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Abstract

This paper introduces exact permutation methods for use when there are independent clusters of 

data with arbitrary within-cluster correlation. To eliminate the problem of clustering, we randomly 

select a data point from each cluster and for this now independent data, and calculate our test 

statistic and the associated support points for all possible permutations. While clearly valid, this 

is also inefficient. We repeat this process until all possible independent data sets have been 

created and use the support points averaged over the randomly created data sets as our reference 

distribution for the averaged test statistic. This approach uses all of the data and is a permutation 

extension of within-cluster resampling (WCR). We discuss both exact and Monte Carlo versions of 

the approach and apply it to several data sets. WCR permutation can be applied in quite general 

settings when within cluster correlation is a nuisance and exact inference is necessary.

Keywords

Clustering; Correlated data; Multiple outputation; Permutation test; Within-cluster resampling

1. INTRODUCTION

The use of permutation tests is well established and a popular option for statistical inference 

when exact p values are desired. Permutation tests are typically applied to statistically 

independent data points. In some settings, however, observations will be clustered and 

application of permutation methods will not be obvious. In a recent collaboration (Di Mascio 

et al., 2004), repeated measurements of CD4 cell counts and viral load were obtained on 

human immunodeficiency virus (HIV)-infected individuals. Many of the viral loads were 

below the limit of detection; detectable values were called “blips.” The researchers, who 

were comfortable with permutation tests, wanted to determine whether the relative change 

in CD4 was the same in consecutive “nonblip, blip” visits as for consecutive “nonblip, 

nonblip” visits. If each individual provided a single pair of such couples, a permutation 

t-test or Wilcoxon signed rank test could be performed using the pair of relative changes. 

However, each individual provided many such couples.
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Permutation methods for correlated data have been discussed by a variety of authors in 

specific settings. Fay and Shih (1998) introduced distribution permutation tests (DPT) 

for the situation where each cluster provides multiple responses. Their work generalizes 

Wilcoxon rank sum and permutation t-tests to clustered data. Generalizations of the 

Wilcoxon rank sum test to clustered data that apply asymptotically have been derived (Datta 

and Satten, 2005; Rosner et al., 2003). Gail et al. (1996) discuss and evaluate permutation 

tests for group randomized trials. Braun and Feng (2001) introduce optimal permutation 

tests for group randomized trials by postulating models for the within-cluster observations. 

Finally, Cai and Shen (2000) apply permutation tests for clustered survival data by creating 

test statistics that pretend the data are independent, but then permute cluster labels rather 

than individual labels.

This paper introduces a general approach to construct permutation tests for clustered data 

with a common cluster-wide covariate that is to be permuted. The idea extends the within-

cluster resampling of Hoffman et al. (2001) (see also Follmann et al., 2003). The basic 

idea is that if each cluster provided a single data point, standard permutation methods could 

be used. Thus, we randomly select one data point from each cluster. Based on this now 

independent data, we form both the test statistic and the b support points of the permutation 

distribution. We repeat the process for all m possible within-cluster (WC) resamples or 

ways we can do this, and average the test statistics for each of the b permutations over 

these m resamples. The b support points of the averaged test statistic provide the null 

distribution. We call this exhaustive WCR permutation (WCRP). We also describe a Monte 

Carlo approach where we randomly sample from the set of permutations and resamples. 

Note that WCR averaging of a test statistic derived from estimating equations has been used 

by Williamson et al. (2003) and Datta and Satten (2005, 2008) but they relied on asymptotic 

approximations for inference.

We begin with a review of permutation tests and then define WCRP, showing how it works 

in simple settings. We next describe Monte Carlo WCRP and show how to come close to 

the (exhaustive) WCRP result by using an ad hoc “6-tens” algorithm. A small simulation 

is conducted to illustrate key features of the algorithm. We finish by applying the proposed 

methods to some data sets that motivated its development.

