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Abstract

This study demonstrates that intravenous infusion of the cell-penetrant thiol ester, L-cysteine 

ethyl ester (L-CYSee), to adult male Sprague-Dawley rats elicited (a) minor alterations in 

frequency of breathing, expiratory time, tidal volume, minute ventilation, or expiratory drive but 
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pronounced changes in inspiratory time, end-inspiratory and expiratory pauses, peak inspiratory 

and expiratory flows, EF50, relaxation time, apneic pause, inspiratory drive and non-eupneic 

breathing index, (b) minimal changes in arterial blood-gas (ABG) chemistry (pH, pCO2, pO2, 

SO2) and Alveolar-arterial (A-a) gradient (index of alveolar gas exchange), and (c) minimal 

changes in antinociception (tail-flick latency). Subsequent injection of morphine (10 mg/kg, IV) 

elicited markedly smaller effects on the above parameters, ABG chemistry, and A-a gradient 

in rats receiving L-CYSee, whereas morphine antinociception was not impaired. Infusions of 

L-cysteine or L-serine ethyl ester (oxygen rather than sulfur moiety), did not affect morphine 

actions on ABG chemistry or A-a gradient. L-CYSee (250 μmol/kg, IV) injection elicited dramatic 

changes in ventilatory parameters given 15 min after injection of morphine in rats receiving L-

CYSee. Our findings suggest that (a) L-CYSee acts in neurons that drive ventilation, (b) L-CYSee 

reversal of the adverse actions of morphine on ventilation, ABG chemistry and A-a gradient may 

be via modulation of intracellular signaling pathways activated by morphine rather than by direct 

antagonism of opioid receptors since morphine antinociception was not diminished by L-CYSee, 

and (c) the thiol moiety of L-CYSee is vital to efficacy, (d) intracellular conversion of L-CYSee to 

an S-nitrosylated form may be part of its mechanism of action.
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1. Introduction

The clinical effectiveness of opioids as analgesics is often compromised by their ability 

to induce adverse effects on ventilatory parameters [1–6]. Although the administration of 

opioid receptor (OR) antagonists can in many cases reverse opioid-induced respiratory 

depression (OIRD), these antagonists also diminish the analgesic/antinociceptive actions of 

opioids, which may not be a problem in overdose situations, but which is contraindicated 

when analgesia is required during and after injuries and surgical procedures [2–4]. Over 

recent years, numerous classes of drugs that do not directly block ORs have been examined 

for their potential to overcome OIRD while preserving analgesia [2–8]. Most of these drugs 

did not reach the level of consideration for clinical trials in humans or did not meet expected 

therapeutic outcomes in such trials because of a lack of efficacy and/or unacceptable levels 

of toxicity or side effects [4,5,7,8]. The current opioid crisis has reinforced the urgent 

necessity to develop drugs that can effectively reverse OIRD by mechanisms independent 

of OR blockade for numerous reasons including that OR antagonists can elicit often life-

threatening withdrawal symptoms in habitual opioid users [5,6].

Membrane-permeable thioesters such as L-cysteine ethyl ester (L-CYSee), D-cysteine ethyl 

ester (D-CYSee), L-cysteine methyl ester (L-CYSme), L-glutathione ethyl ester (L-GSHee), 

D-cystine dimethyl ester (D-CYSdime) and D-cystine diethyl ester (D-CYSdiee) readily 

gain access to central and peripheral tissues and have diverse pharmacological actions 

[9–14]. We have reported that these L-, D-thioesters prevent and/or reverse the adverse 

effects of opioids such as morphine and fentanyl on ventilation, arterial blood-gas (ABG) 
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chemistry, and Alveolar-arterial (A-a) gradient (index of alveolar gas exchange in the 

lungs) in unanesthetized freely-moving rats whereas L- and D-thioesters minimally impact 

the sedative or analgesic effects of the opioids [10–14]. In contrast, the parent thiols, 

L- or D-cysteine, L-glutathione, and D-cystine, only minimally altered the effects of the 

opioids [9–14]. In initial studies that were designed to better understand structure-activity 

relationships of L, and D-thioesters, we demonstrated that N-acetyl-L-cysteine methyl ester 

[14] and L-methionine ethyl ester (unpublished observations) could not reverse any of 

the deleterious effects of morphine on breathing in unanesthetized rats. These findings 

suggest that modifications to the L-,D-cysteine backbone or sulfur moiety prevent L-,D-

thioester efficacy. The mechanisms of action of these L-, D-thioesters could involve 

(i) direct interactions with yet to be determined functional proteins, (ii) binding to the 

putative L-,D-cysteine binding protein, myristoylated alanine-rich C-kinase substrate [15], 

(iii) interruption of OR-β-arrestin-coupled cell signaling processes to spare the analgesic 

G-protein-dependent actions of morphine [16,17], and/or (iv) conversion of reduced L-,D-

thioesters to S-nitrosothiols via S-nitrosylation of the sulfur atom by nitric oxide synthase-

dependent processes [15–21], which may act similarly S-nitroso-L-CYSee [22].

Our studies to date in freely-moving adult rats have only examined the effects of bolus 

intravenous injections of L-,D-thioesters against the ventilatory depressant effects of opioids 

[9–14]. We subsequently wanted to extend our knowledge about the pharmacological 

profile and efficacy of these L-,D-thioesters by determining whether continuous intravenous 

infusion of these agents would be efficacious against OIRD while sparing opioid analgesia. 

We began these studies by determining whether the effects of a bolus injection of morphine 

on ventilatory parameters, ABG chemistry, A-a gradient, and antinociception were altered 

in freely-moving adult male Sprague-Dawley rats receiving continuous intravenous infusion 

of L-CYSee. To extend our structure-activity knowledge about L-,D-thioesters, we also 

determined whether similar infusions of the cell penetrant L-thioester, L-serine ethyl ester 

(L-SERee) [9], which has an oxygen instead of a sulfur atom, could be as equally effective 

as L-CYSee in reversing morphine OIRD.

