immune defence against bacterial 
infections152–154. Splanchnic vascular stasis due to the Pringle 
manoeuvre also damages enterocytes, loss of gut barrier, and 
contributes to endotoxaemia155. The increased bacterial 
translocation and endotoxins to the liver from portal circulation 
directly affect liver regeneration by impairing the initiator 
cytokines and causing direct damage to hepatocytes, resulting 
in cellular death. Ischaemic preconditioning has been proposed 
to be beneficial in animal models156, but its potential benefit 
remains to be demonstrated more clearly in humans57. Several 
randomized clinical trials investigated whether an intermittent 
Pringle manoeuvre would reduce some of the detrimental 
effects of a continuous Pringle manoeuvre; however, most of the 

Fig. 2 Regional distribution of liver function assessed with hepatobiliary 
scintigraphy 
99mTc-mebrofinin scan showing poor drainage of the right posterior sector, as 
can be seen by the higher (yellow signal) compared with low (blue).
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studies failed to demonstrate clinically significant benefits of an 
intermittent over continuous Pringle manoeuvre158, while some 
studies continue to caution against the Pringle manoeuvre159,160. 
Fagenson et al.159, in a propensity-matched study, reported 
increased rates of PHLF and septic shock with the use of the 
Pringle manoeuvre for partial hepatectomies. Hemihepatic 
vascular inflow occlusion on the ipsilateral side of resection 
after isolating the vessels is reported to be better tolerated161. 
Ishizuka et al. reported shorter postoperative survival with 

longer Pringle manoeuvre time in patients undergoing resection 
for hepatocellular cancer162. Huang et al.163 compared a 25-min 
intermittent Pringle manoeuvre with a 15-min occlusion for 
resection of hepatocellular carcinoma. They reported a higher 
speed of liver transection (1.38 versus 1.23 cm2/min, P = 0.002) 
and lower blood loss during transection (109 versus 166 ml, P < 
0.001) than the 15-min intermittent Pringle manoeuvre group. 
The authors of the present review do not believe that using the 
Pringle manoeuvre is mandatory for achieving good outcomes in 

Fig. 3 Methods to increase future liver remnant size 

Contrast-enhanced CT of patients subject to different treatments. a PVE. b Rescue ALPPS after insufficient effect of PVE. c PVE/HVE. Before (1) and after (2) images are 
shown in each case. All patients with left lateral segment (plus/minus segment 1) as FLR marked with red before intervention and green at evaluating radiology. PVE, 
portal vein embolization; ALPPS, associating liver partition and portal vein ligation for staged hepatectomy; HVE, hepatic vein embolization; FLR, future liver 
remnant.
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liver resection, nor that it negatively influences outcomes when 
applied shortly. When the Pringle manoeuvre is used, the 
preference should be for judicious use of intermittent Pringle, 
preferably selective to the side of resection and for the shortest 
duration of parenchymal transection.

Intraoperative blood loss
Blood loss during liver surgery is determined by the complexity of 
liver resection, background liver parenchymal characteristics such 
as the presence of steatohepatitis or chemotherapy-induced liver 
injury, and the individual surgeon’s experience. Intraoperative 
blood loss of more than 1200 ml and the need for perioperative 
blood transfusion are considered risk factors for PHLF164. The 
haemodynamic instability due to blood loss results in ischaemia– 
reperfusion injury. The need for blood transfusions results in 
potential immunosuppressive effects. With appropriate measures 
of low central venous pressure, judicious use of energy devices, 
and cavitron ultrasonic surgical aspirator, blood loss can be kept 
to a minimum.

Haemostasis and bile leaks to prevent postoperative sepsis
Sepsis is one of the common causes of death in patients with 
established PHLF. In addition, patients with liver failure are 
prone to develop sepsis, and sepsis due to any cause can also 
exacerbate PHLF12. The hypodynamic circulation and multiple 
organ failure associated with sepsis can result in hypoperfusion 
of the remnant liver, and it can further reduce the functional 
mass of Kupffer cells that play a pivotal role in the cytokine and 
IL regulation required for liver regeneration. Postoperative sepsis 
could be due to multi-site and multifactorial issues, of which 
intra-abdominal collections due to infected hematomas and 
biliary collections are some of the common causes. Meticulous 
haemostasis and attention to biliary stasis are essential in 
preventing postoperative collections following major liver 
resections. Several intraoperative measures such as transcystic 
air leak test165, portal re-occlusion166, and white test with lipid 
solution167 were described for localizing leaking biliary radicles 
on the transection surface. These tests can be used to identify 
and control the bile leak so the risk of postoperative biloma is 
reduced. As bile salt depletion could also affect liver 
regeneration negatively, large amount of externally drained bile 
(found and drained after surgery) should probably be returned 
to the patients enteric circulation68.

