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The rational design of PROTAC:s is difficult due to their obscure structure-
activity relationship. This study introduces a deep neural network model -
DeepPROTACsS to help design potent PROTACs molecules. It can predict the
degradation capacity of a proposed PROTAC molecule based on structures of
given target protein and E3 ligase. The experimental dataset is mainly collected
from PROTAC-DB and appropriately labeled according to the DCso and Dmax
values. In the model of DeepPROTACS, the ligands as well as the ligand binding
pockets are generated and represented with graphs and fed into Graph Con-
volutional Networks for feature extraction. While SMILES representations of
linkers are fed into a Bidirectional Long Short-Term Memory layer to generate
the features. Experiments show that DeepPROTACs model achieves 77.95%
average prediction accuracy and 0.8470 area under receiver operating
characteristic curve on the test set. DeepPROTACs is available online at a web
server (https://bailab.siais.shanghaitech.edu.cn/services/deepprotacs/) and at

github (https://github.com/fengleil04/DeepPROTACsS).

Traditional therapeutics rely on small-molecule inhibitors to
implement occupancy-driven pharmacology as the mode of action
(MOA). Despite the great success, this MOA suffers from several
limitations such as inability to deal with undruggable targets'>,
off-target toxicity*, undesired side effects’, drug resistance®’, and
so on. As a result, monoclonal antibodies and RNA interference
(RNAI) approaches start to complement small-molecule inhibitor
paradigm®’. Although antibodies possess high binding affinities to
extracellular protein targets and RNAi abolish protein levels at low
doses, their weaknesses limit their therapeutic applications.
Antibodies are difficult to cross cell membranes and RNAi mole-
cules own poor oral bioavailability and tissue distribution.
Therefore, new modalities should combine the advantages of
small-molecule, antibody, and RNAi methods and overcome their
disadvantages.

PROteolysis TArgeting Chimeras (PROTACs) has become an
appealing technology to utilize the event-driven MOA since its birth at
2001'°. A PROTAC is a heterobifunctional molecule composed of a
protein of interest (POI) ligand, a linker and an E3 ubiquitin ligase
recruiting ligand. It promotes the formation of a ternary complex (POI-
PROTAC-E3) by bringing the ubiquitination machinery to the proxi-
mity of POI, driving the transfer of ubiquitin from E2 enzyme to the
exposed lysine on target protein. Subsequently, the polyubiquitination
occurs and the ubiquitinated POI is recognized by 26 S proteasome
and degraded into small peptide fragments or even amino acids
(Fig. 1)""™. Since 26 S proteasome belongs to the ubiquitin-proteasome
system (UPS) in eukaryotic cells, PROTACs actually represents a che-
mical knockdown approach that hijacks the UPS to regulate the intra-
cellular protein levels® ™. The concept of PROTAC was first proposed
and proved by Crews and coworkers. They successfully induced the
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Fig. 1| The degradation mechanism of POI (Protein of Interest) by PROTACs. The POI and E3 ligase are brought together by PROTACs, which facilitates the transfer of
ubquitin. The POI labeled with ubquitin is recognized by proteasome and degraded into peptides.

degradation of methionine aminopeptidase-2 (MetAp-2) by recruiting
a peptidic SCF-BTRCP E3 moiety'®. The advancement of all small-
molecule-based PROTACs was achieved in 2008. A well-known MDM2-
p53 PPI inhibitor - Nutlin had been employed to couple with an
androgen receptor (AR) ligand to build a PROTAC, which resulted in
the degradation of AR in prostate tumor cells’®. In 2012, a series of
peptidomimetic von Hippel-Lindau (VHL) ligands that reserve the vital
hydroxyproline residue were reported'**. Comparing with previous
peptidic counterparts, these ligands possessed similar binding affi-
nities to VHL but more preferable physicochemical properties®. Con-
currently, the immunomodulatory drugs (IMiDs), including
thalidomide, pomalidomide, and lenalidomide, were indicated to bind
the cereblon (CRBN) E3 ligase, laying the foundation for constructing
new PROTACs that employ CRBN**%,

As a novel and promising technique, PROTACs displays a variety
of superior properties in comparison to current treatment methods.
First, PROTACs is capable to modulate the undruggable targets that
lack of a classical hydrophobic drug binding pocket or strongly bind
with endogenous molecules®, Further, it can also tackle the proteins
that function through protein-protein interactions®. Escaping the
demand for blocking the catalytic activity or protein-protein interface,
PROTACs can recruit a ligand that binds anywhere on the target pro-
tein with relatively low affinity. Second, PROTACs act catalytically
because they are released from the ternary complex once the ubiqui-
tination process is completed (Fig. 1). Due to this catalytical nature,
PROTACs can play a role at low exposures, reducing the potential for
off-target and other undesirable effects. Third, the accumulation of
target proteins is frequently observed in inhibitor-based methods on
account of the protein stabilization by drug binding and transcrip-
tional upregulation of proteins®>*. This exerts adverse effects to the
efficacy of inhibitor. However, the target accumulation can be avoided
by employing PROTACs because they eliminate the whole proteins
through proteasome. Additionally, this also indicates that PROTACs
can modulate nonenzymatic/scaffolding functions and address the
problem of drug resistance arose from the mutations surrounding the

binding pocket**¢, Finally, improved selectivity among closely related
proteins can be provided by applying PROTACs"*"*%, The active sites
of homologous proteins are highly conserved, while the sequence and
conformation outside the catalytic core maybe of great change. PRO-
TACs can exploit this difference to degrade the specific targets as the
ubiquitin transfer step depends on the relative location of exposed
lysine and ubiquitin. It means that the conformation of ternary com-
plex is of great significance for the development of potent PROTACs.
The conformation is largely dependent on the PROTACs linker, which
becomes one of the central tasks for PROTACs design. It is difficult to
design a universal linker that is suitable for all cases due to the different
structures of target proteins and E3 ligases.