2. Methods

2.1. Permissions, rats, and surgical procedures

All studies were done in accordance with the NIH Guide for Care and Use of Laboratory 

Animals (NIH Publication No. 80–23) revised in 1996 and in compliance with the ARRIVE 

(Animal Research: Reporting of In Vivo Experiments) guidelines (http://www.nc3rs.org.uk/

page.asp?id=1357). All protocols were approved by the Animal Care and Use Committees 

of Galleon Pharmaceuticals, the University of Virginia Case, and Case Western Reserve 

University. Adult male Sprague Dawley rats were purchased from Harlan Industries 
(Madison, WI, USA). After five days of recovery from transportation, the rats received 

femoral artery catheters and/or two jugular vein catheters under 2–3% isoflurane anesthesia 

[10–14, 23]. One of the jugular catheters was to allow for continuous infusion of L-CYSee 

or L-SERee and the other was to allow bolus injections of morphine (10 mg/kg, IV). The 

rats were given 4 days to recover from surgery. All femoral arterial catheters were flushed 

daily with a heparin solution (50 units in 0.1 M, pH 7.4 phosphate-buffered saline). On 
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the day of the study, the arterial catheters were flushed with 0.3 ml of phosphate-buffered 

saline (0.1 M, pH 7.4) 2–3 h before the start of the protocols. The pH of all stock solutions 

of vehicle, L-CYSee, and L-SERee was adjusted to a pH of 7.3 with 0.125 M NaOH. All 

studies were done in a quiet laboratory room with a relative humidity of 49 ± 3% and 

room temperature of 21.3 ± 0.2 °C. The ventilatory studies, ABG chemistry studies, and 

antinociception studies were performed in separate groups of rats to not compromise each 

set of recordings. The plethysmography and antinociception recording sessions and arterial 

blood sampling studies (ABG assays) were done by one investigator whereas another filled 

the syringes with test agents, such that the investigator performing the experiment was blind 

to the protocol. In addition, the data files resulting from each experiment were collated and 

analyzed by yet another investigator in the group.

2.2. Protocols for whole-body plethysmography measurement of ventilatory parameters

Ventilatory parameters were recorded continuously in unrestrained freely-moving rats by a 

whole-body plethysmography system (PLY3223; Data Sciences International, St. Paul, MN) 

as described previously [9–14]. Directly recorded and derived parameters (see 53–56) are 

defined in Table 1. These parameters and their abbreviations are: frequency of breathing 

(Freq), tidal volume (TV), minute ventilation (MV), inspiratory time (Ti), expiratory time 

(Te), Ti/Te, end-inspiratory pause (EIP), end-expiratory pause (EEP), relaxation time (RT), 

peak inspiratory flow (PIF), peak expiratory flow (PEF), expiratory flow at 50% expired 

TV (EF50), point in expiration when PEF occurs expressed as a fraction of Te (Rpef), 

inspiratory drive (TV/Ti), expiratory drive (TV/Te), apneic pause [(Te/RT)−1], non-eupneic 

breathing index (NEBI) and NEBI corrected for Freq (NEBI/Freq). On the day of the 

study, each rat was placed in an individual plethysmography chamber and given 60–75 

min to acclimatize so that baseline (pre) ventilatory parameter values could be defined. 

One group of rats (n = 5) received a continuous infusion of vehicle (20 μL/min, IV) and 

another received a continuous infusion of L-CYSee (14.3 μmol/kg/min, IV). Both infusions 

were maintained throughout the study. After 35 min of infusion, all rats received a bolus 

injection of morphine (10 mg/kg, IV). After, a further 15 min, the vehicle-infused rats 

received a bolus injection of vehicle whereas the L-CYSee-infused rats received a bolus 

injection of L-CYSee (250 μmol/kg, IV) and ventilatory parameters were recorded for a 

further 45 min. The body weights of the two groups were equivalent to one another (see 

Table 2) and as such, ventilatory parameters related to volumes such as TV, PIF, PEF, 

and EF50 are presented without correcting for body weight. FinePointe (DSI) software 

constantly corrected digitized ventilatory values originating from the respiratory waveforms 

for alterations in chamber humidity and temperature. Pressure changes associated with 

the respiratory waveforms were converted to volumes (e.g., TV, PIF, PEF, EF50) using 

the algorithms of Epstein and colleagues [24,25]. Factoring in chamber humidity and 

temperature, cycle analyzers filtered the acquired signals, and FinePointe algorithms 

generated an array of box flow data that identified waveform segments as acceptable breaths, 

and minimum and maximum values were determined. Flows at this point were box-flow 

signals and from this array, minimum and maximum box flow values were then determined 

and multiplied by a compensation factor from the algorithms [24,25] thus producing TV, 

PIF, PEF, and EF50 values used to determine non-eupneic breathing events expressed as 
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NEBI, reported as the percentage of non-eupneic breathing events per each individual epoch 

[10–14, 23, 26]. Apneic pause was determined by the formula, (Te/RT) - 1 [10–14, 23].

2.3. Protocols for blood gas measurements and determination of Arterial-alveolar 
gradient

ABG chemistry parameters (pH, pCO2, pO2, sO2) and A-a gradients were recorded before 

(Pre) and 30 min after commencing continuous infusions of vehicle (20 μL/kg/min, IV; n = 

9 rats, 84.4 ± 0.4 days of age; 341 ± 3 g), L-CYSee (7.15 μmol/kg, IV; 84.7 ± 0.3 days; 346 

± 3 g) or L-SERee (7.15 μmol/kg, IV; 84.3 ± 0.4 days; 341 ± 3 g) as described previously 

[9–14, 23]. All rats received a bolus injection of morphine (10 mg/kg, IV) and arterial blood 

samples (100 μL) were taken after 5, 15, 30, 45, and 60 min. The above samples of arterial 

blood were injected into a Radiometer blood-gas analyzer (ABL800 FLEX) to obtain ABG 

values. The A-a gradient defines the differences between alveolar O2 and arterial blood O2 

concentrations (see 10–14, 23). A fall in PaO2, without change in A-a gradient, is due to 

hypoventilation, whereas a decrease in PaO2 with a concomitant elevation in A-a gradient 

indicates an ongoing mismatch in ventilation-perfusion in alveoli [10–14, 23]. A-a gradient 

= PAO2 − PaO2, where PAO2 is the partial pressure (p) of alveolar O2 and PaO2 is pO2 in 

the sampled arterial blood. PAO2 = [(FiO2 × (Patm − PH2O) - (PaCO2/respiratory quotient)], 

where FiO2 is the fraction of O2 in inspired air; Patm is atmospheric pressure; PH2O is the 

partial pressure of H2O in inspired air; PaCO2 is pCO2 in arterial blood; and respiratory 

quotient (RQ) is the ratio of CO2 eliminated/O2 consumed. We took FiO2 of room-air to be 

21% = 0.21, Patm to be 760 mmHg, and PH2O to be 47 mmHg. We took the RQ value of our 

adult male rats to be 0.9 [10–14, 23, 27, 28].