Flow modulation
It is increasingly realized that PHLF is not only a small remnant 
volume issue. The function of the FLR and the portal flow are 
also realized to be part of the pathophysiological process. The 
mechanics of hepatic inflow form the basis for applying 
modulatory flow principles and are implied in liver resections to 
reduce the risk of liver dysfunction. Portal flow modulation 
techniques, including portal flow diversion, splenic artery 
ligation, and splenectomy have long been applied in 
living-donor liver transplantation. Increased flow and pressure 
in the portal vein result in shear stress on sinusoidal endothelial 
cells that release nitric oxide, promoting liver regeneration. 
Ironically, excessive portal venous flow for the volume of the 
liver parenchyma leads to increased sinusoidal pressure, 
endothelial damage, and sinusoidal haemorrhage. High portal 
vein pressures also result in hepatic artery buffer response by 
reducing hepatic artery pressures leading to ischaemic biliary 
injury168. Regenerative response of the liver requires a balanced 
increase in the portal venous flow leading to regenerative 

stimulation but not up to the onset of hepatocytes injury. In 
addition, a reduced portal venous flow stimulates the hepatic 
arterial buffer response resulting in an increased hepatic tissue 
pO2 due to raised arterial flow and improved liver regeneration 
in animal studies169. Troisi et al.170 reported, and it is widely 
adopted, that a portal venous flow rate of more than 250 ml/ 
min/100 g or a portal venous pressure of more than 20 mmHg is 
associated with poor outcomes. These detrimental effects get 
augmented when the liver volumes are less than optimal.

Splenectomy and splenic artery ligation
Splenic blood flow contributes to 25–30 per cent of the total portal 
flow. The percentage contribution of splenic flow to the remnant 
liver is much higher following major hepatectomy resulting in 
increased portal pressures. The role of splenectomy in flow 
modulation and preventing liver dysfunction is well described 
in living-donor liver transplantation; however, its role in 
extended hepatectomies is only described in animal studies. 
Splenectomy increases vascular compliance and hepatic 
serotonin levels, which improve hepatic perfusion through its 
vasodilatory effect. Serotonin exerts a protective effect by 
increasing microcirculation and accelerating liver regeneration 
by stimulating endothelial cells to release vascular endothelial 
growth factors171,172. Splenectomy enhances DNA synthesis 
and proliferation of cell nuclear antigens to facilitate liver 
regeneration in rats undergoing major hepatectomies. Risks of 
splenectomy include intraoperative bleeding, opportunistic 
postsplenectomy infection, and the need for long-term 
antibiotics. Splenic artery ligation is also an effective way to 
reduce the portal venous pressure and increase hepatic artery 
flow173. The arterial inflow from short gastric arteries will help 
preserve splenic parenchyma, although splenic infarction, 
splenic abscess, and pancreatitis have been described.

Pharmacological intervention of portal venous flow
Pharmacological modulation of portal venous flow using 
somatostatin analogues such as octreotide were explored as an 
alternative to splenectomy and splenic artery ligation. 
Somatostatin blocks the SSTR2 receptors on the endothelial 
cells of splanchnic vasculature resulting in vasoconstriction, 
reduced splanchnic flow, and decreased portal venous pressure. 
In addition, it suppresses hepatocellular proliferation but 
encourages a more regular and orderly regeneration. An 
intraoperative bolus dose of somatostatin bolus (250 μg) 
followed by a continuous 250 μg/h infusion for 5 days was 
used174. Animal studies have shown a marked reduction in 
portal venous flow and pressure and attenuation of liver injury 
after 80 per cent and 90 per cent hepatectomies with rapid and 
effective flow modulation175–177. In smaller clinical studies, 
when portal venous pressure is greater than 20 mmHg, 
somatostatin has immediately reduced the pressures by 
2.5 mmHg174. Whether this translates to significant clinical 
benefit needs to be assessed in the larger ongoing clinical trials 
(such as SOMAPROTECT01; registration number: NCT02799212, 
http://www.clinicaltrials.gov). Another randomized clinical trial 
evaluated whether terlipressin could influence postoperative 
outcome after liver resection, without demonstrating a positive 
effect in the intervention arm178.

Intraoperative N-acetylcysteine administration
To limit oxidative cellular injury, N-acetylcysteine infusion has 
been used to clear (scavenging) the excess oxygen free radicles 
produced due to ischaemia–reperfusion injury179; however, 

http://www.clinicaltrials.gov
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clinical studies failed to demonstrate a clinical benefit of its 
use180,181. Timing of the administered treatment and limited 
sample size in these trials might have influenced the results 
negatively.

