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Abstract
Purpose  In Lewy body diseases (LBD), various symptoms occur depending on the distribution of Lewy body in the brain, 
and the findings of brain perfusion and dopamine transporter single-photon emission computed tomography (DAT-SPECT) 
also change accordingly. We aimed to evaluate the correlation between brain perfusion SPECT and quantitative indices 
calculated from DAT-SPECT in patients with LBD.
Procedures  We retrospectively enrolled 35 patients with LBD who underwent brain perfusion SPECT with N-isopropyl-
p-[123I] iodoamphetamine and DAT-SPECT with 123I-ioflupane. Mini-mental state examination (MMSE) data were also 
collected from 19 patients. Quantitative indices (specific binding ratio [SBR], putamen-to-caudate ratio [PCR], and caudate-
to-putamen ratio [CPR]) were calculated using DAT-SPECT. These data were analysed by the statistical parametric mapping 
procedure.
Results  In patients with LBD, decreased PCR index correlated with hypoperfusion in the brainstem (medulla oblongata 
and midbrain) (uncorrected p < 0.001, k > 100), while decreased CPR index correlated with hypoperfusion in the right tem-
poroparietal cortex (family-wise error corrected p < 0.05), right precuneus (uncorrected p < 0.001, k > 100), and bilateral 
temporal cortex (uncorrected p < 0.001, k > 100). However, there was no significant correlation between decreased SBR 
index and brain perfusion. Additionally, the MMSE score was correlated with hypoperfusion in the left temporoparietal 
cortex (uncorrected p < 0.001).
Conclusions  This study suggests that regional changes in striatal 123I-ioflupane accumulation on DAT-SPECT are related to 
brain perfusion changes in patients with LBD.
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Introduction

Lewy body diseases (LBD), which are sequential neuro-
degenerative disorders and have many common clinical 
features and neuropathology, are considered subtypes of 
an α-synuclein-associated disease spectrum from inciden-
tal LBD and non-demented Parkinson’s disease (PD) to 
PD with dementia (PDD) and dementia with Lewy bodies 
(DLB). Although the nosologic relationship among these 
disorders is frequently being debated, it is currently dif-
ficult to classify them explicitly. Based on the conventional 
international consensus, DLB is diagnosed when cogni-
tive impairment precedes parkinsonian motor symptoms or 
begins 1 year after the onset of parkinsonian; in contrast, 
in PDD, cognitive impairment develops in the setting of 
well-established PD [1]. Therefore, the diagnosis of LBD 
depends on the presence and timing of onset of cogni-
tive impairment. Braak et al. proposed that LB pathology 
spreads via the olfactory bulb or gastrointestinal system 
from the peripheral to central nervous systems, and LB 
travels from the brainstem to the cortex [2]. The distribu-
tion and degree of LB pathology in the brain affect clinical 
symptoms in patients with LBD, including movement dis-
order, psychotic state, visual hallucination, and cognitive 
impairment, in patients with LBD.

Nuclear medicine imaging is useful in diagnosing 
LBD. Brain perfusion single-photon emission computed 
tomography (SPECT) shows changes in brain perfusion 
in this patient group. Notably, patients with PDD and 
DLB show parietal, temporal, or occipital hypoperfusion, 
while those with PD show no remarkable deterioration in 
brain perfusion compared with those with PDD or DLB 
[3]. These changes are related to cognitive impairment 
in these patients [4]. In addition, dopamine transporter 
(DAT)-SPECT is another useful nuclear medicine imaging 
approach to assess the function of the presynaptic nigros-
triatal dopaminergic system. Quantitative indices calcu-
lated from DAT-SPECT are also useful in interpreting 
and assessing images [5, 6]. In patients with LBD, striatal 
tracer accumulation deteriorates as the disease condition 
progresses [7, 8]. The specific binding ratio (SBR), repre-
senting the strength of striatal tracer accumulation, is the 
most frequently used quantitative index in DAT-SPECT. 
Although the SBR index is useful because it correlates 
with the severity of motor dysfunction in patients with 
PD [9], it is not enough to differentiate between patients 
with PD and DLB [10]. On the other hand, the putamen-
to-caudate (PCR) and caudate-to-putamen (CPR) ratios are 
different types of quantitative indices of DAT-SPECT that 
represent changes in the shape and distribution of striatal 
tracer accumulation. Accumulating studies have demon-
strated that the PCR/CPR indices can differentiate patients 

with PD and DLB [10–12]. It is speculated that the ante-
rior part of striatal uptake, especially caudate uptake, cor-
relates with psychotic state or cognitive impairment, while 
the posterior part of striatal uptake correlates with move-
ment disorders in patients with LBD.