2.4. Antinociception assessment by tail-flick latency assay

We recorded TFL values before (−15 and 0 min, Pre values), and at 15 and 35 min during 

the continuous infusion of vehicle (20 μL/kg/min, IV; 81.9 ± 0.3 days; 325 ± 3 g), L-CYSee 

(14.3 μL/kg/min, IV; 82.2 ± 0.4 days; 327 ± 3 g) or L-SERee (14.3 μmol/kg/min, IV; 81.8 

± 0.2 days; 323 ± 3 g). Both groups of rats received an injection of morphine (10 mg/kg, 

IV) after the TFL recording at 35 min of infusion, and TFL values were recorded again after 

15, 30, and 60 min. TFL values were determined using a Tail-Flick Analgesia Meter (IITC 

Life Science Inc., USA) as detailed previously [10–14, 23]. The procedure involved a minor 

degree of manual restraint while positioning the tail to apply a thermal beam sufficient to 

induce a latency of tail withdrawal of approximately 2.5 s. TFL data are shown as actual 

TFL (sec) and as maximum possible effect (%MPE) determined by the formula, %MPE = 

[(post-injection TFL − baseline TFL)/(12 − baseline TFL)] × 100 [10–14, 23].

2.5. Data analyses

Directly recorded and arithmetically-derived ventilatory parameters (1 min bins) were taken 

for statistical analyses. Pre-drug 1 min bins excluded occasional marked deviations from 

resting values due to abrupt rat movements such as scratching. All ventilatory, ABG 

chemistry, A-a gradient, and TFL are presented as mean ± SEM and were evaluated using 

one-way and two-way ANOVA followed by Bonferroni corrections for multiple comparisons 

between means using the error mean square terms from each ANOVA analysis [29–32] 

as detailed previously [9–14]. A P < 0.05 value denoted an initial level of statistical 
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significance that was modified according to the number of comparisons between means 

as described by Wallenstein et al. [31]. The modified t-statistic is t = (mean group 1 − mean 

group 2)/[s × (1/n1 + 1/n2)1/2] where s2 = the mean square within groups term from the 

ANOVA (the square root of this value is used in the modified t-statistic formula) and n1 and 

n2 are the number of rats per group being compared. Based on elementary inequality called 

Bonferroni’s inequality, a conservative critical value for modified t-statistics from tables 

of t-distribution using a significance level of P/m, where m is the number of comparisons 

between groups to be performed [32]. The degrees of freedom are those of the mean square 

for within-group variation from ANOVA tables. The critical Bonferroni value cannot be 

found in conventional tables of the t-distribution but can be approximated from tables of the 

normal curve by t * = z + (z + z3)/4 n, with n being the degrees of freedom and z being 

the critical normal curve value for P/m [29–32]. Wallenstein et al. [31] first demonstrated 

that the Bonferroni procedure is preferable for general use since it has the widest range 

of applications and because it provides critical values that are lower than those of other 

procedures when the investigator can limit the number of comparisons (and will be slightly 

larger than other procedures if many comparisons are made. As mentioned, a value of P 

< 0.05 was taken as the initial level of statistical significance [29–31] and the statistical 

analyses were performed with the aid of GraphPad Prism software (GraphPad Software, 

Inc., La Jolla, CA).

3. Results

3.1. Ventilatory responses elicited by morphine in rats receiving infusion of L-CYSee

Baseline parameters in the two groups of rats prior to them receiving infusions of vehicle 

or L-CYSee are summarized in Table 1. As can be seen, there were no between-group 

differences for any parameter (P > 0.05, for all comparisons). Freq, TV, and MV values 

during the various stages of the experiment are summarized in the left-hand panels of Fig. 

1. The infusion of L-CYSee (14.3 μmol/kg/min, IV) elicited relatively minor increases in 

Freq (Panel A) and minor decreases in TV (Panel C) such that there were only trivial 

changes in MV (Panel E). A bolus injection of morphine (10 mg/kg, IV) into rats receiving 

vehicle infusion elicited a decrease in Freq and more sustained decreases in TV and MV. 

In rats receiving an infusion of L-CYSee, the injection of morphine elicited a pronounced 

increase in Freq, a smaller but distinct reduction in TV than in vehicle-infused rats such 

that morphine elicited trivial decreases in MV. The injection of L-CYSee (250 μmol/kg, 

IV) given 15 min after the injection of morphine elicited an increase in Freq and TV 

resulting in a sustained increase in MV. The right-hand panels summarize the sum of the 

responses during each phase of the protocol. Infusion (columns designated as INF) of 

L-CYSee elicited an increase in Freq (Panel B), a decrease in TV (Panel D) and no change 

in MV (Panel F). The total decreases in Freq elicited by morphine in vehicle-infused rats 

(first 15 min, columns designated as MOR) were converted to pronounced increases in the 

L-CYSee-infused rats. The total decreases in TV elicited by morphine were much smaller 

in the L-CYSee-infused rats and as such the total changes in MV were not significant. The 

injection of L-CYSee (250 μmol/kg, IV) maintained the increase in Freq, restored TV to 

baseline values resulting in a pronounced total increase in MV.
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Ti, Te, and Ti/Te (respiratory quotient) values during the various stages of the experiment are 

summarized in the left-hand panels of Fig. 2. The infusion of L-CYSee elicited a substantial 

decrease in Ti (Panel A) and minor changes in Te (Panel C) resulting in a decrease in Ti/Te 

(Panel E). Injection of morphine into vehicle-infused rats elicited a sustained increase in Ti, 

a transient increase followed by a sustained increase in Te, and a sustained increase in Ti/Te. 

