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A B S T R A C T   

Background and purpose: Strategies to limit the impact of intra-fraction motion during treatment are common in 
radiotherapy. Margin recipes, however, are not designed to incorporate these strategies. This work aimed to 
provide a framework to determine how motion management strategies influence treatment margins. 
Materials and methods: Two models of intra-fraction motion were considered. In model 1 motion was instanta-
neous, before treatment starts and in model 2 motion was a continuous drift during treatment. Motion man-
agement strategies were modelled by truncating the underlying error distribution at cσ, with σ the standard 
deviation of the distribution and c a free parameter. Using Monte Carlo simulations, we determined how motion 
management changed the required margin. The analysis was performed for different number of treatment 
fractions and different standard deviations of the underlying random and systematic errors. 
Results: The required margin for a continuous drift was found to be well approximated by an average position of 
the target at ¾ of the drift. Introducing a truncation at cσ, the relative change in the margin was equal to 0.3c. 
This result held for both models, was independent of σ or the number of fractions and naturally generalizes to the 
situation with a residual (systematic) error. 
Conclusion: Treatment margins can be determined when motion management strategies are applied. Moreover, 
our analysis can be used to study the potential benefit of different motion management strategies. This allows to 
discuss and determine the most appropriate strategy for margin reduction.   

1. Introduction 

Expanding the clinical target volume (CTV) to a planning target 
volume (PTV) to account for treatment uncertainties is a standard 
practice in radiotherapy [1]. To reduce margins and therefore reduce the 
irradiation of healthy tissue, improved image guidance, and adaptive 
radiotherapy have been developed, currently resulting in daily online 
adaptation using either magnetic resonance imaging or cone-beam 
computed-tomography guidance [2–4]. 

In an online adaptive workflow, essentially all preparation errors 
become daily execution errors. This includes random, systematic or 
periodic intra-fraction motion of the target and daily delineation un-
certainty. Intra-fraction motion during treatment can still be substantial 
[5–8]. Therefore, intervention strategies have been developed to limit 
too substantial movements, both for online adaptive as well as con-
ventional radiotherapy. These interventions include gating, tracking and 

trailing, but also a manual approach where target motion is monitored 
and treatment is manually interrupted if the motion exceeds a certain 
threshold [9–14]. 

Online motion management strategies aim to narrow the error dis-
tribution, thereby reducing the PTV margins. However, they can also 
change the underlying shape of the error distribution and thereby 
invalidate the assumptions of the common margin recipes. Moreover, 
there currently is no relation known between an intervention strategy 
and the resulting margin reduction. Published margins for online 
adaptive radiotherapy are determined using heuristic estimates, but lack 
an underlying framework to systematically assess the impact of motion 
management strategies [15,16]. Therefore, an open question remains 
how to determine the margin upon introducing (online) motion man-
agement. The aim of the current work was to develop a margin recipe for 
this purpose. 
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2. Materials and methods 

We studied two models for online motion management that captured 
the essentials of most motion patterns and motion management strate-
gies. For both models, we determined how the required treatment 
margin changes due to the motion management strategy. 

For clarity, we focused our analysis assuming no systematic error. 
However, we also showed how our results generalize to the case of a 
non-zero residual systematic error. 

2.1. Model description 

The well-known Van Herk recipe for CTV-PTV margins [17] assumes 
treatment uncertainties to be normally distributed and then studies the 
population histogram to ensure that 90 % of patients receive 95 % of the 
prescribed dose. 

Our approach to calculate margins was similar to the Van Herk 
approach: we assumed a spherical target, with a homogeneous, spherical 
dose distribution, convolved with a Gaussian penumbra of width σp =

3.2 mm. We assumed systematic errors to be absent and random intra- 
fraction errors to be Gaussian distributed with width σ.1 We assumed 
an online intervention at a threshold c to change the error distribution to 
a truncated Gaussian, with width σ and truncation at ± cσ. (See sup-
plement A). We considered a margin adequate when the minimal target 
dose is 95 % of the prescribed dose in 90 % of the population. Table C1 in 
the supplementary material provides an overview of the notation used. 