We hypothesised that changes in striatal tracer accumula-
tion on DAT-SPECT would correlate with brain perfusion in 
patients with LBD and that these changes would reflect their 
symptoms, such as movement disorder or cognitive impair-
ment, caused by differential distributions of LB pathology 
in the brain. Accordingly, this study aimed to assess the cor-
relation between brain perfusion and quantitative indices 
(SBR, PCR, and CPR indices) of DAT-SPECT using the 
statistical parametric mapping (SPM) analysis and to com-
pare these quantitative indices among patients with LBD, 
including PD, PDD, and DLB.

Materials and Methods

Patients

A total of 231 consecutive patients who underwent brain 
perfusion SPECT with N-isopropyl-p-[123I] iodoampheta-
mine (IMP) and DAT-SPECT with 123I-ioflupane from Feb-
ruary 2014 to January 2019 were included in this retrospec-
tive study. The interval between the two examinations was 
less than 1 year. Patients with a disease that affects the image 
quality of DAT and brain perfusion SPECT (e.g., exten-
sive cerebral haemorrhage and infarction) were excluded. 
Enrolled patients were diagnosed based on the clinical 
diagnostic criteria of the UK Parkinson’s Disease Society 
Brain Bank [13] or established diagnostic criteria [1, 14]. 
Patients who were clinically undiagnosed with LBD were 
also excluded. General cognitive function was assessed in 
some of the participants using the mini-mental state exami-
nation (MMSE). Of the total 231 patients, 135 overlapped 
with those in our previous studies [10, 15].

The institutional review board of Keio University School 
of Medicine granted permission for this retrospective review 
of clinical data and imaging and waived the requirement 
for obtaining informed consent from the patients (approval 
number: 20211068).

Image Acquisition and Reconstruction

Fifteen minutes after injection of 222 MBq of 123I-IMP, 
brain perfusion SPECT were obtained on Discovery NM 
630 or Discovery NM/CT 670 (GE Healthcare, Milwaukee, 
WI) equipped with an extended low-energy general-purpose 
collimator. Projection data were acquired for 30 min. Imag-
ing parameters were as follows: matrix size, 128 × 128; pixel 
size, 2.9 mm; slice thickness, 2.9 mm; and energy window, 
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159 keV ± 10%. Data were reconstructed by the filtered 
back-projection method with a Butterworth filter (critical 
frequency, 0.45; power, 10.0). Attenuation correction was 
used, while scatter correction was not.

Three hours after injection of 185 MBq 123I-ioflupane, 
DAT-SPECT were obtained on the Discovery NM 630 or 
Discovery NM/CT 670 (GE Healthcare, Milwaukee, WI) 
equipped with a FAN beam collimator. Projection data were 
acquired for 30 min. Imaging parameters were as follows: 
matrix size, 128 × 128; pixel size, 4.4 mm; slice thickness, 
4.4 mm; and energy window, 159 keV ± 10%. Data were 
reconstructed by the ordered-subset expectation–maximisa-
tion method (iterations, 3; subset, 10) with a Butterworth 
filter (critical frequency, 0.5; power, 10.0). Neither attenua-
tion correction nor scatter correction was used.

Image Analysis of DAT‑SPECT

We used commercially available software—DaTQUANT 
(GE Healthcare, Little Chalfont, UK) for calculation of 
quantitative indices of DAT-SPECT. DaTQUANT applies a 
normalised volume of interest (VOI) template, two striatal 
VOIs and two occipital lobe VOIs, based on the large Euro-
pean multi-centre database of healthy controls (ENC-DAT 
trial) (Fig. 2) [16, 17]. DaTQUANT enables setting these 
normalised VOIs automatically and calculation of the differ-
ent types of quantitative indices: the SBR and PCR [10, 15, 
18]. The SBR is defined as the mean counts of the striatal 
VOI (background-subtracted) divided by the mean counts 
of the occipital lobe VOI. The PCR is defined as the mean 
counts of the putamen VOI divided by the mean counts of 
the caudate VOI. We also calculated the CPR index, which 
is defined as the mean counts of the caudate VOI divided by 
the mean counts of the putamen VOI, as the simple recipro-
cal of the PCR index. In this study, the average values of the 
SBR and PCR/CPR for both sides of the striatum were used 
for the analysis.