2. EXHAUSTIVE PERMUTATION

We first review the situation where each of n clusters provides one data point. In this 

situation, the outcomes are given by the n-vector X = (X1, . . . , Xn). Associated with the 

ith cluster is a variable Zi, e.g., a group indicator, or the dose of a drug. Under the null 

hypothesis H0, all permutations of Z = (Z1, . . . , Zn) are equally likely. We form the test 

statistic on the observed data, t0 = t(X, Z). We calculate t for all permutations of Z, denoting 

the kth permutation as tk = t{X, Z(πk)}, where πk, k = 1, . . . , b is a listing of all possible 

nonredundant permutations, with π0 corresponding to the unpermuted data: Z = Z(π0). 

For example, if Z = 1.1, 2.2, 3.3, 4.4, corresponding to 4 doses of a drug, and πk = 

(4, 1, 3, 2), then b = 4! and Z(πk) = 4.4, 1.1, 3.3, 2.2. The one-sided lower p value is 

pℓ = b−1∑k = 1
b I tk ≤ t0  where I( ) is the indicator function.
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As a simple example, consider the made-up data of six clusters with a single response in 

each cluster: X = [3.3, 3.1, 0.8, 1.1, 1.5, 2.3] and two groups, Z = [0, 0, 0, 1, 1, 1]. We can 

test equality of the distributions F(x|Z = 0) and F(x|Z = 1) by using the permutation t-test 

whose test statistic is the mean difference:

t0 = t(X, Z) =
∑i = 1

n ZiXi
3 −

∑i = 1
n 1 − Zi Xi

3

Here, b = 6
3 = 20 and pl = 4/20.

3. WITHIN-CLUSTER RESAMPLING PERMUTATION

3.1. Basic Definition

Now consider the setting where the ith cluster has mi data points, with mi > 1 for some i. 
Denote the responses by the long vector

X = X11, …, X1m1, X21, …, X2m2, …, Xn1, …, Xnmn

where Xij is the jth data point in the ith cluster. Importantly, the covariate of interest Z is not 

allowed to change within a cluster, so Z has dimension n.

For a single within-cluster resample we randomly select a single data point from each 

cluster. Table 1 provides a diagram that should aid understanding of this notation. Let 

the chosen index for cluster i be j(i), where j(i) ∈ {1, . . . , mi}. Let j = {j(1), . . . , j(n)}, 

define X(j) = X1j(1), . . . , Xnj(n), and set Xi(j) = Xij(i). For the jth WCR, we define our 

test statistic as tj0 = t{X(jj), Z}. To obtain the exact permutation distribution for this jth 

resample, we calculate all b possible permutations of Z, Z(π1), . . . , Z(πb), and for each, 

the associated test statistic. (We generalize this to allow uncountable sets of permutations in 

section 5.) Define the test statistic based on the jth resample and kth permutation as tjk = 

t{X(jj), Z(πk)}. As shown in Table 2, exhaustive WCRP then averages each column (unique 

permutation) of test statistics over all within-cluster resamples (the rows). The exhaustive 

WCR permutation distribution is given by the final row of Table 2 and a lower p value is 

given by pℓ = b−1∑k = 1
b I t ⋅ k ≤ t .0 . Note that there are m = m1 × · · · × mn unique ways to 

select one observation from each person.

As another aid to understanding, refer back to the made-up data from the previous section, 

but now suppose that person 3 gives us an additional data point, say 2.7 in addition to her old 

0.8. In this case there are two possible WC resamples j1 = (1, 1, 1, 1, 1, 1) and j2 = (1, 1, 2, 

1, 1, 1). As before, for each resample there are 20 permutations so b = 20 and m = 2. The 

test statistics are given by

tj0 = t X jj , Z =
∑i = 1

n ZiXi jj
3 −

∑i = 1
n 1 − Zi Xi jj

3
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for j = 1, 2. For each possible permutation π1, . . . , π20, we can calculate the pair of test 

statistics for the two WC resamples, say (t11, t21), . . . , (t1,20, t2,20). Figure 1 plots these 

pairs of test statistics along their projections onto the axes that correspond to the permutation 

distributions for j = 1(2) for the horizontal (vertical) projections. The associated lower p 
values for the two WC resamples are 4/20 and 1/20, respectively. So the additional data 

point gives some additional evidence against the null hypothesis, but it is unclear how to 

make this precise.