With this approach, we considered two different models. 

2.1.1. Model 1 
We considered intra-fraction motion to be a discrete target 

displacement along a vector r→. Every fraction, r→ was sampled from a 
(truncated) Gaussian distribution of width σ and truncation c. This can 
be interpreted as a random residual displacement after image guidance 
or plan adaptation, with no additional motion after the irradiation starts. 
The truncation can be interpreted as a threshold used as a check, just 
prior to irradiation, what residual displacement would still be accept-
able. Such an approach is common practice in many image guidance 
workflows, with or without online adaptation. 

2.1.2. Model 2 
We considered intra-fraction motion to be a continuous target 

displacement linearly increasing with time to vector r→. Every fraction, 
r→ was sampled from a (truncated) Gaussian distribution of width σ and 
truncation c. We assumed the full dose to be delivered at a constant rate 
during this movement and ignored interplay effects. This model is 
applicable for intra-fraction motion during irradiation. While the precise 
results will depend on the trajectory (we assumed a straight line) and 
speed (we assumed to be constant), these can be expected to be higher 
order corrections. The interpretation of the truncation in this case is a 
threshold used in intra-fraction motion monitoring. 

We considered two variations in order to generalize our results to the 
situation of a non-homogeneous dose prescription and a non-zero re-
sidual systematic error. These variations were only considered for model 
1, since the effect of the variations will be similar for both models. 

2.1.3. Variation 1 
We changed the prescription isodose to 80 % instead of 95 %. This 

made the dose distribution in the target more inhomogeneous. This is 
common practice in stereotactic body radiation therapy [18]. 

2.1.4. Variation 2 
We considered the case where a residual systematic error was pre-

sent. We considered this error to be a target displacement that was 
sampled once for every patient from a Gaussian distribution of width Σ. 

2.2. Analytic approximations 

We derived analytic approximations to supplement our analysis (see 
supplement B for details). The approximation followed the same 
approach as the van Herk margin recipe [17]. To take into account the 
finite number of fractions N, the error σ effectively results in a ‘random’ 
component σN and a ‘systematic’ component ΣN [19–21]: 

σ2
N =

N − 1
N

σ2; (1)  

Σ2
N =

1
N

σ2. (2) 

To model the effect of the motion management, σ was replaced with 
the standard deviation of the truncated distribution: σC (see supplement 
A). Equivalent to equation (1) this resulted in σN,c. The margin mc was 
given by 

mc ≈ αcΣN + β
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
N,c + σ2

p

√

− σp

)
(3) 

The systematic factor αc was determined by equation (B.7) from 
supplement B, independent of N. αc = 2.5 when no truncation was 
present and changed to 2.4, 1.8 and 1.0 for c equals 3, 2 and 1, 
respectively. The random factor β followed from equation (B.6). β = 1.64 
for a prescription of 95 % and β = 0.84 for a prescription of 80 %. 

The random factor in equation (3) is only approximately correct for 
both a finite number of fractions and in the presence of truncation. The 
calculation of the random component assumed that the net effect of 
fractionation was a Gaussian blur, however this is not true for a finite 
number of fractions. Since the worst 10 % of cases are ignored in the van 
Herk margin recipe and σN and ΣN are correlated via equations (1) and 
(2), the margin is determined by those patients with the smaller blur, 
causing equation (3) to give an under-estimation of the margin for this 
problem. The Gaussian blur is also incorrect in the presence of trunca-
tion since the Gaussian convolution of a truncated Gaussian is not 
anymore Gaussian, but more peaked. This resulted in a different func-
tional form, causing equation (3) to give a slight over-estimation of the 
margin for this problem. 

For model 2, we used the additional assumption that the effective 
displacement due to the movement changes σ to εσ, where ε is a free 
parameter we fitted using the Monte Carlo results. This correction 
applied via equations (1) and (2) both to σN and ΣN. 