Statistical Model

The Kruskal–Wallis test was used to compare age, quantita-
tive indices (SBR, PCR, and CPR), and the MMSE between 
the LBD (PD, PDD, and DLB) groups. If there were sig-
nificant differences, post hoc analysis with Bonferroni cor-
rection was performed. The Pearson’s chi-square test was 
used to compare sex between these groups. These tests were 
performed using SPSS software (version 27; SPSS Inc., Chi-
cago, IL).

Brain perfusion imaging data were preprocessed and ana-
lysed with statistical parametric mapping (SPM) software 
(https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​spm12/), run-
ning on the Matlab R2020a software environment (Math-
Works, Natick, MA). Brain perfusion SPECT data were first 

aligned and anatomically standardised to match each scan 
to the Montreal Neurological Institute (MNI) atlas based 
template (McGill University, Montreal, Canada) using 
a 12-parameter affine transformation, followed by non-
linear transformations [19, 20]. SPECT images were then 
smoothed with an 8 × 8 × 8 mm Gaussian filter. Normalisa-
tion of global brain counts to a value of 50 was performed 
with proportional scaling to remove differences in global 
activity in and between subjects. Proportional scaling was 
performed by dividing each voxel value by the average value 
of the whole parenchyma [21, 22]. Linear regression analy-
ses after adjusting for age were conducted to determine the 
correlations between brain perfusion and quantitative indices 
calculated from DAT-SPECT and between brain perfusion 
and MMSE scores.

The initial voxel threshold was set to 0.001 uncorrected 
for multiple comparisons. Clusters were considered sig-
nificant when falling below a cluster-corrected p (family-
wise error [FWE]) = 0.05. If statistical significance was not 
reached, the threshold at the voxel level was explored at 
p < 0.001 uncorrected.

Results

Of the included 231 consecutive patients, four were excluded 
from the study due to insufficient image quality because 
of extensive cerebral haemorrhage and infarction, along 
with 192 who were clinically undiagnosed with LBD. 
The remaining 35 patients (median age, 76.0 years; range, 
58–91 years; men/women, 13/22), including eight with 
PD, three with PDD, and 24 with DLB, were included in 
this analysis. Figure 1 depicts the flow diagram of study 
participants.

Table 1 shows the characteristics of included patients. 
The means and standard deviations of the SBR, PCR, and 
CPR indices and MMSE scores are also shown. Significant 
differences were observed in age, and the PCR and CPR 
indices between the PD and DLB groups.

Figure 2 shows representative images of DAT-SPECT and 
brain perfusion SPECT in patients with PD and DLB, and 
the calculated quantitative indices are also shown. PD cases 
tended to have lower PCR values, while DLB cases tended 
to have lower CPR values.

Figures 3, 4, and 5 show the results of the SPM analy-
sis. The PCR/CPR indices showed significant correlations 
with brain perfusion (Figs. 3 and 4), while no significant 
correlation was observed between the SBR index and 
brain perfusion (data not shown). Decreased PCR index 
correlated with hypoperfusion in the brainstem (medulla 
oblongata and midbrain) (uncorrected p < 0.001, k > 100; 
Fig. 3), and decreased CPR index correlated with hypoper-
fusion in the right temporoparietal cortex (FWE corrected 
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p < 0.05), right precuneus (uncorrected p < 0.001, k > 100), 
and bilateral temporal cortex (uncorrected p < 0.001, 
k > 100; Fig. 4). A slight correlation between the MMSE 
score and brain perfusion was observed in the left tempo-
roparietal cortex (uncorrected p < 0.001; Fig. 5). Table 2 
depicts the brain regions showing a significant correlation 
with the PCR/CPR indices.

Discussion

This study showed that decreased putaminal uptake of 
123I-ioflupane in DAT-SPECT significantly correlated 
with hypoperfusion in the brainstem; this correlation may 
reflect movement disorders in patients with LBD. Hacker 
et al. also demonstrated that midbrain-striatum functional 
connectivity was reduced in patients with PD, and in their 
study, striatal functional connectivity with the brainstem 
was graded as follows: posterior putamen > anterior puta-
men > caudate [23]. In addition, previous studies have 
shown more severe substantia nigra cell loss in PDD than 
in DLB, which consequently leads to more advanced par-
kinsonism [24]. The Hoehn and Yahr stage or Unified PD 
rating scale (motor part only) score has been reported 
to correlate with putaminal uptake of 123I-ioflupane in 
patients with PD [12]. These findings indicate that the 
midbrain-putamen dopaminergic connectivity contributes 
to motor dysfunction in patients with LBD. Thus, these 
findings represent a possibility that decreased PCR index 
could indicate enhanced severity of movement disorders 
caused by dysfunction of the putamen dopaminergic sys-
tem connected from the brainstem.