Under the null hypothesis that all permutations of Z are equally likely, all two-dimensional 

points in Fig. 1 are equally likely. We can thus define a rejection region by some shape in 

two-dimensional space other than the vertical or horizontal lines. A natural test is to take 

the average of the two test statistics. This test is proportional to the projection of each point 

onto the 45° line as shown in Fig. 1. The p values are determined by the number of projected 

support points that are more extreme than the projected test statistic. We see that the lower p 
value based on this maneuver is pℓ = 2/20.

With standard permutation tests, inference is unaffected by any monotone transformation of 

the test statistic. However, with WCR permutation, this is not the case. Suppose that instead 

of using the usual test statistic, say t, we used log(t). With WCR permutation OP we would 

average either t or log(t) and the p values could differ. To ensure that inference is unaffected 

by monotone transformations of the test statistic one can use ranks. Specifically, let Rjk be 

the rank of tjk among tj1, . . . , tjb. For each resample we replace the tjks with these associated 

ranks. A “rank” WCR permutation p value rank is the the percentile of R ⋅ 0 with respect to 

the empirical distribution of R ⋅ 1, ⋯, R ⋅ b.

WCR permutation cannot be applied to permutation tests where the permutation set π1, . . . , 

πb depends on jj. If this happens then we cannot line up the columns of the matrix of Table 

2 correctly. For example, in Fisher’s exact test, we condition on the marginal totals, and 

if these change with different resamples we cannot apply the procedure. Another example 

where the permutation set can depend on π is when Z changes within a cluster. An example 

is a crossover study with Z = (0, 1) or (1, 0) denoting the treatment assignment sequence 

over the two periods for each person (cluster). Here, one might have an WC resample where 

only Zs = 0 are selected and a test statistic could not even be calculated.

Since WCRP is a permutation test, it is formally testing the strong null hypothesis that z is 

a meaningless label. This strong null is a composite that the distribution of cluster sizes and 

the joint distribution of outcomes given a cluster size are both free of z. In symbols, we test

H0:G(m ∣ z) = G(m) ∩ Fm x1, …, xm ∣ z = Fm x1, …, xm for all m

where G( ) is the distribution function of the cluster sizes and Fm( ) is the joint distribution 

X1, . . . , Xm. Note that this does allow for informative cluster sizes as Fm( ) can depend on 

m.
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3.2. Example: Permutation t-Test

In some simple cases, we can calculate the final row of Table 2 directly. Consider the 

two-sample t-test setting where Zi = 0(1) identifies the control (treatment) group, and person 

i gives clustered outcomes Xi1, . . . , Xim(i). One can show that exhaustive WCR permutation 

corresponds to taking the sample average for each person and using these averages in a 

permutation t-test. That is, the averaged test statistic is

t ⋅ 0 =
∑i = 1

n ZiXi

∑i = 1
n Zi

−
∑i = 1

n 1 − Zi Xi

∑i = 1
n 1 − Zi

(1)

where Xi is the within-cluster mean. The b support points of the permutation distribution are

t ⋅ k =
∑i = 1

n Zi πk Xi
∑i = 1

n Zi πk
−

∑i = 1
n 1 − Zi πk Xi

∑i = 1
n 1 − Zi πk

for k = 1, . . . , b, where Zi(πk) is the ith element of Z(πk). Note that this does allow for 

informative cluster sizes as Fm( ) can depend on m.