Over the past few years, the production of enormous, high-quality
data in biological systems has accelerated the applications of artificial
intelligence (Al) approaches within the field of drug discovery and
development®**. Meanwhile, the wide availability of huge storage
systems and graphical processing units (GPUs) also facilitates large-
scale parallel computing, which can speed up the numerically intensive
computations. In contrast to explicitly constructing physical models,
Al, especially machine learning (ML) techniques, use mathematical
algorithms to discover complex relationships between existing data-
sets and make accurate predictions on new samples™*°. Artificial
neural networks (ANNs) are believed to be one of the most powerful
ML frameworks. They imitate the neurons in brain structure. Owing to
the nonlinear activation functions applied to each neuron unit and
multi-layer structures, ANNs are capable of learning complicated
relationships between inputs and outputs within the datasets*’~°. As a
modern reincarnation of ANNs, deep learning (DL) make use of deep
and sophisticated structures to extract valuable features from massive
amounts of training data®. On the basis of diverse network archi-
tectures, DL can be classified into several subclasses: multilayer per-
ceptron (MLP), convolutional neural networks (CNNs), recurrent
neural networks (RNNs), graph convolutional neural networks (GCNs),
and so on. Among these models, RNNs have been widely utilized in
sequential data analysis, for example, natural language processing,
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while CNNs have attained huge successes for regular Euclidean data,
for example, images in computer vision field*>*. GCNs attempt to
leverage the key ingredients of CNNs and learn features of a target
node by taking the information of itself as well as its locally connected
neighborhoods on the graph into consideration. GCNs have shown
great success for feature extraction on non-Euclidean geometric data
such as graphs and manifolds**>.

Before the uptake of DL by the pharmaceutical industry, the
success rate of drug development is very low*®. It has to go through
target validation, high-throughput screening, lead optimization, pre-
clinical trials, and clinical trials, all of which are tremendous costly and
time-consuming. For PROTACs, efficient molecules with appropriate
linkers can only be obtained through laborious trial-and-error pro-
cesses. Hence, it is reasonable to introduce DL technologies into
pharmaceutical field for the purpose of lowering the overall costs and
shortening the development cycle. ML or DL can be applied in nearly
all stages of drug development. For small-molecule design and opti-
mization, many computational models have been constructed to
perform virtual screening (VS) using ML-based approaches®’*%. None-
theless, DL have been demonstrated to be much more effective than
the other competing methods*>*°. Increasing quantitative structure-
activity relationship (QSAR) models have been built by DL techniques
to correlate chemical structures of molecules with their physiochem-
ical properties, biological activities, and ADMET properties® . Con-
verting molecular structure into proper descriptor or feature vector is
the top priority of almost all DL tasks. After that, an optimal mapping
between input features and network responses can be achieved by an
iterative training process.

As far as we know, there were no reports concerning the appli-
cation of DL in the field of PROTACs due to the deficiency of experi-
mental data. However, this situation has been changed recently.
Continuous efforts of more than 20 years have accumulated plenty of
high-quality data for PROTACs. On the other hand, the rapid devel-
opment of DL also makes it more powerful in revealing the potential
mappings between inputs and outputs. These provides a fantastic
opportunity to integrate DL with PROTACs. Recently, Hou et al. pub-
lished an online database of PROTACs (PROTAC-DB)® that includes
2258 PROTACs, 275 warheads (small molecules that bind POI), 68 E3
ligands (small molecules that recruit E3 ligases) and 1099 linkers. In
addition, we have also collected more data (375 PROTACs targeting 30
POIs) from other public sources. PROTAC-DB offers the binding affi-
nities, degradation efficiencies and cellular activities for various PRO-
TACs. Therefore, it is convenient for us to acquire labeled data from
this database. In this study, we introduce DeepPROTACsS, a deep neural
network model that can efficiently predict the degradation efficacy of
given PROTACs based on the structures of POl and E3 ligase. Our
framework embeds different parts of a given POI-PROTAC-E3 ligase
complex with separate neural network modules. The component
embeddings are concatenated together before feeding into an MLP
with two fully connected layers to get the final output. The average
accuracy rate and AUROC (area under ROC) of this model on test set
canbe up to 77.95% and 0.8470, respectively. We further validated this
model by using a batch of PROTACs that recruited VHL to destroy
estrogen receptor (ER). Among these total 16 PROTACs, this model can
successfully predict the degradation capacities of 11, thus attaining
68.75% prediction accuracy. For other recently reported PROTAC tar-
gets (EZH2, STATS3, elF4E, and FLT-3), the accuracy rates change in the
scope of 65% to 80%. All these results have demonstrated the cap-
ability of our DeepPROTACs model.

Results and discussion

The architecture of deepPROTACs

The network architecture of DeepPROTACs is illustrated in Fig. 2. We
implemented the whole network with the PyTorch®® and PyTorch
Geometric®” frameworks. In our experiments, all GCNs consist of two

graph convolutional layers followed by a max pooling layer. The out-
put pocket/ligand representation of each max pooling has a dimension
of 64. Besides, the encoding of linker SMILES is fed into an embedding
layer to obtain the distributed representation. This operation is much
better than one-hot encoding because the latter treats all characters as
independent entities without relationship to each other. Subsequently,
the output of this embedding layer is fed in a Bidirectional LSTM layer
with 64 nodes and a fully connected layer successively. The output
representation of linker SMILES network module also has a dimension
of 64. The result of this linker network is concatenated with the results
of pocket/ligand networks before being fed into an MLP with two fully
connected layers to obtain the final output. Leaky rectified linear unit
(Leaky ReLU) is used as the activation function in this network. It is
worth noting that the weights of GCNs for POI pockets and E3 pockets
are shared, and the weights of GCNs for warheads and E3 ligands are
also shared. Detailed output dimensions of each layer and hyper-
parameters utilized in the DeepPROTACs model are listed in Table 1. In
order to compare our model with baseline methods, we have further
trained several traditional ML models, including Support Vector
Machine (SVM) and Random Forest (RF) by employing the auto cross-
covariance (ACC) as the feature of protein. The ligand is represented
by the molecular access system (MACCS) keys or Morgan fingerprints.
ACC transforms a protein sequence into an 18 bits vector, while
MACCS keys and Morgan fingerprints represent a small molecule with
a 166 bits vector and a 1024 bits vector, respectively. The representa-
tion of a ternary complex is constructed by concatenating the features
of the target protein, the E3 ligase, and the PROTAC molecule. SVM
models are built in Scikit-learn package and set kernel as linear, reg-
ularization parameter C as 1; RF models are also built in Scikit-learn
package and set number of estimators as 100, max depth as 5.