2.3. Monte Carlo simulations 

We used Monte Carlo simulations to determine the required margin. 
In all experiments we sampled a spherical surface of radius 30 mm with 
300 points for 5000 patients. These values were chosen such that the 
simulation produced stable results. The random displacements used in 
the simulations were obtained from a 3D Gaussian random number 
generator (Numpy v1.19.2, Python v3.8.5). When truncated normal 
variables were needed, first, a large number of Gaussian distributed 3D 
vectors were sampled and those with a vector length above the desired 
truncation were discarded. 

We assumed that the accumulated minimum dose to the target was 
always located at its surface. Therefore, to determine the minimum dose, 
dose only needed to be calculated in points distributed on a spherical 
surface. The points were sampled using a Fibonacci sphere algorithm to 
distribute them approximately evenly over the sphere. 

We determined the margin using the following pseudo-code (for 
model 1). 

1 An argument for this assumption is the applicability of the central limit 
theorem. 
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Loop over margins, starting at 0 mm 

For each patient: 

For each fraction: 

Sample a random displacement from the (trun-

cated) distribution 

Calculate the dose in all points on the sphere 

using the 3D Cartesian equivalent of Eq. A.11 

Sum all fractions 

Determine the minimum dose 

Determine the number of patients for which the mini-

mum dose is > 95 % 

If the relative number of patients is > 90 %: 

The used margin is the required margin 

Else: 

Increase the margin with 0.1 mm and repeat. 

For model 2, we additionally divided each fraction in 10 timepoints 
over which the target moves linearly. 

2.4. Experiments 

We performed the following experiments, for both models.  

1. Using the Monte Carlo code, we determined the margin required for 
a range of parameter values. σ = {1, 2.5, 5, 7.5} mm; N = {1, 2, …, 
20}; c = {1, 2, 3, inf}. We also determined the accuracy of the ana-
lytic approximation from equation (3). For model 2 we determined 
parameter ε by minimizing the relative distance between equation 

(3) and the Monte Carlo results for σ = {1, 2.5, 5} mm, N =
{1,3,5,20} and no truncation (c = inf).  

2. We determined a margin recipe for the relative change of the margin 
as a function of the truncation c, for the different values of σ and N. 
We considered a linear fit mc / m = ω c and determined ω for the fit of 
σ = {1, 2.5, 5} mm, N = {1,3,5,20}. 

In the presence of a systematic error Σ (variation 2), the margin m0 
required for c = 0 was 2.5Σ. The fit used was the equivalent of the linear 
fit without systematic errors: 

mc

m
=

m0

m
+
(

1 −
m0

m

)
ωc (4)  

3. Results 

3.1. Determination of required margins 

The disagreement between the analytic and Monte Carlo results 
decreased for model 1 with decreasing c from < 5.3 mm without trun-
cation to < 0.4 mm with c = 1 for the parameters studied (Fig. 1; Ta-
bles 1 (accuracy of approximation) and C2 (full numerical results)). This 
effect was considerably less pronounced for model 2, where the results 
where < 2.5 mm and < 0.6 mm respectively (Fig. 2; Tables 1 and C3). 

For model 2, the parameter ε, determining the effective change in σ 
due to the continuous motion, was fitted to be ε = 0.75. 

When prescribing on the 80 % isodose, the smaller value of β in 
equation (3) resulted in a relatively smaller margin when N increases 

Fig. 1. Margin required for different values of standard deviation σ, truncation parameter c and number of fractions N for model 1 (discrete displacement). Dots show 
the Monte Carlo simulation result and the solid line shows the analytic approximation given by the van Herk margin formula, corrected for finite fractions and 
truncation (equation (3)). σc is the standard deviation of the truncated distribution (given by equation A7). Crosses in Fig. 1D are the Monte Carlo results from [19] 
for reference. 
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Table 1 
Monte Carlo (MC) and analytic results of the required margin for different values of the standard deviation σ, the number of fractions N, and the truncation parameter c. Results are shown for model 1 (discrete 
displacement) and model 2 (continuous movement).    