3.3. Example: Linear Permutation Tests

Suppose the test statistic for WC resample j can be written as

t X(j), Z = ∑
i = 1

n
ZiwX Xi(j)

where wX( ) is a function that may depend on the entire vector X and possibly other 

covariates, but cannot depend on Zi. Then for permutation k we can write

t ⋅ k = ∑
i = 1

n
Zi πk

1
m ∑

j = 1

m
wX Xi jj

= ∑
i = 1

n
Zi πk

1
∏ℓ = 1

n mℓ
∑

ℓ1 = 1

m1
⋯ ∑

ℓn = 1

mn
wX Xiℓi

= ∑
i = 1

n
Zi πk

∏ℎ ≠ imℎ
∏ℓ = 1

n mℓ
∑

ℓi = 1

mi
wX Xiℓi

= ∑
i = 1

n
Zi πk

1
mi ∑

ℓ = 1

mi
wX Xiℓ = ∑

i = 1

n
Zi πk wi

This form covers many tests. The permutation t-test has wi = Xi. An analysis of covariance 

(ANCOVA) permutation test statistic can be fashioned based on the model

Xij = β0 + β1W i + ΔZi + ϵij

where ϵij are mean 0 random variables free of Zi. We then obtain
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wi =
Xi − X − W − W i β1(X)

n

where β1(X) is the slope of the regression of Xi on Wi and X = ∑iXi/n. The Wilcoxon 

rank sum test has wi = Ri(X) = m−1∑i = 1
m R Xi jj , where R{Xi(ji)} is the rank of Xi(jj) 

among X1(jj), . . . , Xn(jj). Additionally, the distribution permutation tests of Fay and Shih 

(1998) have wi = n−1∑ℎ = 1
n ϕ(F i, Fℎ), where ϕ( ) is some function and F i is the empirical 

distribution function for the responses Xi1, …, Ximi of cluster i.

4. MONTE CARLO WCR PERMUTATION

4.1. Basic Setup

In many settings, b and m will be too large for exhaustive WCR permutation to be feasible 

and we must approximate the exact p value by Monte Carlo methods. In this section 

we discuss how to choose the number of randomly selected Monte Carlo resamples and 

permutations so that the resultant p value is close to the exhaustive WCR permutation p 
value.

Let yk = I t ⋅ k − t ⋅ 0 ≥ 0 , where k = 1, . . . , b, so that y = pu is the exhaustive WCRP upper 

p value. To approximate the permutation distribution, we randomly draw a large number, 

say B, of permutations. Denote the associated indicator functions by yK = I t ⋅ K − t ⋅ 0 ≥ 0 , 

where upper case K = 1, . . . , B are the indices of a random (with replacement) sample of 

the integers 1, . . . , b. Note that these y1, . . . , yB terms are iid Bernoullis with probability 

pu. By the Central Limit Theorem (CLT) we know that

1
B ∑

K = 1

B
yK ≈ N pu,

pu 1 − pu
B

One could choose B to achieve any desired level of accuracy.

If m = m1 × · · · × mn was small, we could calculate t ⋅ K exactly. If m is large, we will 

need to estimate t ⋅ K. Since we only care if t ⋅ K ≥ t ⋅ 0, the precision of our estimate of 

t ⋅ K should depend on how far it is from t ⋅ 0. Thus we will allow MK, the number of 

randomly selected WC resamples for permutation ПK to vary with K. Let JJ be the Jth 

Monte Carlo draw from the full set of possible resamples, j1, . . . , jm. Also let ПK be the 

Kth Monte Carlo draw from the full set of possible permutations, π1, . . . , πb . We write 

the test statistic associated with the Jth resample and Kth permutation as TJK = T{X(JJ), 

Z(MK)}. We use upper case T, J, J, П, K to emphasize that they are random variables and 

not fixed constants as for the exhaustive case. For the Kth selected permutation, we estimate 

yK by first drawing MK WC resamples for this permutation, say, JK1, …, JKMK. We then 

form T ⋅ K = MK
−1∑J = 1

MK T X JKJ , Z ΠK , and also estimate t ⋅ 0 for these same resamples, 
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T .0 = MK
−1∑J = 1

MK T X JKJ , Z π0 . We then form Y K = I T ⋅ K − T .0 ≥ 0 . Note that for each 

support point we reestimate t ⋅ 0. If we used a common estimate for all resamples, then 

Y1, . . . , YB would not be independent. Although inefficient, using a different T .0 for each 

response ensures that the Y1, . . . , YB are independent and thus allows easy approximation 

of var(Y ).