The optimization of model parameters

Different model parameters have been tested to optimize the Deep-
PROTACs model (Table 2). In each experiment, the whole dataset was
randomly split into the training set, validation set, and test set at a ratio
of 8:1:1. Under the circumstance of batch size 1, the training for the
model was finished at epoch 30. Eventually, this model achieves an
average accuracy of 77.15% on the validation set. The other values of
batch size (the corresponding epoch number is determined according
to the loss of validation set) have also been examined and it turns out
that these values result in performance reduction in varying degrees
(Table 2). Two consecutive GCN layers are applied in the network
architecture because the same setting was used in the original paper®®.
Furthermore, we have investigated the effect of GCN layer numbers
and observed the best performance at layer number of two (Table 2).
The effects of pocket size on the model are also investigated by gra-
dually enlarging the pocket size. As listed in Tabel 2, the model using
5 A pocket size performs the best. The other pocket sizes reduce the
predicting power of the model at different levels. Although larger
pocket size is more likely to cover the residues on contacting surface of
POI and E3 ligase, it may also include many irrelevant residues inside
the protein, leading to the addition of noise signal. Further, it is diffi-
cult to determine a uniform pocket size to cover the contacting surface
because the structures of different POI/E3 ligase are distinct and the
conformations of generated ternary complexes are also dependent on
the structures of PROTACs. Instead, 5 A size pocket only contains the
first and second coordination shell residues around ligand, which are
known in POl/warhead and E3/ligand structures. It should be prefer-
able to determine the degradation result by utilizing the confirmed
information and circumventing the uncertain factors. In addition, the
inclusion of max pooling layer and bond type encoding improves the
model’s performance (Table 2). Consequently, the final model is
trained by the optimized parameters listed in Table 1 and by the Adam
optimizer®® with the learning rate of 0.0001, 31 of 0.9, and 2 of 0.999.
The objective is cross entropy for binary classification.
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Fig. 2 | The network architecture of DeepPROTACs. The preprocess of POI, E3 ligase and PROTAC molecule: extraction of binding pocket from POI (BRD4) and E3 ligase
(VHL) and conversion to graph representations, conversion of PROTAC molecule to graph representations and SMILES.

After three times of repeated training, the DeepPROTACs model
achieves an average accuracy rate of 77.46% and 0.8531 AUROC on test
set that is 10% of whole data (Table 3). In contrast to the metrics of SVM
and RF models using different fingerprints (Table 3 and Fig. 3), this is
an impressive achievement. The performance of SVM model with
Morgan fingerprints has improved a lot when comparing with MACCS
keys. However, it is still inferior to GCN model, especially, in terms of
AUROC. With respect to RF model, the average accuracy approaches
70% and the AUROC is around 0.80, both of which are not better than

those of SVM and GCN models. For the following experiments, the
division of 8:2 (training:test) is adopted to sufficiently inspect the
predicting capability of DeepPROTACs model on a larger test set. The
results suggest that DeepPROTACs maintains high performance
(77.95% accuracy and 0.8470 AUROC) on the test set, that is 20% of
whole data. The true positive rate and precision rate are calculated to
be 85.37% and 80.98% (Supplementary Table 1), respectively, eluci-
dating the good sensitivity and precision of our model. For the pur-
pose of comparison, we constructed two alternative models that treat
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Table 1| The dimensions and parameters of

Table 3 | The evaluation results of DeepPROTACs, SVM, and

RF models on test set

DeepPROTACs model
DeepPROTACs model Layer Output
dimension
Protein pockets/ligands Node embedding 64
Graph convolution layer 1 128
Graph convolution layer 2 64
SMILES Embedding 64
Bidirectional LSTM 64
Fully connected layer 64
MLP Fully connected layer 1 64
Fully connected layer 2 2
Parameters Epoch 30
Batch size 1
Number of GCN layers 2
Pocket size 5A
Inclusion of bond type Yes
encoding
Learning rate 0.0001
Pooling layer Max pooling
Loss Cross-entropy
Optimizer Adam

Table 2 | The optimization of DeepPROTACs model
hyperparameters on validation set

Hyperparameters Values Average AUROC
accuracy
Batch size 1 77.15%° 0.8246°
8 75.85%° 0.8009°
16 75.85%° 0.8183"
32 76.32%° 0.8118*
64 76.21%° 0.8212°
128 76.09%* 0.8249°
256 75.62%" 0.8246*
Number of GCN layers one 75.38%° 0.7850*
two 77.15%° 0.8246°
three 76.68%" 0.82071°
Pocket size 5 A res around 77.15%° 0.8246°
ligand
10 A res around 76.33%° 0.8114°
ligand
15 A res around 73.73%" 0.8010°
ligand
All protein 73.97%° 0.7780°
Pooling layer Max pooling 77.15%° 0.8246°
Mean pooling 72.44%° 0.7692°
Sum pooling 72.20%° 0.7733°
Inclusion of bond type No 77.15%° 0.8246°
encoding Yes 71.97% 0.8278°
Optimized hyperparameters use 77.46%° 0.8531°

Note: ¢ metrics value on validation set, ® metrics value on test set; bold means optimal
parameters.

the whole PROTAC molecule as graph and SMILES, respectively (Sup-
plementary Figs. 1 and 2). Consequently, there are only three network
modules in these two models before concatenation: POl pocket
module, E3 pocket module, and PROTAC graph or SMILES module. The
network module for graph or SMILES is the same as DeepPROTACs
model. However, the predicting accuracies of these two models on the

Model Fingerprints Average accuracy AUROC
DeepPROTACs 77.46% 0.8531
SVM MACCS 71.48% 0.7385
Morgan 76.76% 0.8196
RF MACCS 68.31% 0.7973
Morgan 69.37% 0.8117
1.0
0.8
Q
s
."§
E 0.4
= L7 DeepPROTACSs (area=0.8531)
P —— SVM MACCS (area=0.7385)
02 e —— SVM Mogan (area=0.8196)
e —— RF MACCS (area=0.7973)
’ RF Morgan (area=0.8117)
0.0+ T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 3 | ROC curves of DeepPROTACs, SVM (Support Vector Machine), and RF
(Random Forest) models. Source Data are provided as a Source Data file.

test set are computed to be 68.08% and 76.25%, respectively, which are
lower than that of the DeepPROTACs model. Separate representations
of PROTAC molecules in DeepPROTACs can not only decrease the
sparseness of the adjacency matrix in graph representation but also
reveal the hidden mappings between the linker and degradation effi-
cacy. Thus, these two alternative models are discarded and the fol-
lowing experiments focus on the DeepPROTACs model.