We also demonstrated that decreased caudate uptake 
of 123I-ioflupane in DAT-SPECT was significantly cor-
related with hypoperfusion in the right temporoparietal 
cortex, right precuneus, and bilateral temporal lobes. Con-
sistently, previous studies have shown that glucose hypo-
metabolism in the temporoparietal areas correlates with 
dementia severity in LBD [25, 26] and that the caudate 
uptake of 123I-ioflupane correlates with cognitive impair-
ment [25–30]. Our results and these previous findings indi-
cate that the correlation between decreased CPR index and 
hypoperfusion in the temporoparietal cortex may reflect 
cognitive impairment in patients with LBD. In particular, 
a remarkable correlation (FWE corrected p < 0.05) was 
observed between decreased CPR index and hypoperfusion 
in the right temporoparietal region in patients with LBD. 
Patients with PD and DLB are more likely to have visu-
ospatial dysfunction than those with Alzheimer’s disease 
[31, 32], and previous studies have reported that visuospa-
tial dysfunction presents as right-dominant hypoperfusion 
or hypometabolism in the brain [33–35]. In addition, Mar-
quie et al. demonstrated that reduced caudate DAT concen-
tration was associated with worse visuospatial ability in 
patients with DLB [36]. These findings indicate that sig-
nificant hypoperfusion in the right temporoparietal region 
may be indicative of the visuospatial dysfunction observed 
in patients with LBD. Our results also showed that hypop-
erfusion in the precuneus is correlated with decreased cau-
dal uptake of 123I-ioflupane on DAT-SPECT; however, the 
posterior cingulate was spared from this hypoperfusion. 

Fig. 1   Flow diagram of patient inclusion. DLB, dementia with 
Lewy body; PD, Parkinson’s disease; PDD, Parkinson’s disease with 
dementia

Table 1   Patient characteristics

CPR, caudate-to-putamen ratio; DAT, dopamine transporter; DLB, 
dementia with Lewy body; MMSE, mini-mental state examination; 
PCR, putamen-to-caudate ratio; PD, Parkinson’s disease; PDD, 
Parkinson’s disease with dementia; SBR, specific binding ratio; SD, 
standard deviation; SPECT, single-photon emission computed tomog-
raphy
*  p < 0.05 PD vs. DLB

Characteristics PD PDD DLB

n 8 3 24
Age (years, 

mean ± SD)
67.1 ± 5.9* 80.3 ± 1.5 78.5 ± 6.6*

Sex (male/female) 2/6 1/2 10/14
Quantitative indices 

from DAT-SPECT
SBR 1.18 ± 0.50 1.07 ± 0.86 1.09 ± 0.44
PCR 0.73 ± 0.08* 0.89 ± 0.16 0.89 ± 0.12*
CPR 1.38 ± 0.14* 1.15 ± 0.22 1.15 ± 0.16*
MMSE (n) 27.0 ± 2.8 (2) 24.0 ± 1.0 (3) 21.8 ± 5.5 (14)
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This finding represents a characteristic sign, known as the 
“cingulate island sign,” observed on the brain perfusion 
SPECT of patients with DLB [37]. Early caudate dopamin-
ergic dysfunction is reportedly also a predictor of future 
cognitive impairment [38–40]. Cognitive decline and 
related symptoms are not a consequence of α-synuclein-
induced neurodegeneration alone because amyloid β and 
tau pathologies also contribute to overall deficits [41–45]. 
These pathological changes may synergistically influence 
clinical features, including a shorter duration or a more 
malignant course [46, 47]. Therefore, we speculate that 
the CPR index has the potential to indicate the severity 

of cognitive impairment and clinical course in patients 
with LBD.

This study found that the SBR index had no significant 
correlation with brain perfusion. This result suggests that, 
unlike the PCR/CPR indices, the SBR index, which repre-
sents the magnitude of striatal uptake of 123I-ioflupane, has 
little advantage for assessing the symptoms of motor/cogni-
tive dysfunctions in patients with LBD.