We define the (upper) Monte Carlo WCRP permutation p value as pu = B−1∑K = 1
B Y K. In 

practice, we will often use the asymptotically (on B) equivalent form pu = 1 + ∑Y K /(B + 1)
because it bounds the p value away from zero and ensures proper size (Fay and Follmann, 

2002). We want to select each MK so that each YK has a high probability of equaling yK.

Note that for a fixed K we can think of T . K as a sample mean based on MK random draws 

from the column of Table 2 where π = ПK. That is, from the discrete distribution with 

support points t1K, . . . , tmK. This also applies to T .0. Without loss of generality, let ПK = 

πk. By the CLT, as MK → ∞, T . K − T ⋅ 0 is approximately normal with mean t ⋅ k − t ⋅ 0 and 

variance σk0
2 /MK, where σk0

2 = ∑j = 1
m tjk − tj0 − t ⋅ k − t ⋅ 0

2/m.

For each K we only need to know if t ⋅ K − t ⋅ 0 is positive or negative. To achieve this with 

high probability, we propose the 6-tens algorithm, an ad hoc procedure that chooses MK so 

that

ZK ≡
T ⋅ K − T ⋅ 0

σK0
2 /MK

is large, and thus the sign of T ⋅ K − T ⋅ 0 equals that of t ⋅ K − t ⋅ 0 with high probability.

4.2. 6-Tens Algorithm

1. Set MK = 10 for K = 1, . . . , B. For each of the B selected permutations П1, . . . , 

ПB, randomly draw 10 resamples, say JK1, . . . , JK10, and calculate

DKℓ = T X JKℓ , Z ΠK − T X JKℓ , Z Π0

for ℓ = 1, . . . , 10. Calculate the mean and sample variance of the Ds, say DK and 

SK0
2 , and form

ZK =
DK

SK0
2 /10

Let K6 be the set of Ks for which |ZK| < 6.
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2. For each K ∈ K6 set MK = MK × 10, randomly generate MK differences DKℓ, and 

form

ZK =
DK

SK0
2 /MK

Again let K6 be the set of Ks for which |ZK| < 6.

3. Repeat step 2 until either K6 is empty, or MK > Mmax, some prespecified 

maximum value.

4. Let YK = I(ZK > 0), where ZK is the final value from step 3, and estimate the p 

value as pu = (B + 1)−1(1 + ∑K = 1
B Y K).

One can show that the expected Monte Carlo p value does not equal the exact p value 

or E[Y ] ≠ y, so bias can be a problem in principle. With the 6-tens algorithm we try to 

essentially eliminate bias by making each YK a very good estimate of yK. In the Appendix 

the bias of Y  is explored in more detail, along with a more formal justification of the 6-tens 

algorithm.

4.3. Evaluation of the 6-Tens Algorithm

To empirically evaluate the 6-tens algorithm, we conducted a simple simulation. We 

assumed that the true support points t ⋅ k followed a normal(0,τ2) distribution and that the 

variance of Tjk ∣ t ⋅ k was σ2. We fixed t ⋅ 0 > 0 so the WCRP upper p value was Φ −t0/τ . 

We pretended that σ2 was known and did not estimate it. We randomly selected B = 1000 

permutations (true support points) and calculated y, the “true” p value for that choice of 

permutations/support points. Note that y ≈ Φ −t0/τ . This approximation becomes exact as 

B → ∞. We fixed this set of support points/permutations and then repeated the 6-tens 

algorithm 10,000 times. For each of these 10,000 repeats, we calculated Y  and var[Y ]. The 

objective was to see whether the 6-tens algorithm worked well in terms of bias, mean 

squared error (MSE), and accuracy of the variance approximation (10), for a specific set of 

permutations.