Architecture validation and data balance
Ablation experiments on DeepPROTACs model were carried out in
order to validate the current network architecture. As illustrated in
Fig. 4a, the elimination of ligase pocket, E3 ligand, POI pocket or
warhead (ablated item: 2, 3, 4, 5) from current architecture indeed
attenuates the performance of the GCN model. Deleting the linker
input (ablated item: 6) also leads to inferior performance. Further, in
contrast to the ablation of single item, the removal of double items
such as ligase pocket/E3 ligand or POI pocket/warhead (ablated item:
7, 8) further reduces the predicting accuracy and AUROC. In brief,
these experiments have demonstrated the indispensability of every
part in current DeepPROTACs model. Moreover, the training process
of DeepPROTACs model was repeated by using three different train-
ing/test splits. For each split, the whole dataset was randomly divided
into a training set and a test set at a ratio of 8:2. And in each case of
split, the model was trained for three times. The evaluation metrics of
each split are quite similar, illustrating the robustness and reproduci-
bility of our GCN model.

According to Supplementary Table 2, the activity distribution of
PROTAC molecules varies substantially among different pairs of target
proteins and E3 ligases. Consequently, it is almost impossible to
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N =2832 biologically independent samples over 3 independent experiments.
Data are presented as mean values + SD. The statistical test used for data analysis is
paired ¢ test with two-sided and no adjustments were made for multiple compar-
isons. Source data are provided as a Source Data file. a Ablation experiments on
DeepPROTACs model. Ablated item: 1- none, 2 - ligase pocket, 3 - E3 ligand, 4 - POI
pocket, 5 - warhead, 6 - linker, 7 - ligase pocket and E3 ligand, 8 - POI pocket and
warhead. b Data balance experiments on DeepPROTACs model. Under-sampling

(b)

Metrics

Normal-loss

- U-samp N-samp O-samp

Weighted-loss

(U-samp): deleting redundant inactive samples (the number of active and inactive
samples is 988:988). Normal-sampling (N-samp): adopting original samples (the
number of active and inactive samples is 988:1844). Over-sampling (O-samp):
repeated sampling part of active samples (the number of active and inactive sam-
ples is 1844:1844). Weighted-loss: the weight of loss corresponding to the active
samples was multiplied by 2, while the weight of loss corresponding to the inactive
samples was unchanged.

achieve data balance within a single specific pair of target protein and
E3 ligase. Instead, we attempt to investigate the influence of data bal-
ance on the whole dataset. The ratio of active and inactive samples in
original dataset is 988:1844. Except for normal-sampling, we conduct
under-sampling by deleting some redundant inactive samples and
over-sampling by repeatedly sampling part of active samples. As a
result, the ratio of active and inactive samples in under-sampling and
over-sampling become 988:988 and 1844:1844, respectively. In each
sampling method, we trained the model for three times and obtained
an average predicting accuracy and AUROC. Our experimental results
show that the over-sampling method performs the best, followed by
the normal-sampling and the under-sampling methods (Fig. 4b). It
seems to be reasonable because over-sampling takes full advantage of
limited data, while under-sampling wastes some data resources. In
addition, the weighted loss is also utilized as another method to
ameliorate the impact of data imbalance. Specifically, the weight of
loss corresponding to the active samples is multiplied by a factor of 2,
while the weight of loss corresponding to the inactive samples is kept
unaltered. Comparing with the case of the normal loss, both accuracy
and AUROC in the weighted-loss case increase slightly (Fig. 4b). These
results elucidate that data imbalance problem indeed exists in this
study, while the efforts that attempt to solve this problem only
improve the model’s performance marginally. Hence, considering the
balance between performance and computational cost, we adopted
the default settings (normal-sampling and normal-loss) for the training
of the final DeepPROTACs model.

Except for the default active/inactive cutoff (100 nM in DCso and
80% in Dmax), we have considered another one (1000 nM in DCsp and
70% in Dmax) to reduce the influence of artificial factors. The PROTAC
molecule is only considered as active if both DCsp and Dmax satisfy the
cutoff condition. We have retrained the DeepPROTACs model
according to the new label. The average accuracy and AUROC are
computed to be 76.42% and 0.8283, respectively, both of which are
quite similar to the values obtained by using the original label. This
illuminates the stability of our model regardless of the subjective
selection of cutoff criterion. For the sake of simplicity, only the first
label is utilized for the training of the final DeepPROTACs model.

Evaluation of deepPROTACs

To verify the predictive capability of DeepPROTACs, we constructed
an experimental dataset containing 16 PROTACs (Fig. 5) that recruit
VHL E3 ligase to degrade ER. As members of nuclear receptor family,

ERs are transcription factors mediating gene expression and influen-
cing the biological effects of estrogen. Degradation of the ER protein is
beneficial to patients with ER positive (ER +) breast cancer that occurs
in around 80% of newly diagnosed breast cancer cases’. A selective ER
modulator - toremifene is employed as the ligand of target protein and
a peptidomimetic compound is applied as VHL ligand. Various linear
alkyl chains and polyethylene glycol (PEG) chains with different
lengths are selected as linkers. These PROTACs are evaluated for their
ability to induce ER degradation in MCF-7 and T-47D breast cancer cell
lines, with fulvstrant and toremifene used as the control. Western
blotting data (Fig. 6 and Supplementary Table 3) show that 11 com-
pounds (PROTAC1, PROTAC 4 to 9, PROTAC 12 to 15) are very potential
in inducing ER degradation at concentrations lower than 100 nM
within 16 h treatment. Therefore, they are considered as good degra-
ders. The other 5 PROTACs (PROTAC 2 to 3, PROTAC 10 to 11, PROTAC
16) are less effective or ineffective in degrading ER at indicated con-
centrations, meaning that they belong to bad degraders according to
our standard of classification. The VHL/ER binding assay and Western
blotting analysis of PROTAC 8 and its negative analogue PROTAC 8N
(contains inactive isomer of VHL ligand) were also conducted in T-47D
cell line. Calculated from thermodynamic data in Supplementary
Fig. 3a, the K4 value of PROTAC 8 to VHL is determined to be 4.37 uM,
while there is almost no binding between PROTAC 8N and VHL. The Ky4
values of PROTAC 8 and 8N to ER are measured to be 2.14 and 2.82 uM,
respectively. In addition, ER is almost completely degraded by PRO-
TAC 8 atindicated concentrations (100/1000 nM), while PROTAC 8N is
not able to degrade ER (Supplementary Fig. 3b). These results confirm
the binding of ER PROTACs to VHL ligase and ER protein, suggesting
that the degradation of ER is indeed implemented through ubiquitin-
proteasome pathway. The DeepPROTACs model successfully predicts
the degradation labels of 11 compounds among 16 PROTACs (Sup-
plementary Table 4), reaching 68.75% prediction accuracy rate.