In rats receiving L-CYSee, the injection of morphine elicited an increase in Ti, a transient 

increase followed by a sustained decrease in Te resulting in a gradual and sustained increase 

in Ti/Te paralleling that in vehicle-infused rats. Subsequent bolus injection of L-CYSee did 

not exert substantial changes in these parameters. With respect to the total changes in each 

parameter, the infusion (columns INF) of L-CYSee elicited a decrease in Ti (Panel B), no 

change in Te (Panel D), and therefore a decrease in Ti/Te (Panel F). Total increases in Ti 

elicited by morphine in vehicle-infused rats (first 15 min, MOR columns) were converted 

to increases in L-CYSee-infused rats. Total increases in Te elicited by morphine were 

converted to decreases in L-CYSee-infused rats and as such, the total changes in Ti/Te were 

not different from those in vehicle-infused rats. The injection of L-CYSee (250 μmol/kg, IV) 

maintained the changes in Ti, Te and Ti elicited by morphine in L-CYSee-infused rats.

EIP and EEP values are summarized in the left-hand panels of Fig. 3. Infusion of L-CYSee 

elicited a substantial decrease in EIP (Panel A) but a substantial and sustained increase in 

EEP (Panel C). Injection of morphine into vehicle-infused rats elicited a sustained increase 

in EIP and a transient increase in EEP. In rats receiving L-CYSee, morphine elicited an 

increase in EIP that was similar to vehicle-infused rats. Morphine also elicited pronounced 

and sustained decrease in EEP. The subsequent bolus injection of L-CYSee elicited minor 

changes in these parameters. With respect to the total changes in EIP and EEP, the infusion 

(columns INF) of L-CYSee elicited a decrease in EIP (Panel B) but a large increase in 

EEP (Panel D). The total increases in EIP elicited by morphine in vehicle-infused rats 

(first 15 min, MOR columns) were absent in L-CYSee-infused rats. The total increases in 

EEP elicited by morphine were not greatly affected by L-CYSee-infusion. The injection of 

L-CYSee (250 μmol/kg, IV) did not further influence EIP or EEP.

PIF, PEF, and Rpef values are summarized in the left-hand panels of Fig. 4. The infusion of 

L-CYSee elicited substantial increases in PIF (Panel A) and PEF (Panel C) and substantial 

and sustained decreases in Rpef (Panel E). Injection of morphine into vehicle-infused rats 

caused sustained decreases in PIF, a transient decrease in PEF, and restored Rpef values 

to pre-morphine values. In L-CYSee-infused rats, the injection of morphine elicited a 

pronounced decrease in PIF and PEF to pre-morphine levels whereas it caused a return 

of Rpef to pre-morphine values. The subsequent injection of L-CYSee elicited relatively 

minor but sustained increases in PIF, PEF, and Rpef. With respect to the total changes in 

each parameter, the infusion of L-CYSee (columns INF) elicited pronounced increases in 

PIF (Panel B) and PEF (Panel D) and a decrease in Rpef (Panel F). The total increases in 

PIF and PEF elicited by morphine in vehicle-infused rats (first 15 min, MOR columns) were 

converted to increases in PIF and PEF in L-CYSee-infused rats. The total increases in Te 

elicited by morphine were similar in the two groups. The injection of L-CYSee maintained 

the effects of L-CYSee infusion on PIF and PEF and augmented the effects of the infusion 

on Rpef.
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EF50, Relaxation Time, and Apneic Pause values are summarized in the left-hand panels 

of Fig. 5. The infusion of L-CYSee elicited a substantial increase in EF50 (Panel A), a 

substantial decrease in Relaxation Time (Panel C), and a substantial increase in Apneic 

Pause (Panel E). The injection of morphine into vehicle-infused rats elicited a transient 

decrease in EF50, a sustained decrease in Relaxation Time, and transient increases in Apneic 

Pause. In L-CYSee-infused rats, the injection of morphine elicited a pronounced decrease 

in EF50 to values still above pre-morphine levels whereas it had minimal initial effects on 

Relaxation Time. The injection of morphine elicited a pronounced and sustained decrease 

in Apneic Pause values back to pre-L-CYSee-infusion values. Subsequent bolus injection of 

L-CYSee elicited a minor but sustained increase in EF50, and minor changes in Relaxation 

Time and Apneic Pause. Regarding the total changes in each parameter, the infusion of 

L-CYSee (columns INF) elicited pronounced increases in PIF (Panel B), decreases in 

Relaxation Time (Panel D), and increases in Apneic Pause (Panel F). The total increases 

in EF50 and decreases in Relaxation Time elicited by L-CYSee infusion were sustained 

following the injections of morphine and L-CYSee. The total increase in Apneic Pause 

elicited by the infusion of L-CYSee was diminished by the injection of morphine and absent 

upon bolus injection of L-CYSee.

Inspiratory Drive (TV/Ti) and Expiratory Drive (TV/Te) values are summarized in the left-

hand panels of Fig. 6. L-CYSee infusion elicited substantial increases in Inspiratory Drive 

(Panel A) but minor changes in Expiratory Drive (Panel C). The injection of morphine into 

vehicle-infused rats caused sustained decreases in Inspiratory Drive and transient decreases 

in Expiratory Drive. In L-CYSee-infused rats, morphine elicited a rapid decrease in 

Inspiratory Drive toward pre-morphine levels whereas it caused an initial decrease followed 

by a sustained increase in Expiratory Drive. Subsequent injection of L-CYSee elicited 

a relatively minor but sustained increase in Inspiratory Drive and robust and sustained 

increases in Expiratory Drive. With respect to the total changes in each parameter, the of 

L-CYSee infusion (columns INF) elicited pronounced increases in Inspiratory Drive (Panel 

B) but minimal changes in Expiratory Drive (Panel D). The total increases in Inspiratory and 

Expiratory Drive elicited by morphine in vehicle-infused rats (first 15 min, MOR columns) 

were absent in L-CYSee-infused rats. The injection of L-CYSee maintained the effects of 

L-CYSee infusion on Inspiratory Drive but elicited a sustained increase in Expiratory Drive.