Table 3 shows an unsurprising decrease in bias as max MK increases. Importantly, the 

average estimated variance appears quite close to the actual sample variance, suggesting the 

approximation of (10) will be useful in setting sample size. While the scenarios here are 

limited, a maximum of 10, 000 seems to be a reasonable choice for the 6-tens algorithm.

5. A MORE GENERAL FORM OF THE TEST

Although we have spoken only about conditional permutation tests, we can generalize to 

other tests that are permutation-like. In this section, Z denotes a random vector from a 

distribution fZ(z) where z is a realization of this variable. First we write the permutation 

tests in a form that will be easily generalized. Let t (z) = m−1∑j = 1
m t X jj , z , so that 

t ⋅ k = t z πk . Then we generalize the lower WCRP p value by writing it as
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EZ I t(Z) ≤ t z0 (2)

where EZ represents expectation over the n-dimensional random vector Z, and z0 is the 

observed value of z. In the usual setting, the distribution of Z has b equally likely support 

points, and fZ is the permutation distribution on Z, such that

fZ(z) =
1
b if z = z0 πk for k = 1, …, b

0 otherwise

In that case we condition on the observed value Z = z0 and consider permutations of that 

observed value. We can generalize to unconditional tests by allowing the null hypothesis 

distribution of Z to not be conditional on z0. For example, one could let fZ be an n-

dimensional continuous distribution with an infinite number of support points. In section 7.3 

we give an example where z0 is an n-dimensional zero vector, and fZ is continuous with

fZ(Z) =
1

2πn if Zi ∈ [0, 2π] for all i ∈ 1, …, n

0 otherwise

where π ≈ 3.14 . . . is the irrational number, not a permutation. The lower p value is still 

represented by Eq. (2).

6. SIMULATION

To evaluate the performance of different tests for clustered data, we conducted a small 

simulation for the two-sample setting. We generated data under a normal mixture model: Xij 

= μZi + bi + ϵij, where i = 1, . . . , 2n indexes clusters, j = 1, . . . , mi indexes observations 

within clusters, Zi = 0, 1 is the treatment group indicator for cluster i, mZ the cluster sizes for 

group Z = 0, 1, and there are n clusters per group. We generated bi N 0, σb
2  and ϵij N 0, σe2

with all b’s and ϵ’s independent. We considered 36 different situations as follows:

• σb
2, σe2  = (0, 1), (1, 1), and (1, 0). These correspond to within-cluster correlations 

of 0, 0.5, and 1.

• μ = 0 or a where a was chosen to so that EOP had approximately 80% power.

• Three types of cluster sizes were considered: rectangular: mi = 5, triangular: mi = 

i, and informative: mi = 1 × I(bi ≤ 0) + 10 × I(bi > 0)

• Number of clusters per group = 5 or 15.

We evaluated three tests, single WCR permutation (SWCRP), exhaustive WCR permutation 

(EWCRP), and the Wilcoxon rank sum test of Datta and Satten (2005) (DS). For SWCRP 

the test statistic is the difference means of the first observation in each cluster;
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T0
S =

∑i = 1
2n ZiXi1
∑i = 1

2n Zi
−

∑i = 1
2n 1 − Zi Xi1
∑i = 1

2n 1 − Zi

while for EWCRP the test statistic is the difference in cluster means,

T0
E =

∑i = 1
2n ZiXi

∑i = 1
2n Zi

−
∑i = 1

2n 1 − Zi Xi
∑i = 1

2n 1 − Zi

The test of Datta and Satten is a WCR version of the Wilcoxon test and is based on

W J* = 1
M ∑

i = 1

n
ZiRank XiJ(i)

the sum of the ranks for a randomly selected WCR, J. The test is based on forming 

E W J* , where the expectation is over J, and then standardizing E W J*  and comparing the 

standardized test statistic to an asymptotically valid standard normal null distribution.