Intraoperative steroids
Glucocorticoids are potent anti-inflammatory drugs that 
modulate inflammatory and anti-inflammatory pathways. The 
role of steroids in altering the inflammatory pathways that can 
lead to systemic inflammatory response syndrome was 
evaluated in several randomized clinical trials182–185. 
Methylprednisolone 500 mg before induction or up to 90 min 
before surgery was used. These studies have demonstrated 
favourable postoperative changes in laboratory markers of 
systemic inflammation, including IL-6, IL-10, TNF-α, C reactive 
protein, liver function tests, and prothrombin time. In a 
meta-analysis by Richardson et al.186, preoperative steroids were 
associated with statistically significant reductions in serum 
bilirubin and IL-6 in the early postoperative interval. There was 
a trend towards a lower incidence of postoperative 
complications and prothrombin time, but it did not reach 
statistical significance.

Treatment
In general, current treatment recommendations for severe PHLF 
are based on treatment algorithms developed to support 
patients with acute liver failure due to other reasons than 
PHLF187. The most important goal is to support organ function, 
and thus, provide a chance for the failing liver the recover 
spontaneously. Symptomatic treatment for PHLF include all 
aspects of modern organ and patient support available at 
specialized intensive care units. This has been described 
extensively before and will not be repeated in this 
review31,188,189. In the following section specific aspects of PHLF 
treatment regarding medical treatment, extracorporeal liver 
support systems, and liver transplantation (LTx) will be discussed.

Medical/cell-derived treatment
Presently, there is not a single drug, nor a combination of different 
agents available to cure patients with PHLF; however over the past 
years, several treatment strategies have been evaluated. Some of 
them, such as aggressive treatment of infectious complications 
are established and uncontroversial, whereas others might be 
considered experimental.

Antibiotics
Appropriate steps must be taken to prevent postoperative sources 
of infection. Early mobilization, fast return to oral intake, and 
early removal of drains as part of an enhanced recovery 
programme showed a reduction in the risk of infectious 
complications190. Early recognition of sources of sepsis with 
appropriate radiological imaging, drainage of infected 
collections, and appropriate antibiotics are all important in 
controlling the infection that could induce or aggravate PHLF191. 
A recent meta-analysis found no benefit in postoperative 
prophylactic administration of antibiotics in patients following 
hepatectomy in terms of rate and fatalities192; however when 
PHLF is diagnosed, aggressive antimicrobial treatment is 
advised as infectious complications and sepsis are both 
common in PHLF, increasing the risk for adverse patient 
outcomes193.

Lactulose
Hepatic encephalopathy is a severe complication in patients with 
PHLF, mainly triggered by increased ammonia due to insufficient 
metabolism in the liver194. Treatment for patients with PHLF 
follows the same recommendations for treatment as patients 
with acute liver failure, and high-dose lactulose is 
recommended routinely94.

Stem cells
Even though stem cell therapy might not be considered a classical 
medical treatment, it probably represents one of the most 
promising treatment alternatives for patients with PHLF in the 
future. Over the past years numerous publications have been 
addressing different treatment aspects, mainly in liver diseases 
such as fibrosis195 and end-stage liver disease196. Results following 
mesenchymal stem cell transplantation in a porcine hepatectomy 
model have shown promising results197,198; however, this treatment 
presently has not reached clinical practice, and several limitations 
remain critical, such as target-organ infiltration and the number of 
administered cells199.