NEBI and NEBI/Freq values during the various stages of the experiment are summarized 

in the left-hand panels of Fig. 7. The infusion of L-CYSee elicited substantial decreases in 

NEBI (Panel A) and NEBI/Freq (Panel C). The injection of morphine into vehicle-infused 

rats elicited a rapid and pronounced increase in NEBI and NEBI/Freq that rapidly decreased 

toward zero levels. In L-CYSee-infused rats, the injection of morphine did not affect the 

markedly diminished NEBI and NEBI/Freq values. The subsequent injection of L-CYSee 

elicited minimal responses in either group. Regarding the total changes in NEBI and NEBI/

Freq, the infusion of L-CYSee (columns INF) elicited pronounced falls in NEBI (Panel B) 

and NEBI/Freq (Panel D) that were minimally affected by the subsequent bolus injections of 

morphine or L-CYSee.

ABG chemistry parameters (pH, pCO2, pO2, and sO2) during the experiments with L-CYSee 

and L-SERee are summarized in Fig. 8. The infusion of L-CYSee (7.15 μmol/kg, IV) 
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or L-SERee (7.15 μmol/kg, IV) did not (as recorded after 30 min of infusion) affect pH 

(Panel A), pCO2 (Panel B), pO2 (Panel C) and sO2 (Panel D). The injection of morphine 

(10 mg/kg, IV) elicited large and sustained reductions in pH, pO2, and sO2 that were 

accompanied by equally pronounced increases in pCO2 in vehicle-infused rats. The ABG 

chemistry values following injection of morphine in rats receiving L-SERee were very 

similar to those in vehicle-infused rats. In contrast, the changes in pH, pCO2, pO2, and 

sO2 were dramatically diminished in rats receiving the infusion of L-CYSee. A-a gradient 

values during the L-CYSee and L-SERee studies are summarized in Fig. 9. The infusion of 

L-CYSee (7.15 μmol/kg, IV) or L-SERee (7.15 μmol/kg, IV) did not (as recorded after 30 

min of infusion) affect A-a gradient. The injection of morphine (10 mg/kg, IV) elicited large 

and sustained increases in A-a gradient that were of similar magnitude in vehicle-infused 

and L-SER-infused rats. In contrast, the changes in A-a gradient were markedly reduced in 

rats receiving L-CYSee infusion.

TFL values during studies with L-CYSee and L-SERee are summarized in Fig. 10. The 

injection of morphine (10 mg/kg, IV) elicited sustained increases in TFL that were of similar 

magnitude in rats receiving infusions of vehicle, L-SERee (14.3 μmol/kg/min, IV), and 

L-CYSee (14.3 μmol/kg/min, IV). An important note is that the injection of morphine (10 

mg/kg, IV) to vehicle-infused rats caused immediate sedation with the rats most often lying 

still on their sides or belly. It took about 65–75 min for the rats to regain their feet and 

move around the chamber. The sedative effects of morphine were similar in rats receiving 

an infusion of L-CYSee (14.3 μmol/kg/min, IV) and the bolus injection of L-CYSee (250 

μmol/kg, IV).

4. Discussion

This study demonstrates that the deleterious effects of morphine on ventilatory parameters, 

ABG chemistry, and A-a gradient (alveolar gas exchange) were markedly diminished in rats 

receiving a continuous intravenous infusion of the highly membrane-permeable, L-thioester, 

L-CYSee [9, 33–47]. With respect to the plethysmography studies, the infusion rate of L-

CYSee (14.3 μmol/kg/min, IV) was chosen based on preliminary studies, which determined 

that it would elicit minimal effects on Freq, TV, and therefore MV. More specifically, 

this infusion rate was chosen to establish whether the L-thioester could interfere with the 

ventilatory depressant effects of morphine by processes that are independent of simple 

stimulation of breathing. Indeed, the present study confirmed that infusion of L-CYSee at 

14.3 μmol/kg/min elicited relatively minor increases in Freq, TV, and MV and that the bolus 

injection of morphine elicited substantially smaller reductions in these parameters in these 

rats. As such, on face value, it would appear that L-CYSee does interfere with the processes 

by which morphine decreases Freq and TV and therefore MV.

The finding that L-CYSee infusion did not interfere with the antinociceptive or sedative 

effects of morphine argues that L-CYSee does not directly block ORs and that the ready 

access of L-CYSee to peripheral and central sites [36], especially those controlling Freq and 

TV, modulates the signaling processes that mediate the effects of morphine on breathing. 

However, the relatively minor effects of L-CYSee infusion on Freq, TV, and MV (the 

most widely studied of all ventilatory parameters) contrasted with the substantial effects of 
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L-CYSee infusion on other, less well-reported parameters. Specifically, L-CYSee infusion 

elicited a fall in Ti without having a major effect on Te demonstrating that the L-thioester 

selectively modulates (presumably) central pathways controlling inspiration [48–50]. The 

observation that L-CYSee elicited robust increases in Inspiratory Drive but no change in 

Expiratory Drive reinforces the concept that the L-CYSee selectively affects processes 

controlling inspiratory timing. The ability of L-CYSee to differentially affect ventilatory 

timing is also evident in that it decreased EIP (reduced the interval between the end of 

inspiration and the start of expiration) whereas it increased EEP (increased the interval 

between the end of expiration and the start of inspiration). Moreover, whereas L-CYSee 

increased Apneic Pause this was due primarily to a pronounced decrease in decreased 

Relaxation Time rather than Te. In addition, L-CYSee elicited remarkable increases in PIF, 

PEF, and EF50, while as would be expected a robust decrease in Rpef, clearly suggesting that 

L-CYSee enhances both inspiratory and expiratory ventilatory mechanics. Whether these 

effects involve enhancement of neurotransmitter release at neuromuscular junctions and/or 

enhanced responsiveness of skeletal muscle in the diaphragm and internal and external 

intercostal muscles remain to be determined.