The targets (EZH2, STAT3, elF4E, and FLT-3) in Supplementary
Table 5 were treated as novel targets to further inspect the general-
ization ability of our model. Specifically, for each target, the model was
trained in the absence of this target and then utilized to predict the
degradation of the test set and corresponding target. All predicting
accuracies on test set are quite similar, fluctuating around the value of
77%. And the accuracies on specific targets vary within the range from
65% to 80%, illustrating that our model possesses good generalization
capability. The selection of 5A pocket size maybe beneficial for this
because it only provides the protein environments around ligand

Nature Communications | (2022)13:7133



Article https://doi.org/10.1038/s41467-022-34807-3

OH

< Ny N
cl O-N OH
O o/\/ﬂ-g Linker gi”j\;ﬂ

ER ligand VHL ligand
Compound ID Linker Linker length (i\) Property NumRotaBonds Degradability
$
PROTAC 1 g\n/\'g 3.2 Alkyl chain 1 DCso <= 100 nM
o
PROTAC 2 %n/\/‘g 35 Alkyl chain 2 DCso > 100 nM
o
PROTAC 3 %n/\/\’é 4.6 Alkyl chain 3 DCs > 100 nM
o
PROTAC 4 § g 5.3 Alkyl chain 4 DCso <= 100 nM
E/\/\/
PROTAC 5 §M§ 6.5 Alkyl chain 5 DCsp <= 100 nM
o
PROTAC 6 %T]/\/\/\/‘% 8.1 Alkyl chain 6 DCsp <= 100 nM
o
PROTAC 7 En/\/\/\/\% 8.4 Alkyl chain 7 DCsq <= 100 nM
o
PROTAC 8 En/\/\/\/\/é 8.9 Alkyl chain 8 DCsq <= 100 nM
o
PROTAC 9 %n/\/\/\/\/\/\«g 12.1 Alkyl chain 1 DCso <= 100 nM
o
PROTAC 10 %T]/\/\/\/\/\/\/\%’ 14.5 Alkyl chain 13 DCso > 100 nM
[0}
PROTAC 11 ‘En/\o/\g 3.7 PEG chain 2 DCs> 100 nM
o}
PROTAC 12 ‘%n/\o/\/o\%' 6.2 PEG chain 5 DCsq <= 100 nM
o
PROTAC 13 ‘%n/\/°\/\o/\«§’ 8.6 PEG chain 7 DCso <= 100 nM
o
PROTAC 14 ‘%n/\/°\/\o/\/°\/§~ 8.8 PEG chain 10 DCsp <= 100 nM
(o]
PROTAC 15 ‘§n/\/°\/\o/\/°\/\o’\§’ 115 PEG chain 13 DCsy <= 100 M
[0}
PROTAC 16 ‘%n/\/°\/\o’\/°\/\o’\/°\/‘§~ 12,5 PEG chain 16 DCs0>100 nM
o

Fig. 5| Chemical structures and properties of 16 PROTACs in our experimental dataset. PROTAC 1-10 are built with linkers of alkyl chain, while PROTAC 11-16 are built
with linkers of PEG chain.

instead of the whole protein as input, alleviating the impact of different Computational Modeling: ER PROTACs

protein structures. The relative instability of model’s generalization ~Compounds PROTAC 2, PROTAC 6, and PROTAC 10 have been con-
performance on various targets may associate with the limited PRO- firmed to be bad, good, and bad degraders, respectively (Supple-
TACs data. In future, the access of larger amounts of data and the mentary Table 4). Their linker lengths were calculated to be 3.5, 8.1,
retraining of our model with these data may solve this problem. and 14.5A7, representing short, medium, and long alkyl linkers,
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Fig. 6 | Western blotting analysis and densitometry quantifications of
ER protein. The MCF-7 and T-47D breast cancer cell lines are treated with indicated
compounds at 1, 10, 50 and 100 nM for 16 h. The densitometry quantifications are
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normalized by GAPDH using the Image ] software. All western blot data are
representative of at least two independent replicates.

respectively (Fig. 5). Hence, they were selected to build ternary com-
plexes through PRosettaC and Molecular Dynamics (MD) simulations
to correlate linker with degradation capability. The crystal structures
of ER (PDB ID: 1ERR" [https://www.rcsb.org/structure/IERR]) and VHL-
Eloc-ELoB (PDB ID: 5T35” [https://www.rcsb.org/structure/5T35]) were
obtained from Protein Data Bank (PDB)’*. As displayed in Fig. 7, the
most representative structures of these complexes were aligned based
on the position of ER protein. ER or actually ER ligand-binding domain
(LBD) is folded into a three-layered antiparallel o-helical sandwich,
which contains a central core layer of three helices (H5/6, H9, and H10)
that is clamped by two other layers of helices (H1-4; H7, H8, and H11)".
A sizable ligand-binding cavity is observed at the narrow end of the
‘wedge-shaped’” molecular scaffold created by this helical arrange-
ment. The short linker in PROTAC 2 has only two rotatable bonds,
leading to its poor flexibility. As a result, ER and VHL come together to
sandwich PROTAC 2 between their respective binding pockets, bury-
ing otherwise solvent-exposed portions of two heads. In addition, the
two heads recapitulate the binding modes of respective ligands