Extracorporeal liver support
Theoretically, extracorporeal liver support systems represent an 
appealing approach to bridge an impaired liver function in the 
immediate postoperative phase; however, these devices are 
mainly developed to support failing liver function in patients with 
acute or acute-on-chronic liver failure200. For these patients, it 
was hypothesized that the removal of not only water-soluble but 
also albumin-bound toxins would assist in detoxification and 
support global liver function until recovery. The first available 
device was the molecular adsorbent circulating system 
(MARS)201,202. MARS treatment has demonstrated improved liver 
detoxification and haemodynamics in patients with both acute 
and acute-on-chronic liver failure203,204; however, MARS 
treatment did not result in improved survival in two large 
randomized clinical trials, neither in acute-on-chronic205 nor in 
acute liver failure206. Other techniques, such as the single-pass 
albumin dialysis and plasma separation and filtration, have been 
developed207 and demonstrated comparable results to MARS in 
terms of their detoxification capacity200,208,209. In contrast, 
high-volume plasma exchange achieved improved transplant-free 
survival in patients with acute liver failure in a randomized 
clinical trial210. In the PHLF setting, however, only the MARS 
system has been systematically evaluated. In a prospective study, 
MARS was found to be safe and feasible to use in patients with 
PHLF early after hepatectomy211; however in a systematic review, 
it was not possible to provide evidence to support a routine use of 
MARS in patients with PHLF212. Other devices, such as bioartificial 
liver support systems, could potentially increase the benefit of 
extracorporeal liver support systems, adding additional hepatic 
functions like synthesis of proteins and coagulation factors on top 
of the detoxification. In 2004, a randomized clinical trial 
evaluating a porcine hepatocyte-based bioartificial liver support 
system in patients with acute liver failure could not demonstrate 
a significant survival benefit for the patients in the intervention 
arm213. Since then, different systems have been developed, 
mainly based on porcine derived hepatocytes214. Due to legal 
reasons in many countries, there is a need to use human-derived 
hepatocytes in bioartificial liver support systems because 
xenotransplantation is widely prohibited. Such systems are 
currently under evaluation in both animal and human studies 
but are not yet available for routine clinical use215.
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Liver transplantation and PHLF
Liver transplantation is frequently stated to be the only definite 
treatment in patients with PHLF; however, the scientific 
evidence is low, and there are many obvious limitations. So far, 
three articles have described the experience with LTx in PHLF, 
two single-centre series216,217 and a recent multicentre 
experience218. All concluded that it is safe and feasible to offer 
LTx to patients with PHLF with good long-term outcomes 
comparable to LTx for established indications; however, there 
are many unanswered questions such as the optimal time point 
for LTx and how to justify this indication in light of donor organ 
shortages. Thus, LTx will probably remain a rescue treatment in 
expert centres for patients with benign histopathology or a 
diagnosis already accepted for LTx even without PHLF (for 
example hepatocellular cancer according to national 
guidelines). To provide access to LTx for patients with PHLF, it is 
necessary to have national strategies as well as established 
cooperation between liver transplantation units and hospitals 
performing hepatectomies.

Discussion and future perspectives
In this review, the evidence for the most important aspects on 
PHLF has been summarized. Evident to the reader is the absence 
of high-grade evidence for most aspects of PHLF research. 
Furthermore, the lack of accurate tools to predict PHLF and 
effective treatment adds to the clinical challenge of PHLF for 
hepatobiliary surgeons worldwide.

As seen in this review there are countless attempts to define 
PHLF. In the paper where the ISGLS PHLF criteria were presented 
for the first time, Rahbari et al. listed almost 50 different 
publications with its own corresponding definition of PHLF 
between 2003 and 20093. Since then, numerous additional 
articles presenting new definitions of PHLF have been published, 
many of them originating from single centres without 
validation. Whether this is a result of a disagreement with the 
ISGLS criteria or a real effort to improve the definition of PHLF is 
presently unclear. In 2017, Skrzypczyk et al. published an article 
comparing the ISGLS, Balzan 50:50 and peak bilirubin criteria 
with regard to their value in predicting severe outcomes related 
to PHLF219. This article was commented on by Harrison et al.220, 
discussing potential flaws of studies comparing binary 
predictive scoring systems, both from a statistical and clinical 
point of view. The following reply by Skrzypczyk et al.221, 
however, vividly demonstrate the lack of agreement on 
PHLF-related questions in the hepatobiliary surgical community. 
From a clinical point of view, it would be desirable to have a 
definition for every patient undergoing hepatectomy, with high 
accuracy and applicable as early as possible after surgery, to 
guide the surgeon in selecting early postoperative treatment 
strategies (that are currently lacking); however, the 
implementation of a new definition should be counselled by an 
organization such as ISGLS or International Hepato-Pancreato- 
Biliary Association and not by several individual single centres. 
So, the recommendation until then is to urge the hepatobiliary 
community to use the ISGLS criteria in publications on PHLF to 
allow comparison between studies.

Liver volume measurements are the cornerstone to estimate 
the risk before surgery of PHLF after liver resection. Despite the 
great number of studies, most studies focus on a binary volume 
cut-off, whereas the risk of PHLF gradually increases with a 
decreasing FLR size. Furthermore, data on very large cohorts 

remain limited, and future international collaborative 
prospective trials might be the way forward. Most research on 
liver regenerative procedures focusses on the extent and speed 
of liver growth and the resection rate. Yet, it remains to be 
established whether an increased resection rate also provides an 
oncological benefit or whether the test of time that prevents 
surgery in patients with unfavourable tumour biology is more 
important.

The development of an accurate and easily available liver 
function test with capacity to measure regional function would 
probably be the most important tool to prevent PHLF. This 
could assist the hepatobiliary surgeon not only in avoiding 
resection in patients with limited FLR function (or submit them 
for FLR-augmenting procedures) but also potentially reveal 
sufficient FLR function in patients that today are deemed 
unresectable with current methods.

Given the relevant differences between mice and men, 
identification and characterization of pathophysiological 
processes dysregulated in patients developing PHLF is key to 
identify potential new treatment targets. Clinically applicable, 
integrative models, including preoperative modifiable and 
non-modifiable risk factors, might improve preoperative risk 
assessment in patients undergoing hepatic resection.
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