MC result (mm) analytic model (mm) absolute difference (mm) relative difference 

model 1 σ (mm) N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 20 N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 20 N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 20 N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 20 

c ¼ 1 1  1.0  0.7  0.6  0.4  1.0  0.6  0.5  0.3  0.0  0.1  0.1  0.1  0.02  0.15  0.18  0.24  
2.5  2.4  1.7  1.5  0.9  2.4  1.6  1.3  0.8  0.0  0.1  0.1  0.1  0.02  0.07  0.10  0.11  
5  4.8  3.7  3.2  2.4  4.8  3.5  3.0  2.1  0.0  0.1  0.2  0.3  0.00  0.04  0.06  0.12  
7.5  7.2  5.8  5.3  4.2  7.2  5.7  5.1  3.8  0.0  0.0  0.3  0.4  0.00  0.01  0.05  0.10 

c ¼ 2 1  1.9  1.2  1.0  0.7  1.9  1.2  1.0  0.6  0.0  0.0  0.0  0.1  − 0.01  0.03  0.01  0.13  
2.5  4.7  3.4  3.0  2.1  4.6  3.3  2.8  1.9  0.0  0.1  0.2  0.2  0.01  0.04  0.06  0.10  
5  9.2  7.9  7.1  5.7  9.2  7.5  6.7  5.0  0.0  0.4  0.4  0.7  0.00  0.05  0.06  0.12  
7.5  13.8  12.7  11.8  9.8  13.8  12.2  11.0  8.6  0.0  0.5  0.7  1.2  0.00  0.04  0.06  0.12 

c ¼ 3 1  2.5  1.6  1.4  0.8  2.4  1.6  1.3  0.8  0.0  0.1  0.1  0.1  0.00  0.04  0.06  0.08  
2.5  5.9  5.0  4.4  3.0  6.0  4.4  3.8  2.6  − 0.1  0.6  0.6  0.4  − 0.01  0.12  0.14  0.14  
5  12.0  11.6  11.0  8.5  12.0  10.0  8.9  6.7  0.0  1.7  2.1  1.7  0.00  0.14  0.19  0.20  
7.5  18.0  18.3  17.8  14.7  18.0  16.1  14.6  11.4  0.0  2.2  3.3  3.3  0.00  0.12  0.18  0.22 

no truncation 1  2.6  1.8  1.5  0.9  2.5  1.6  1.3  0.8  0.0  0.1  0.1  0.1  0.01  0.08  0.09  0.09  
2.5  6.3  5.5  5.0  3.5  6.3  4.6  4.0  2.8  0.0  0.9  1.0  0.7  − 0.01  0.16  0.20  0.21  
5  12.6  12.9  12.7  9.8  12.5  10.5  9.4  7.1  0.1  2.4  3.3  2.7  0.01  0.18  0.26  0.27  
7.5  18.7  20.3  20.3  17.3  18.8  16.9  15.4  12.1  − 0.1  3.3  4.9  5.3  − 0.01  0.16  0.24  0.30  

model 2                  
c ¼ 1 1  0.6  0.4  0.3  0.2  0.7  0.4  0.3  0.2  − 0.1  0.0  0.0  0.0  − 0.21  − 0.08  − 0.04  0.03  