A remarkable finding was that the L-CYSee infusion elicited a marked drop in ventilatory 

instability as measured by pronounced falls in NEBI and NEBI/Freq. The low level of 

baseline NEBI in these (mostly quietly resting) rats is likely due to the occurrence of apneas 

and type 1 and 2 sighs [10–12, 26] and the ability of L-CYSee to stabilize breathing may 

involve effects on brainstem and suprapontine pathways that control the ventilatory network 

[51–53]. With respect to the effects of morphine on ventilatory parameters other than Freq, 

TV, or MV, it was apparent that L-CYSee infusion markedly blunted the ability of morphine 

to decrease Ti whereas L-CYSee enhanced morphine-induced decrease in Te. Morphine 

reversed the pronounced increase in EEP observed during L-CYSee infusion whereas the 

ability of morphine to increase EIP was not affected by L-CYSee. Possibly due to the 

great increases in baseline PIF, PEF, EF50, and Expiratory Drive values observed during the 

L-CYSee infusion, morphine did not decrease these parameters below baseline levels as in 

vehicle-infused rats. Morphine had minor effects on the pronounced decrease in Relaxation 

Time in the L-CYSee-infused rats and restored the substantial increase in Apneic Pause seen 

during L-CYSee infusion to pre-infusion levels. L-CYSee prevented the initial increase in 

NEBI elicited by morphine whereas the subsequent and profound decrease in NEBI elicited 

by morphine occurred in both vehicle- and L-CYSee-infused rats. Finally, the ability of 

the bolus injection of L-CYSee in rats receiving the L-CYSee infusion to further enhance 

Freq, TV, MV, PIF, PEF, EF50, Inspiratory Drive, and Expiratory Drive suggests that the 

L-thioester has enormous potential in overcoming morphine-induced respiratory depression.

An important set of findings was that the ability of morphine (10 mg/kg, IV) to adversely 

affect ABG chemistry and A-a gradient was markedly diminished in rats that were 

receiving a lower infusion concentration of L-CYSee (7.15 μmol/kg/min) than used in the 

plethysmography studies (i.e., 50% of the 14.3 μmol/kg/min infusion concentration used in 

the plethysmography studies). This again demonstrates the obvious ability of L-CYSee to 

prevent the adverse effects of morphine on breathing and alveolar gas exchange and raises 

the possibility that even lower concentrations of L-CYSee may have efficacy. A key finding 

was that the infusion of L-SERee was without effect and as such, it appears that the sulfur 
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atom of L-CYSee is essential to its activity. There are numerous explanations for these 

findings including that (i) L-CYSee can bind to functional proteins important for ventilatory 

control processes and especially those involved in the ability of morphine to depress 

breathing (see [54–57]) whereas L-SERee cannot, (ii) the degradation of L-CYSee to L-

cysteine which then enters numerous metabolic pathways that L-serine cannot [58–66], and 

(iii) the formation of S-nitroso-L-CYSee [22] and/or S-nitroso-L-cysteine, an endogenous S-

nitrosothiol [67–69] with many substantial roles in intracellular signaling cascades (see [70–

72]) including those controlling cardiorespiratory function (see [73–77]) and those involved 

in attenuating OIRD [78,79]. With respect to potential mechanisms by which the infusion 

of L-CYSee inhibits the adverse effects of morphine on breathing, we have a tentative 

proposal that (i) morphine-activated μ-ORs recruit histidine triad nucleotide-binding protein 

1 (HINT1) while simultaneously activating the neuronal form of NOS (nNOS). HINT1 

recruits nNOS to the μ-OR-HINT1 complex [80,81], (ii) an essential process is that 

nNOS produces small molecule S-nitrosothiols and S-nitrosylated proteins which protect 

against/reverse morphine-induced respiratory depression, (iii) morphine-activated μ-ORs 

may recruit HINT1 and initiate the process by which L-CYSee is nitrosylated to S-nitroso-

L-CYSee, (iv) such production of S-nitroso-L-CYSee has numerous effects including 

promoting formation of a μ-OR-NMDA (N-methyl-D-aspartate) receptor super complex, 

which is a possible mechanism for potentiation of morphine-induced respiratory depression 

in the absence of S-nitrosothiols [82,83].

A more simplified pathway is presented in the graphical abstract (note that the alpha 

subunit of G protein is not displayed for the sake of clarity) for why L-CYSee does not 

affect morphine antinociception/analgesia (upper panel) whereas it does affect the signaling 

events driving morphine-induced depression of breathing. The upper panel shows that the 

signaling pathways responsible for morphine-induced antinociception/analgesia involves 

the ability of morphine to block pain signaling via inhibiting Ca2+-entry into neurons 

processing nociceptive signals. This involves morphine binding to and activating the μ-OR 

(Step 1), the βγ subunits releasing from the receptor complex and binding to and inhibited 

Ca2+-channels, thereby blocking signal transduction responsible for pain (Step 2) and then 

β-arrestin (β-arr) binding to the μ-OR triggering endocytosis, and the μ-OR recycling to the 

cell surface (Step 3). None of these events are modulated by L-CYSee which freely-enters 

the cell but which cannot bind with efficacy to any of these signaling proteins. The bottom 

panel depicts how L-CYSee prevents the signaling events driving morphine depression 

of breathing. The presence of nitric oxide synthase (NOS) in these cells allows for the 

conversion of L-CYSee to S-nitroso-L-CYSee (SNO-L-CYSee), which binds to the βγ 
subunits of the μ-OR upon morphine binding (Step 1). The entry of Ca2+ is an essential 

component of the signaling processes that drive breathing. The binding of SNO-L-CYSee 

prevents the βγ subunits from inhibiting Ca2+ entry thereby maintaining normal signal 

transduction processes and preventing morphine suppression of breathing (Step 2). β-arr still 

binds the complex and triggers endocytosis, but the presence of SNO-L-CYSee prevents 

recycling to the membrane, reducing available μ-OR at the cell surface (Step 3).

