Skip to main content
. 2022 Nov 9;15:1004221. doi: 10.3389/fnmol.2022.1004221

Table 4.

The biomarker potential of exosomal ncRNAs in Alzheimer’s diseases, CNS tumors, multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis.

Diseases Classification of ncRNA ncRNAs Regulation ROC analysis Biomarker potential Source of exosome Reference
Alzheimer’s disease miRNA miR-135a Up - A biomarker for AD early stages diagnosis Serum, CSF Liu C. G. et al. (2021)
miR-193b Down - A blood-based biomarker for MCI and DAT patients Blood, CSF Liu et al. (2014)
miR-34b, miR-29a Up AUC = 0.812,
sensitivity = 83%
(vs. VaD)
specificity = 74%
(vs. VaD);
AUC = 0.832 sensitivity = 63%
(vs. VaD)
specificity = 96%
(vs. VaD)
Biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases Serum Barbagallo et al. (2020)
miR-16-5p, miR-451a, miR-605-5p Down AUC = 0.760
AUC = 0.951
AUC = 0.706
A biomarker for YOAD diagnosis CSF McKeever et al. (2018)
miR-125b-5p Up AUC = 0.723
miR-384 Up AUC = 0.991
(vs. PDD)
sensitivity = 99.07%
(vs. PDD)
specificity = 100%
(vs. PDD)
AUC = 0.991
(vs. VaD)
sensitivity = 99.10%
(vs. VaD)
specificity = 100%
(vs. VaD)
A biomarker for AD diagnosis and discrimination between AD, VaD, and PDD Serum Yang T. T. et al. (2018)
miR-135a Up AUC = 0.598
(vs. PDD)
sensitivity = 75.70%
(vs. PDD)
specificity = 46.67%
(vs. PDD);
AUC = 0.721
(vs. VaD)
sensitivity = 89.70%
(vs. VaD)
specificity = 55%
(vs. VaD)
lncRNA Bace1-AS Up AUC = 0.761
sensitivity = 87.5%
specificity = 61.3%
A novel biomarker for AD diagnosis Plasma Wang D. et al. (2020)
circRNA KIAA1586 Up - A potential biomarker for AD diagnosis Blood Zhang et al. (2019)
piRNA piR_019949 Up AUC = 0.96 Predict conversion from MCI to AD dementia CSF Jain et al. (2019)
piR_020364 AUC = 0.89 A biomarker for classifying AD dementia patients
piR_019324 Down
CNS tumor miRNA miR-454-3p Down AUC = 0.866
sensitivity = 79.17%
specificity = 91.67%
An exosomal biomarker for glioma diagnosis and prognosis Serum Shao et al. (2019)
miR-21 Up AUC = 0.927
(vs.
health)
AUC = 0.872
(grade III/VI
vs. II)
AUC = 0.751
(grade VI vs. II)
A biomarker for glioma diagnosis, prognosis and different grade CSF Shi et al. (2015)
RNU6 Up AUC = 0.852 A biomarker for GBM diagnosis Serum Manterola et al. (2014)
miR-574-3p Up AUC = 0.738
miR-320 Up AUC = 0.719
lncRNA HOTAIR Up AUC = 0.913
sensitivity = 86.1%
specificity = 87.5%
A biomarker for GBM diagnosis Serum Tan et al. (2018)
HOTAIR Up - Promising prognostic predictors for GBM Serum Wang Z. et al. (2021)
SOX21-AS1 Down
STEAP3-AS1 Up
circRNA circNFIX Up AUC = 0.885 A biomarker for glioma diagnosis and prognosis Serum Ding et al. (2020)
circHIPK3 Up - A potential biomarker for the TMZ-resistant glioma diagnosis Serum Yin and Cui (2021)
circMMP1 Up AUC = 0.8144 A biomarker for glioma diagnosis and prognosis Serum Yin and Liu (2020)
Multiple sclerosis miRNA miR-15b-5p Up AUC = 0.740 Biomarkers for RRMS diagnosis Ebrahimkhani et al. (2017)
miR-122-5p Down AUC = 0.878 Biomarkers for RRMS diagnosis Serum Selmaj et al. (2017)
hsa-miR-196b-5p Down AUC = 0.866
miR-19b, miR-25 and miR-92a Up - Potential exosomal biomarkers for MS diagnosis Plasma Kimura et al. (2018)
miR-326 Up - A biomarker for MS diagnosis Serum Azimi et al. (2019)
miR-22-3p, miR-660-5p Down - Biomarkers for MS diagnosis and the response after IFN-b therapy Serum Manna et al. (2018)
Epilepsy miRNA miR-328-3p Up AUC = 0.63 (vs.
TLE)
AUC = 0.90 (EAS
vs. EBS)
A novel biomarker for epilepsy diagnosis and different subtypes Plasma Raoof et al. (2018)
miR-8071 Down AUC = 0.932
sensitivity = 83.33%
specificity = 96.67%
A novel biomarker for TLE-HS diagnosis Plasma Yan et al. (2017)
miR-451a, miR-21-5p, miR-19b-3p Up Down Up AUC = 0.80 Biomarkers for TLE diagnosis CSF Raoof et al. (2017)
ALS miRNA miR-27a-3p Down - Biomarkers for ALS diagnosis Serum Xu et al. (2018)
miR-124-3p Down - A disease stage indicator in ALS CSF Yelick et al. (2020)
miR-199a-3p miR-151a-5p Up - Biomarkers for ALS/MND diagnosis plasma Banack et al. (2020)