2.5  1.4  0.9  0.8  0.5  1.8  1.1  0.9  0.6  − 0.4  − 0.2  − 0.2  − 0.1  − 0.28  − 0.27  − 0.22  − 0.13  
5  3.0  2.0  1.8  1.2  3.6  2.5  2.1  1.4  − 0.6  − 0.5  − 0.4  − 0.3  − 0.21  − 0.25  − 0.21  − 0.23  
7.5  4.8  3.5  3.0  2.1  5.4  4.0  3.5  2.5  − 0.6  − 0.6  − 0.5  − 0.4  − 0.12  − 0.16  − 0.18  − 0.19 

c ¼ 2 1  1.0  0.7  0.6  0.4  1.4  0.9  0.7  0.4  − 0.4  − 0.2  − 0.1  0.0  − 0.39  − 0.27  − 0.22  − 0.12  
2.5  2.8  1.9  1.6  1.0  3.5  2.3  2.0  1.3  − 0.6  − 0.5  − 0.4  − 0.3  − 0.22  − 0.26  − 0.23  − 0.29  
5  6.5  4.7  4.2  2.9  6.9  5.3  4.6  3.3  − 0.5  − 0.6  − 0.5  − 0.4  − 0.07  − 0.12  − 0.11  − 0.14  
7.5  10.5  8.4  7.4  5.6  10.4  8.6  7.7  5.8  0.1  − 0.2  − 0.3  − 0.3  0.01  − 0.03  − 0.03  − 0.05 

c ¼ 3 1  1.4  0.8  0.7  0.4  1.8  1.1  0.9  0.5  − 0.4  − 0.3  − 0.2  − 0.1  − 0.30  − 0.35  − 0.30  − 0.19  
2.5  3.8  2.7  2.2  1.5  4.5  3.1  2.6  1.7  − 0.7  − 0.4  − 0.4  − 0.3  − 0.17  − 0.14  − 0.18  − 0.20  
5  8.8  7.6  6.4  4.3  9.0  7.1  6.2  4.5  − 0.2  0.5  0.2  − 0.2  − 0.02  0.07  0.02  − 0.06  
7.5  14.2  13.1  11.5  8.1  13.5  11.4  10.3  7.8  0.7  1.6  1.2  0.3  0.05  0.13  0.11  0.04 

no truncation 1  1.4  0.9  0.8  0.5  1.9  1.2  1.0  0.6  − 0.4  − 0.3  − 0.2  − 0.1  − 0.30  − 0.31  − 0.26  − 0.18  
2.5  4.1  3.0  2.6  1.6  4.7  3.3  2.8  1.8  − 0.6  − 0.3  − 0.2  − 0.2  − 0.15  − 0.09  − 0.09  − 0.16  
5  9.3  8.5  7.5  4.8  9.4  7.4  6.6  4.8  − 0.1  1.1  0.9  0.0  − 0.01  0.13  0.12  0.00  
7.5  15.0  14.5  13.3  9.0  14.1  12.1  10.8  8.3  1.0  2.4  2.5  0.6  0.06  0.17  0.19  0.07  
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Fig. 2. Margin required for different values of standard deviation σ, truncation parameter c and number of fractions N for model 2 (continuous movement). Dots 
show the Monte Carlo simulation result and the solid line shows the analytic approximation given by the van Herk margin formula, corrected for finite fractions and 
truncation (equation (3)), using σ → 0.75 σ. σc is the standard deviation of the truncated distribution (given by equation A7). 

Fig. 3. Margin relative to the original (no truncation) margin (mc / m) for different values of the standard deviation σ and number of fractions N as a function of the 
truncation parameter c for model 1 (discrete displacement). Dots are the Monte Carlo result and the solid lines are a linear interpolation. The dash-dotted line is the 
linear relation with mc / m = 0.3c. 
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(Fig. D1). 

3.2. Relative change of the margin in the presence of truncation 

The ratio mc/m was approximately linear in c in the regime of in-
terest, justifying the fit mc / m = ω c. The fit for ω resulted for model 1 in 
an average value of 0.32 (range: 0.28–0.35; Fig. 3) and for model 2 in 
0.31 (range 0.28–0.35; Fig. 4), which we approximated for simplicity 
with ω = 0.3 for both models. 

The upper quartile error of this fit for mc / m, evaluated over the 
range c = {0,3}, was ≤ 0.12 and ≤ 0.15 for model 1 and model 2 
respectively (Table 2). The upper quartile error for mc was ≤ 0.10 mm 
and ≤ 0.04 mm for model 1 and model 2 respectively (Table C4). 

mc /m was approximately independent from σ and N (for N large 
enough), which is evident from the graphs. In the supplement (sections 
B.3.1 and B.3.2) we provide a heuristic argument for this. 