individually in each binding site. Several favorable intermolecular
interactions (ER-VHL: D332-R108, N348-Y112, D351-R69) are observed
between ER and VHL to stabilize the ternary complex. As the chain
grows, flexibility is added into the system to change the overall
structural conformation. In the PROTAC 6 - induced complex, VHL is
shifted to the left direction in comparison with previous complex,
forming electrostatic contacts (ER-VHL: R352-Y98, H356-H110, E542-
R69) mainly with H3/H12 helices of ER. The long linker in PROTAC 10
results in a parallel conformation of ternary complex, in which the
interactions (ER-VHL: E380-Q96, R515-Q195, R434-E173) occur mostly
between VHL and H8/HI1 helices of ER. In this complex, the two heads
are completely exposed to solvent, while the tert-butyl group of VHL
ligand is trapped by a hydrophobic region comprised by V534, P535,
Y537 of ER, and W88, F91 of VHL. Similar results are also observed for
complexes built by PROTACs with PEG linkers. To assess the role of
surface lysine residues in degradability, we constructed the whole
CRLs structure by superimposing the ternary complexes with crystal
structures of Cul2-Rbx1-EIoBC-VHL (PDB ID: 5SN4W” [https://www.rcsb.
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Fig. 7 | Computational models of ternary complexes constituted by ER, VHL-
EloC-EloB and PROTACs (PROTAC 2, 6, and 10) from two views. All models are
aligned based on the position of ER protein (green). The VHL-EloC-EloB and

VHL-EloC-EloB

PROTAC molecule are marked with wheat, pink, and cyan color in complex induced
by PROTAC 2, 6, and 10, respectively.

org/structure/5N4W]) and NEDDS8-CULI-RBX1-UB-UBE2D2 (PDB ID:
6TTU’® [https://www.rcsb.org/structure/6TTU]). As shown in Supple-
mentary Figs. 4-6, six surface-exposed lysine residues (K362, K467,
K472, K481, K492, and K520) are accessible to E2-ubiquitin (E2-Ub) in
PROTAC 6 - induced model at distances between 40-60 A, while only 3
lysine residues are approachable in both PROTAC 2 - and PROTAC 10 -
induced models at relatively longer distances of 45-55 and 50-80 A,

respectively. This indicates that different linkers contribute to distinct
conformations of ternary complexes and thus the whole CRLs struc-
tures, altering the accessibility of surface lysine residues to Ub.
Although the ubiquitination zone of CRLs is large and flexible in some
degree, this may still exert a profound effect on degradation ability.
Medium-length linkers are correlated with good degradability because
they provide both flexibility and stability for the ternary complex. Even
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though ternary complex stability and protein cooperativity will inevi-
tably influence the depletion efficiency of target protein, yet it is
beyond our research scope to consider all these factors here because
the main purpose of this study is to construct a high-throughput vir-
tual screening tool for PROTACs. In future, detailed researches con-
cerning PROTACs QSAR should consider both factors by utilizing
advanced computational techniques such as umbrella sampling
simulation and binding affinity calculation.

Overall, combining the 77.95% average accuracy rate and 0.8470
AUROC on test set with the 65% to 80% accuracy rate on ER experi-
mental dataset and other novel targets, it is convincing to state that the
DeepPROTACs model is able to predict the degradation ability of novel
PROTACs providing the structures of POI, E3 ligase, and PROTACs.
Furthermore, it's also possible to improve the performance of our
model if PROTACs data experience rapid growth in the coming years.
And there is another possibility to increase the precision of targeted
design by training a model towards a particular target protein if there
is sufficient data on this target. Anyway, before immersing into the
hard work of wet lab, a round of virtual screening by our model seems
to be very essential. It can help reduce the efforts to design potent
PROTACs for specific target proteins and may be beneficial for
developing small molecules that can exploit novel E3 ligases. In order
to enable worldwide access to this protocol, we have made it available
through a web server (https://bailab.siais.shanghaitech.edu.cn/
services/deepprotacs/) and github (https://github.com/fengleil04/
DeepPROTACS).

Discussion

In this study, based upon the data from PROTAC-DB and other public
sources, we have trained a DL model - DeepPROTACs to address the
difficulties in designing potent PROTAC molecules especially their
linkers. The model can predict the ability of given PROTACs to induce
the degradation of a specific POI by recruiting a specific E3 ligase. The
structure-activity relationship of PROTACs remain elusive because the
number of crystal structure of POI-PROTAC-E3 ternary complex is
limited. Furthermore, it is very trivial and time-consuming to model all
these complexes by current computational methods. Therefore, we
circumvented the building of ternary complex and imported the
structures of POI pocket, E3 pocket, and PROTACs into the network
model separately. And we concatenated all output vectors before
exporting the final results. In test set, the DeepPROTACs model is
around 78% accurate in predicting the degradation label of PROTACs,
while in our experimental dataset and novel targets the accuracy rate is
fluctuating in the range from 65% to 80%. Given the warhead and E3
ligand, the linker between them can either be manually designed or
generated through the linker generation method”’. The generated
PROTAC molecules can be virtually screened by our model before
committing to synthesis and biological experiments. This can reduce
both the cost and time of drug discovery. In addition, computational
modeling of ternary complexes has been conducted on several selec-
ted PROTACs in experimental dataset to investigate the relationship
between linker and degradation capability. The results illuminate that
the linkers with appropriate medium lengths lead to better protein
depletion probably owing to the accessibility of surface lysine residues
to ubiquitin and the stability of ternary complex.

Although the model is thought to be successful, there is still room
for improvement. Graph representation of ligands does not take the
chirality of small molecules into consideration. Whereas in some cases,
the chirality plays an important role in determining the degradation
effect of PROTAC molecules”. Thus, atom coordinates of ligands and
pockets can be included in the graph to investigate the effects of
chirality. Further, although we have collected more data outside the
PROTAC-DB to expand our dataset, 2832 labeled dataset is still
believed to be a small dataset by Al specialists. It is rewarding to utilize
a special semi-supervised learning approach that combines a small

quantity of labeled data with large amount of unlabeled data during
the training process to compensate the deficiency of annotated sam-
ples and improve the predicting accuracy for small datasets’®. The
unlabeled PROTACs can be created using the linker generation
method mentioned above. By enlarging our dataset, the binary clas-
sification model can also be transformed to multi-class classification
model or even regression model. This may further predict the range or
even exact values of DCsq and Dmax of PROTACs. Anyway, our Deep-
PROTACs model is a successful attempt to integrate Al into the field of
PROTACsS. It will not only serve as important guidelines for the design
of potent PROTACs, but also provide research paradigm for the
combination of Al with drug discovery.