We demonstrated that global cognitive impairment meas-
ured using the MMSE correlated with left temporoparietal 
cortex hypoperfusion in patients with LBD. Moreover, 
left-sided lateralisation has been observed between brain 

Fig. 2   DAT-SPECT and brain perfusion SPECT images of repre-
sentative cases of PD and DLB. A commercially available software 
package DaTQUANT was used for VOI-based analysis. The brain 
perfusion image was visualised with 3D-SSP. a A representative 
case of PD (aged 66  years, female) shows striatal uptake deteriora-
tion, especially in the posterior part. b A representative case of DLB 

(aged 76 years, male) shows diffuse striatal uptake deterioration and 
remarkable hypoperfusion in the temporoparietal lobe. DAT, dopa-
mine transporter; DLB, dementia with Lewy body; PD, Parkinson’s 
disease; SPECT, single-photon emission computed tomography; VOI, 
volume of interest; 3D-SSP, three-dimensional stereotactic surface 
projection
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Fig. 3   Correlations between brain perfusion SPECT and the PCR 
index. The PCR index correlated with brain hypoperfusion in the 
brain stem (medulla oblongata and midbrain) (uncorrected p < 0.001, 

k > 100 voxels). Regression lines at notable regions are shown. PCR, 
putamen-to-caudate ratio; SPECT, single-photon emission computed 
tomography
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perfusion and the MMSE score in patients with Alzheimer’s 
disease [48, 49], probably because most of the items of the 
MMSE questionnaire rely on left hemispheric cognitive 
processing.

Some patients included in this study overlapped with 
those included in our previous studies [10, 15]. In our 
previous studies, we assessed the combined diagnos-
tic utility of the quantitative indices of DAT-SPECT or 

iodine-131-meta-iodobenzylguanidine scintigraphy for 
PD and atypical parkinsonian syndromes; however, we 
did not use brain perfusion SPECT or assess the correla-
tion between brain perfusion and DAT-SPECT in LBD 
[10, 15]. Nobili et al. previously evaluated the correla-
tion between brain perfusion and DAT-SPECT in patients 
with PD and found that brain perfusion in the posterior 
cingulate, parahippocampal gyrus, and middle temporal 

Fig. 4   Correlations between brain perfusion SPECT and the CPR 
index. The CPR index correlated with brain hypoperfusion in the 
right temporoparietal cortex (FEW corrected p < 0.05), right precu-
neus (uncorrected p < 0.001, k > 100 voxels), and bilateral temporal 

cortex (uncorrected p < 0.001, k > 100 voxels). Regression lines at 
notable regions are shown. CPR, caudate-to-putamen ratio; SPECT, 
single-photon emission computed tomography
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gyrus correlated with uptake in the caudate, whereas that 
in the posterior cingulate, parietal precuneus, and occipi-
tal cuneus correlated with uptake in the putamen [50]. 

However, their study enrolled only patients with PD, and 
they used the SBR of the caudate/putamen regions, not 
the PCR or CPR, as quantitative indices. The PCR/CPR 

Fig. 5   Correlations between 
brain perfusion SPECT and 
the MMSE scores. The MMSE 
scores correlated with brain 
hypoperfusion in the left tem-
poroparietal cortex (uncorrected 
p < 0.001). Regression lines 
at notable regions are shown. 
MMSE, Mini-Mental State 
Examination; SPECT, single-
photon emission computed 
tomography

Table 2   Brain areas showing a significant correlation with the PCR and CPR indices

CPR, caudate-to-putamen ratio; FWE, family-wise error; L, left; MMSE, mini-mental state examination; PCR, putamen-to-caudate ratio; R, right

Area Cluster size Coordinates Z-score p values
(uncorrected, 
k > 100)X Y Z

PCR
Medulla oblongata 165 8  − 30  − 52 3.88  < 0.001
Mid Bbrain 168 8  − 24  − 18 3.41  < 0.001
CPR
R temporoparietal lobe 1295 54  − 54 − 4 4.26  < 0.05 (FWE 

corrected)
R precuneus 427 8  − 66 50 3.52  < 0.001
L temporal lobe 137  − 42  − 16  − 32 3.41  < 0.001
R temporal lobe 106 48  − 10  − 30 3.29  < 0.001
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indices have been suggested to be particularly valuable 
as they are background-, age-, and camera-independent 
[6]. These factors may explain the difference between our 
findings and theirs.

This study has some limitations. First, the number of 
patients analysed was relatively small. Additional studies 
with larger numbers of participants are needed to confirm 
our observations. Second, the diagnoses of PD, PDD, and 
DLB were clinical diagnoses and not pathologically con-
firmed. Finally, this was a single-centre study, and institu-
tion-specific factors might limit the generalizability of our 
results.

Conclusion

This study found that changes in striatal tracer accumula-
tion on DAT-SPECT correlated with brain hypoperfusion in 
several specific regions (brainstem, temporoparietal cortex, 
or precuneus) in patients with LBD.
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