Finally, although it has been established that L-CYSee readily enters peripheral and central 

tissues following systemic administration to rats [36] and increases levels of L-cysteine 

and L-cysteine in peripheral tissues in these animals [33], it remains to be established 
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how L-CYSee affects brain regional levels of L-cysteine, L-cystine and L-glutathione or 

the functional status of S-glutathionylated proteins, in naïve or morphine-treated rats. Such 

information will be vital to understand the biochemical effects of L-CYSee and its potential 

impact on redox homeostasis.
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Fig. 1. 
Changes in frequency of breathing (Freq), tidal volume (TV), and minute ventilation (MV). 

Panels A, C, and E: Actual Freq, TV, and MV values during the various stages of the 

experiment, respectively. Panels B, D, and F: Sum of the Freq, TV, and MV responses 

recorded during infusion of vehicle (VEH; 20 μL/min, IV) or L-CYSee (INF; 14.3 μmol/kg/

min, IV) upon injection of morphine (MOR, 10 mg/kg, IV) and following injection of VEH 

(100 μL/100 g body weight, IV) or L-CYSee (250 μmol/kg, IV), respectively. Data are 

presented as mean ± SEM. There were 5 rats in the vehicle-infusion group and 6 rats in 

the L-CYSee-infusion group. *P < 0.05, significant change from Pre values. †P < 0.05, 

L-CYSee versus VEH.
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Fig. 2. 
Changes in inspiratory time (Ti), expiratory time (Te), and Ti/Te. Panels A, C, and E: 
Actual Ti, Te, and Ti/Te values during the various stages of the experiment, respectively. 

Panels B, D, and F: Sum of the Ti, Te, and Ti/Te responses recorded during the infusion 

of vehicle (VEH; 20 μL/min, IV) or L-CYSee (INF; 14.3 μmol/kg/min, IV), upon injection 

of morphine (MOR, 10 mg/kg, IV) and following injection of VEH (100 μL/100 g body 

weight, IV) or L-CYSee (250 μmol/kg, IV), respectively. Data are presented as mean ± 

SEM. There were 5 rats in the vehicle-infusion group and 6 rats in the L-CYSee-infusion 

group.*P < 0.05, significant change from Pre values. †P < 0.05, L-CYSee versus VEH.
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Fig. 3. 
Changes in end inspiratory pause (EIP) and end expiratory pause (EEP). Panels A and C: 
Actual EIP and EEP values during the various stages of the experiment, respectively. Panels 
B and D: Sum of the EIP and EEP responses recorded during the infusion of vehicle (VEH; 

20 μL/min, IV) or L-CYSee (INF; 14.3 μmol/kg/min, IV), upon injection of morphine 

(MOR, 10 mg/kg, IV) and following injection of VEH (100 μL/100 g body weight, IV) or 

L-CYSee (250 μmol/kg, IV), respectively. Data are presented as mean ± SEM. There were 

5 rats in the vehicle-infusion group and 6 rats in the L-CYSee-infusion group.*P < 0.05, 

significant change from Pre values. †P < 0.05, L-CYSee versus VEH.
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Fig. 4. 
Changes in peak inspiratory flow (PIF), peak expiratory flow (PEF), and rate of achieving 

PEF (Rpef). Panels A, C, and E: Actual PIF, PEF, and Rpef values during the various 

stages of the experiment, respectively. Panels B, D, and F: Sum of the PIF, PEF, and 

Rpef responses recorded during the infusion of vehicle (VEH; 20 μL/min, IV) or L-CYSee 

(INF; 14.3 μmol/kg/min, IV), upon injection of morphine (MOR, 10 mg/kg, IV) and 

following injection of VEH (100 μL/100 g body weight, IV) or L-CYSee (250 μmol/kg, IV), 

respectively. Data are presented as mean ± SEM. There were 5 rats in the vehicle-infusion 

group and 6 rats in the L-CYSee-infusion group.*P < 0.05, significant change from Pre 

values. †P < 0.05, L-CYSee versus VEH.
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Fig. 5. 
Changes in expiratory flow at 50% expired tidal volume (EF50), relaxation time (RT), 

and apneic pause (ApP). Panels A, C, and E: Actual EF50, RT, and ApP values during 

the various stages of the experiment, respectively. Panels B, D, and F: Sum of EF50, 

RT, and ApP responses recorded during the infusion of vehicle (VEH; 20 μL/min, IV) 

or L-CYSee (INF; 14.3 μmol/kg/min, IV), upon injection of morphine (MOR, 10 mg/kg, 

IV) and following injection of VEH (100 μL/100 g body weight, IV) or L-CYSee (250 

μmol/kg, IV), respectively. Data are presented as mean ± SEM. There were 5 rats in the 

vehicle-infusion group and 6 rats in the L-CYSee-infusion group.*P < 0.05, significant 

change from Pre values. †P < 0.05, L-CYSee versus VEH.
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Fig. 6. 
Changes in inspiratory drive (InspD) and expiratory drive (ExpD). Panels A and C: Actual 

InspD and ExpD values during the various stages of the experiment, respectively. Panels B 
and D: Sum of InspD and ExpD responses recorded during infusion of vehicle (VEH; 20 

μL/min, IV) or L-CYSee (INF; 14.3 μmol/kg/min, IV), upon injection of morphine (MOR, 

10 mg/kg, IV) and following injection of VEH (100 μL/100 g body weight, IV) or L-CYSee 

(250 μmol/kg, IV), respectively. Data are presented as mean ± SEM. There were 5 rats in 

the vehicle-infusion group and 6 rats in the L-CYSee-infusion group.*P < 0.05, significant 

change from Pre values. †P < 0.05, L-CYSee versus VEH.