Methods

Data curation and labeling

Our criterion for labeling the data is DCso (half maximal degradation
concentration) and Dmax (maximal degradation): only compounds
with DCso lower than 100 nM and Dmax higher than 80% are labeled as
good degraders, otherwise, they are tagged with bad degraders. After
this operation, the total 2832 data were separated into 988 ‘good’ data
and 1844 ‘bad’ data. For turning the hyperparameters, the entire
dataset was randomly split into training, validation, and test set at a
ratio of 8:1:1. After optimizing the hyperparameters, the whole dataset
was randomly divided into a training set and test set at a ratio of 8:2 for
the following experiments because a larger test set would decrease the
standard deviation between different training trials. The total number
of POI-E3 pairs reaches 218. The structures of POl and E3 ligases in
complex with their corresponding inhibitors were obtained from
Protein Data Bank (PDB)’*. For ligands that were not available in the
crystal structure of the protein, the binding poses were computa-
tionally predicted or aligned to the ligand with similar scaffolds. Then,
the steepest descent minimization was performed using Yasara
software’” to remove remaining clashes, followed by a simulated
annealing minimization with atomic velocities scaled down by 0.9
every ten steps to reach a stable local minimum. The structures of
PROTACs, as well as their physicochemical properties, including
molecular weight, partition coefficient (logP), aqueous solubility
(logS), heavy atom count, ring count, hydrogen bond acceptor/donor
count, and topological polar surface area were computed by RDKit
toolkit (https://www.rdkit.org) or provided by PROTAC-DB.

Implementation details of network modules

In this section, we present each network module that embeds different
components of the complex and discuss about the implementation
details. In most existing literatures®*®, proteins were represented by
sequence (FASTA) and fed into sequential-based models to learn dis-
tributed characteristics. However, in this work, instead of learning
features from the string representation of the whole protein, we pro-
pose to learn features from the graph representation of extracted
protein pocket using GCNs. There are several considerations for this
switch: First, proteins are composed of atoms that are connected to
each other through covalent bonds, thus belonging to graph struc-
tures naturally. Using GCNs to characterize the topological structure of
proteins has biological significance. Second, residues that are distant
from ligand binding pocket exhibit little effect on the construction of
ternary complex. Focusing on the pocket can reduce the size of neural
network input substantially. Third, graph representation could pre-
serve the structural information of extracted pocket to some extent.
Atoms are connected to multiple neighbors and this information is
stored in an adjacency matrix. As displayed in Fig. 2, the pockets of
both POI and E3 ligase (taking BRD4 and VHL as examples’) were
extracted by selecting residues within 5.0 A around the binding ligand
using PyMol software (the PyMOL Molecular Graphics System, Version
2.0 Schrédinger, LLC). The extracted structures were then converted
to Mol2 files®*®*, which contain all the information necessary to
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reconstruct molecular topologies. Graph representations were built
based on this information by utilizing the adjacency matrix. In these
graphs, atoms were represented by nodes, with 0,1, 2, 3, 4 signifying C,
N, O, S, and other atom types, while covalent bonds were represented
by edges. If there was a bond between two atoms, then the corre-
sponding position on the adjacency matrix was labeled as 1. Otherwise,
the corresponding position was labeled as 0. The POI ligands (war-
heads) as well as E3 ligands, were also transferred to graph repre-
sentations. However, every node here had 10 possible atom types: C, N,
O, S, F, Cl, Br, 1, P, and other atoms, each of which was denoted by 0, 1,
2,3,4,5,6,7, 8,9, respectively. In addition, the edge types in both
protein and ligand graphs included single bond, double bond, triple
bond, aromatic bond, and amide bond, each of which was encoded by
1,2,3,4,5, respectively. The SMILES of PROTACs linkers were encoded
according to an encoding table (Supplementary Table 6) derived from
ZINC database®. We collected the SMILES of total 2,076,017 lead-like
molecules that have standard reactivity and are in stock. The number
of occurrences of each character in these SMILES was counted and
summarized in Supplementary Table 6 as frequency. The 39 characters
with the highest frequencies were encoded from 1 to 39, while the
[PAD] token and the rest of characters were encoded as O and 40,
respectively.

Computational modeling methods

The computational modeling of ternary complexes that are com-
posed of POI, PROTAC, and E3 ligase has been performed through
PRosettaC®® and Molecular Dynamics (MD) simulations in a
sequential manner. PRosettaC is a combined protocol for modeling
a ternary complex induced by a given PROTAC. It alternates
between sampling of the protein-protein interaction space and the
PROTAC molecule conformational space to produce near-native
predictions of ternary complexes. The clustered poses provided by
this protocol were utilized as the starting points for MD simulations,
which were performed using the GROMACS 2019 program®” and the
AMBER14®® force field. The restrained electrostatic potential char-
ges (RESP) of PROTAC molecules were calculated using Gaussian 09
program® and then used to generate topology files by
antechamber®, an in-built tool in AMBER”. Generalized AMBER
force field (GAFF)°* was applied to parameterize the PROTACs. For
each MD simulation, the starting structure of POI-PROTAC-E3
ternary complex was placed in a cubic box with dimensions that
set the nearest distance of complex to each boundary surface to
20 A. This box was saturated by TIP3P°> water molecules, some of
which were substituted by sodium and chloride ions to neutralize
the system and to simulate a physiological ion concentration of
154 mM. The system was then subjected to energy minimization
with a steepest descent method until the maximum force was
smaller than a tolerant value of 100 [kJ mol™ nm™]. NVT and NPT
equilibrations were subsequently performed to equilibrate the
system to a predefined temperature of 310 K and pressure of 1bar.
The result of these equilibrations produced the initial structure for
MD simulation, which was run for 100 ns with NPT ensemble. The
LINCS algorithm® was utilized to constrain the bond lengths of
peptide, and the SETTLE algorithm® was employed to constrain the
bond lengths and angles of water molecules. The long-range elec-
trostatic interactions were computed by the particle mesh Ewald
(PME) method®® with a cutoff value of 1.2 nm. The amino acid resi-
dues were set to their normal ionization states at pH 7.0 and the MD
trajectory was generated with a time step of 2 fs. The most repre-
sentative structure of ternary complex was derived from the cluster
analysis of MD trajectory, in which the frame with smallest aver-
age RMSD from all other structures of the cluster was selected as the
central structure to represent the cluster that has been constructed
by grouping together the structurally similar frames (root-mean-
square deviations - RMSD cutoff is set to 0.3 nm).