The results for using the 80 % isodose prescription were equivalent 
and are provided in the supplementary material (Fig. D2). 

When a residual systematic error was introduced of Σ = 3 mm,. the 
linear fit (equation (4)) again resulted in ω = 0.3 (Fig. D3). 

4. Discussion 

In this work, we analyzed the margins required for intra-fraction 
motion in the presence of online interventions. Our main finding was 
that the relative change in the margin was accurately described by a 
simple linear relation, mc/m = 0.3c, independent of the standard devi-
ation and number of fractions (for N > 1). This relation held for both 
models of intra-fraction motion we studied. To appreciate this finding, 
consider a treatment given in 5 fractions, with intra-fraction motion 
characterized by σ = 5 mm. In this case, a margin of 12.7 mm is required. 
If motion management is introduced, such that all movement is limited 
to be < 10 mm (c = 2), the new margin is easily determined to be 7.6 
mm. 

While the linear fit for mc/m showed discrepancies of up to 0.15 for σ 
= 1 mm, the margin m in this case was only 2–3 mm and these errors 
were thus < 1 mm. Therefore, we believe our results ensure sufficient 
coverage (with the same caveats as the Van Herk recipe). The exception 

was for N = 1 and relatively large σ. In that case the error could be up to 
2 mm for the parameters studied. 

We found that the effective standard deviation for intra-fraction 
motion in the case of a constant drift was ¾ of the standard deviation 
of the full displacement. In practice, intra-fraction motion is often 
determined by calculating the standard deviation of the displacement 
between a pre-treatment and post-treatment scan. As input for the 
margin either the full displacement (as a worst case scenario) or half of 
the displacement (assuming this is the average position) can be used 

Fig. 4. Margin relative to the original (no truncation) margin (mc / m) for different values of the standard deviation σ and number of fractions N as a function of the 
truncation parameter c for model 2 (continuous movement). Dots are the Monte Carlo result and the solid lines are a linear interpolation. The dash-dotted line is the 
linear relation with mc / m = 0.3c. 

Table 2 
Difference in the margin relative to the original (no cut-off) margin (mc / m) 
between the Monte Carlo calculation and linear fit mc / m = 0.3c, for different 
values of the standard deviation σ and number of fractions N. The difference is 
calculated over the range of the truncation parameter c = {0…3} and the re-
ported values are the median (lower quartile; upper quartile).  

Model 
1 

σ 
(mm) 

N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 20  

1 0.09 (0.07; 
0.12) 

0.08 (0.06; 
0.09) 

0.07 (0.04; 
0.08) 

0.09 (0.06; 
0.12)  

2,5 0.09 (0.06; 
0.12) 

0.01 (0.00; 
0.02) 

− 0.00 
(-0.01; 0.00) 

− 0.01 
(-0.02; 0.00)  

5 0.09 (0.06; 
0.11) 

− 0.00 
(-0.01; 0.01) 

− 0.04 
(-0.04; 
− 0.03) 

− 0.04 
(-0.05; 
− 0.03)  

7,5 0.09 (0.06; 
0.11) 

0.01 (-0.01; 
0.02) 

− 0.02 
(-0.03; 
− 0.02) 

− 0.05 
(-0.05; 
− 0.04)  

Model 
2       

1 0.09 (0.07; 
0.10) 

0.12 (0.07; 
0.15) 

0.11 (0.07; 
0.14) 

0.10 (0.06; 
0.12)  

2,5 0.05 (0.03; 
0.07) 

0.01 (0.01; 
0.02) 

0.00 (0.00; 
0.01) 

0.01 (0.01; 
0.02)  

5 0.06 (0.01; 
0.08) 

− 0.04 
(-0.05; 
− 0.03) 