Lewis et al. Page 23

Biomed Pharmacother. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Changes in non-eupneic breathing index (NEBI) and NEBI/frequency of breathing (NEBI/

Freq). Panels A and C: NEBI and NEBI/Freq values during various stages of the 

experiment, respectively. Panels B and D: Sum of NEBI and NEBI/Freq responses recorded 

during infusion of vehicle (VEH; 20 μL/min, IV) or L-CYSee (INF; 14.3 μmol/kg/min, 

IV), upon injection of morphine (MOR, 10 mg/kg, IV) and following injection of VEH 

(100 μL/100 g body weight, IV) or L-CYSee (250 μmol/kg, IV), respectively. Data are 

presented as mean ± SEM. There were 5 rats in the vehicle-infusion group and 6 rats in the 

L-CYSee-infusion group.*P < 0.05, significant change from Pre values. †P < 0.05, L-CYSee 

versus VEH.
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Fig. 8. 
Actual values for pH (Panel A), pCO2 (Panel B), pO2 (Panel C), and sO2 (Panel D) 

prior to (Pre) following a bolus injection of morphine (M5–M60; 10 mg/kg, IV) in freely-

moving rats receiving a continuous infusion (I30-I90) of vehicle (VEH; 10 μL/min), L-serine 

ethyl ester (L-SERee, 7.15 μmol/kg/min, IV) or L-cysteine ethyl ester (L-CYSee, 7.15 

μmol/kg/min, IV). The data are presented as mean ± SEM. There were 8 rats in the vehicle-

infusion group and 6 rats in the L-SERee-infusion and L-CYSee-infusion group.*P < 0.05, 

significant change from Pre values. †P < 0.05, L-CYSee versus VEH.
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Fig. 9. 
Actual values for Alveolar-arterial (A-a) gradient prior to (Pre) following an injection of 

morphine (M5–M60; 10 mg/kg, IV) in freely-moving rats receiving a continuous infusion 

(I30-I90) of vehicle (VEH; 10 μL/min), L-serine ethyl ester (L-SERee, 7.15 μmol/kg/min, 

IV) or L-cysteine ethyl ester (L-CYSee, 7.15 μmol/kg/min, IV). The data are presented as 

mean ± SEM. There were 8 rats in the vehicle-infusion group and 6 rats in the L-SERee-

infusion and L-CYSee-infusion group.* P < 0.05, significant change from Pre values. † P < 

0.05, L-CYSee versus VEH.

Lewis et al. Page 26

Biomed Pharmacother. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Panel A: Actual tail-flick (TF) latency values prior to (Pre) following an injection of 

morphine (M15-M60; 10 mg/kg, IV) in freely-moving rats receiving a continuous infusion 

(I15-I95) of vehicle (VEH; 20 μL/min), L-serine ethyl ester (L-SERee, 14.3 μmol/kg/min, 

IV) or L-cysteine ethyl ester (L-CYSee, 14.3 μmol/kg/min, IV). Panel B: Arithmetic 

changes in TF latency. The data are presented as mean ± SEM. There were 6 rats in each 

group.* P < 0.05, a significant change from Pre values. † P < 0.05, L-CYSee versus VEH.
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Table 1

Definition of ventilatory parameters.

Parameter Abbreviation Units Definition

Frequency of breathing Freq breaths/min Frequency of breaths per min

Tidal volume TV ml Volume of air per breath

*Minute ventilation MV = Freq × TV ml/min Total volume of air breathed in per min

Inspiratory time Ti sec Duration of inspiration

Expiratory time Te sec Duration of expiration

End Inspiratory Pause EIP msec Pause between the end of inspiration and start of expiration

End Expiratory Pause EEP msec Pause between the end of expiration and start of inspiration

Relaxation time RT sec Time to expire 64% of tidal volume: non-elastic phase

Peak inspiratory flow PIF ml/sec Peak of inspiratory flow

Peak expiratory flow PEF ml/sec Peak of expiratory flow

EF50 EF50 ml/sec Air-flow at 50% of expired TV

Rpef Rpef none Point in expiration when PEF occurs expressed as a fraction of Te

*Apneic Pause AP = (Te/RT)−1 none Relative pause in expiration – index of increased airway resistance

*Inspiratory drive TV/Ti ml/sec Drive to inspire air

*Expiratory drive TV/Te ml/sec Drive to expire air

Non-eupneic breathing index NEBI % of breaths Occurrence of non-eupneic breathing events such as apneas

*NEBI/Frequency of breathing NEBI/Freq %/(breaths/min) NEBI adjusted for frequency of breathing

*
Parameters denoted with an asterisk were computed from directly recorded parameters
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Table 2

Baseline (pre) values in the groups that received vehicle or L-CYSee.

Parameter Vehicle L-CYSee

N 5 6

Age, days 79.1 ± 0.3 78.7 ± 0.3

Body weights, grams 335 ± 2 333 ± 2

Frequency, breaths/min 94.8 ± 2.6 97.0 ± 5.2

Tidal Volume (TV), ml 2.40 ± 0.04 2.33 ± 0.09

Minute Ventilation, ml/min 228 ± 9 224 ± 5

Inspiratory Time (Ti), sec 0.24 ± 0.02 0.26 ± 0.01

Expiratory Time (Te), sec 0.41 ± 0.03 0.40 ± 0.03

Inspiratory Time/Expiratory Time 0.61 ± 0.07 0.66 ± 0.04

Ti/(Ti + Te) 37.4 ± 3.0 39.4 ± 1.5

End Inspiratory Pause, msec 8.1 ± 0.3 8.0 ± 0.3

End Expiratory Pause, msec 56.4 ± 4.8 58.8 ± 3.4

Peak Inspiratory Flow, ml/sec 14.6 ± 1.0 13.8 ± 0.6

Peak Expiratory Flow, ml/sec 10.9 ± 0.5 10.1 ± 0.6

Rpef 0.17 ± 0.02 0.17 ± 0.01

EF50, ml/sec 0.46 ± 0.03 0.46 ± 0.04

Inspiratory Drive (TV/Ti), ml/sec 10.3 ± 0.9 9.2 ± 0.3

Inspiratory Drive (TV/Te), ml/sec 6.1 ± 0.5 6.0 ± 0.3

Apneic Pause, sec 0.79 ± 0.06 0.86 ± 0.03

Non-Eupneic Breathing Index (NEBI), % 7.0 ± 0.6 6.5 ± 0.2

NEBI/Freq, (%/(breaths/min)) × 100 7.4 ± 0.6 6.7 ± 0.4

L-CYSee, L-cysteine ethyl ester. There were 5 rats in the vehicle group and 6 rats in the L-CYSee group. The data are presented as mean ± SEM. 
There were no between group differences for any parameter (P > 0.05, for all comparisons).
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