General experimental methods

Chemical materials. All chemicals were obtained from commercial
suppliers (Adamas and Alfa), and used without further purification,
unless otherwise indicated. VHL-1 based acid and cis VHL-1 based acid
were prepared according to the ref. 97. HPLC preparation was per-
formed on SHIMADZU LC-20AP instrument with original column. All
new compounds were characterized by 1H NMR and HRMS. 1H NMR
spectra were recorded on Bruker AVANCE IlIl 500 MHZ (operating at
500 MHz for 1H NMR), chemical shifts were reported in ppm relative to
the residual CDCI3 (7.26 ppm 1H), DMSO-d6 (2.50ppm 1H) or
Methanol-d4 (3.31 ppm, 1H), and coupling constants (J) are given in Hz.
Multiplicities of signals are described as follows: s --- singlet, d --
doublet, t --- triplet, m --- multiple. High Resolution Mass Spectra were
recorded on AB Triple 4600 spectrometer with acetonitrile and water
as solvent.

Cell lines and cell culture. The human breast cancer cell line MCF-7
was purchased from American Type Culture Collection (ATCC Num-
ber: HTB-22). T-47D cell line was purchased from Shanghai Cell Bank of
the National Science Academy of China (Shanghai) (Catalog number:
TChu 87). All these cells were cultured according to the provider’s
instructions and maintained at 37°C in a humidified atmosphere
containing 5% CO2 in air. Cell lines were examined as mycoplasma free.

Western blotting. 1.5 x 105 cells/ml were plated in 24-well plates and
treated with DMSO or compounds at the indicated concentrations for
16 h. Cells were collected, washed with cold 1x PBS, and lysed in 1x SDS
buffer containing protease inhibitor cocktails (#539134, Merck). Pro-
tein in cell lysate was quantified by detergent-compatible Bradford
assay kit (#23246, Thermo). Primary antibodies used in this study
include ER antibody (#8644S, Cell Signaling Technology, 1:1000
dilution in blocking buffer), Anti-Rabbit IgG, HRP-linked (#7074P2, Cell
Signaling Technology, 1:5000 dilution in blocking buffer) and GAPDH
antibody (#8884 S, Cell Signaling Technology, 1:5000 dilution in
blocking buffer). The Millipose Immobilon Western Chemilumines-
cence Substrate was used for signal development. Blots were imaged in
an Amersham Imager 600 (GE Healthcare).

Protein expression and purification. The cDNA fragment encoding
ERa-LBD (aa 298-554) was subcloned into pET15b vector and transfect
into E.coli BL21 (DE3) cells for protein expression. Cells were crushed
and the supernatant was incubated with nickel affinity chromato-
graphy, further eluted with buffer of 20 mM Tris pH 8.0, 50 mM Nacl,
1mM TCEP, 5% glycerol and 300 mM imidazole. Protein was con-
centrated and purified with gel filtration chromatography (Super-
dex200 HiLoad) in 20 mM Tris pH 8.0, 100 mM NaCl, 1 mM TCEP, 5%
glycerol. For the expression of His-tagged VCB complex, the cDNA
fragment encoding VHL (aa 54-213) was co-transformed with a pCDF
Duet plasmid containing EloB (aa 1-104) and EloC (aa 1-112) into E.coli
BL21 (DE3) cells for protein expression. After expression by IPTG
induction, cells were collected and resuspended in 50 mM Tris pH 7.5,
500 mM NaCl, 5% glycerol, 10 mM imidazole and 1mM TCEP. The
lysate was incubated with Ni-NTA beads and eluted with lysis buffer
containing 300 mM imidazole. The protein was further purified by
Superdex200 with buffer of 25mM Tris pH 7.6, 150 mM NaCl,
1 mM TCEP.

Isothermal titration calorimetry (ITC) measurements. All measure-
ments were performed by PEAQ-ITC (Malvern) in buffer of 20 mM Tris
pH 8.0,100 mM NaCl, 1 mM TCEP, 100 mM f-cyclodextrin, 5% glycerol
while stirring at 750 rpm. The tested compounds stock solution
(10 mM) was diluted with the ITC buffer to a concentration ratio of
35uM versus 350 uM protein for ERa, and 20 pM versus 200 pM
protein for VCB before using a reverse titration mode. Titrations were
performed using an initial injection of 0.4 pL followed by 14 identical
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injections of 2.5 uL with a duration of 5seconds per injection and a
spacing of 150 seconds between injections. Data were processed with
PEAQ-ITC analysis software. Additional background experiments
where buffer was titrated into protein solution revealed no significant
shift in the baseline during the course of the measurements.

TMT-labeled mass spectrometry analysis. Approximately 107 T47D
cells were treated with different compounds for 24 h. Cells were lysed
using Lysis buffer (4%SDS, 100 mM Tris, PH 7.6) by sonication. Pep-
tides were prepared using Filter Aided Sample Preparation (FASP)
protocol. The methods of TMT-labeled peptides and later Data analysis
was the same as the reference (J. Med. Chem. 2019, 62, 9281 -9298).
Data were duplicated and analyzed using the two-tailed Student ¢ test.
Significant changed proteins were labeled using different colors.
Downregulated proteins were proteins with Fold change PROTAC 8 /
PROTAC 8N < -0.8 and p-value <0.01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The PROTACs data used in this study are available in the public data-
base of PROTAC-DB (http://cadd.zju.edu.cn/protacdb/)®. Gel source
images for Fig. 6 and Supplementary Fig. 3b are included in Supple-
mentary Figs. 7 and 8. The remaining data or questions that regarding
this study are available from the corresponding author upon request
(Fang Bai: baifang@shanghaitech.edu.cn). Source data are provided
with this paper.

Code availability

The source code of DeepPROTACs and associated data preparation
scripts are available at github (https:/github.com/fengleil04/
DeepPROTACs). The final DeepPROTACs model is also provided.
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