− 0.05 
(-0.06; 
− 0.04) 

− 0.02 
(-0.05; 0.00)  

7,5 0.05 (0.01; 
0.07) 

− 0.03 
(-0.05; 
− 0.01) 

− 0.04 
(-0.06; 
− 0.04) 

− 0.02 
(-0.05; 0.01)  
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[22]. It has been argued [23] that an appropriate margin could be to 
leave the random factor as is but only change the systematic component. 
However, the kernel of the random blur of a continuous motion is 
effectively more peaked at zero, since the motion always starts at zero. 
Therefore it is natural to change both components and our results 
indicated that simply evaluating σ at ¾ of the full displacement resulted 
in accurate results. 

Changes to the van Herk margin recipe for a finite number of frac-
tions have been studied before by Gordon et al. [21] and by Herschtal 
et al. [20]. We plotted the Monte Carlo results from Gordon et al. in 
Fig. 1D, showing our Monte Carlo results were identical. For model 1 
(Fig. 1), the analytic approximation was exact for N = 1. In this case all 
errors were effectively systematic and their contribution to the margin 
via equation (3) could be calculated exactly for all values of c (using 
equations (A.4) and (B.7) from the supplementary material). For larger 
values of N, the analytic approximation in the case of no truncation 
showed errors of < 5.3 mm for model 1 for the parameters studied. The 
lack of correspondence is known and substantial improvements are 
feasible [20,21]. However, we found that the simple analytic approxi-
mation given by equations (1)-(3) already substantially improved in 
cases where the underlying distribution is truncated and/or the under-
lying motion was continuous. Both conditions are in practice often ful-
filled and therefore our analysis considerably broadens the applicability 
of these approximations. 

The improvement in the analytic approximation due to truncation 
decreased the error to < 3.3 mm, <1.2 mm and < 0.4 mm for c equals 3, 
2 and 1 respectively for model 1. This improvement was not solely due to 
the fact that σc < σ, as could be seen from the values of σc provided in 
the figures. For example, the approximation for c = 2 with σ = 7.5 mm 
(σc = 5.9 mm) was considerably better compared to σ = 5 mm without 
truncation. The underlying reason for this was probably that the analytic 
approximation used the fully convolved dose distribution to reach a 
closed form result. With a finite number of fractions, the probability that 
this was a reasonable assumption increases when there are less outliers 
in the underlying distribution, i.e. in the presence of truncation. The 
analytic approximation when considering continuous motion (model 2) 
was considerably better compared to model 1 (see Figs. 1 and 2). The 
likely reason here was that the motion provides an additional blur and 
therefore improved the approximation of the fully convolved dose 
distribution. 

The two models we considered are an approximation of actual intra- 
fraction motion. A limitation of the interpretation of model 2 is that the 
model assumed all dose to be delivered during a constant drift. In 
practice, however, if one interrupts the treatment, the remaining dose 
still needs to be delivered after correction. This causes the required 
margins to be smaller compared to our results, since the effective dis-
tribution will be more peaked around zero (with the exception of the 
case where the interruption is exactly halfway; then the result will be 
identical). 

Another limitation in our models is the assumption that intra- 
fraction motion is random and isotropic since intra-fraction motion 
can have a preferred direction. For example liver lesions drift primarily 
dorsal during treatment [24]. In these situations, the margins required 
will be larger compared to our results. However, since our result for 
finite N also included a systematic component ΣN and the dependency of 
mc/m was independent of N, a systematic component in the drift does 
not change the simple linear dependency of the relative margin on c. 

In summary, in this work we analyzed how treatment margins are to 
be adapted when motion management strategies are applied and found a 
simple linear relation mc/m = 0.3c to be sufficient. Based on the results, 
treatment margins can be determined when motion management stra-
tegies are applied. Moreover, our analysis can be used to study the po-
tential benefit of different motion management strategies for different 
treatment sites. This allows to discuss and determine the most appro-
priate strategy for margin reduction. 
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