For all permutation-based test statistics, we simulated the permutation distribution by 

scrambling the Zis 299 times and rejected the one-sided null at α = .05 if the simulated 

p value {1 + ∑p = 1
299 I Tp ≥ T0 }/300 was smaller than .05, where Tp is the pth permuted 

test statistic. Note that T0
E exhausts all within-cluster resamples, but uses Monte Carlo 

approximation for the permutation distribution.

From Table 4, we see that both EWCRP and SWCRP always control the type I error 

rate, as they must. For Datta and Satten, there is some minor inflation for n = 15 and 

more substantial inflation with n = 5. This is entirely expected as Datta and Satten’s null 

distribution is based on an asymptotic argument. Thus, as always, if control of the type I 

error rate is a major concern, exact methods such as EWCRP have appeal. For n = 15, the 

power of Datta and Satten’s test is quite similar to EWCRP under rectangular and triangular 

data structure for the mis. Under an informative cluster size, EWCRP is more powerful 

for ρ = .5 and 1. For n = 5, the EWCRP has similar or somewhat less power than Datta 

and Satten for the rectangular and triangular data structures—presumably a consequence of 

the coarseness of the permutation distribution for small n, and the modest type I error rate 

inflation of Datta and Satten. For the informative cluster size setting, the EWCRP has better 

power for ρ = .5 and 1.

7. EXAMPLES

7.1. Viral Blips and HIV Infection

The introduction of highly active antiretroviral therapy (HAART) has had a profound 

impact on the treatment of patients with HIV. Potent combinations of drugs can often 

render the load of virus (VL) circulating in the blood below the limit of detection of 
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common assays, currently 50 copies/ml. However, even during periods of sustained viral 

suppression, sometimes “blips” occur—occasions when the amount of virus is above the 

limit of detection. The meaning of such blips is controversial and under investigation (Di 

Mascio et al., 2004). Part of their investigation focused on whether the occurrence of blips 

was associated with a change in the number of CD4 cells, cells of the adaptive immune 

system that both fight and are infected by HIV.

One approach to this problem would be to build a fairly complicated model for the repeated 

CD4 and VL data. If such a model could be correctly specified it could then be used to 

draw conclusions about various hypotheses, including the effect of blips on CD4 and CD8 

cells. A different approach is to test specific hypotheses using simple statistics that are easily 

described and understood by a medical audience.

If the increase in virions during a blip impairs the recovery of CD4 cells, the relative change 

in CD4 counts on two successive visits starting with a nonblip and ending with a blip, say, 

R01 = (CD4i − CD4i−1)/CD4i−1, should tend to be lower than the analogous relative change 

ending in a nonblip, say, R00. If each patient provided a single pair R01, R00, then one could 

form D = R01 − R00. The associated D1, . . . , Dn could be the data for a paired difference 

t-test. However, patients generally have sustained periods of viral suppression and thus many 

R00s and several R01s. In our dataset there are 44 patients with acute HIV infection with 

both 00 and 01 couples. The total number of couples was 1094 and the mean (SD) number 

of couples per person was 24.5 (9.9). The mean (SD) number of 01 couples was 2.5 (1.9).

Here exhaustive WCR permutation corresponds to taking the sample average for each 

patient and using these averages in a permutation test. Thus we form D = R01 − R00 for each 

patient and then take the average of these average differences to form our test statistic:

t ⋅ k = ∑
i = 1

n Zi πk Di
n

where Zi = ±1 and Z(π1), . . . , Z(πb) enumerates the b = 2n possible signs of an n-vector. 

There were 44 patients who had both 00 and 01 couples during acute infection. The exact 

upper p value here is .1793, and took about 30 s to calculate on a desktop computer.

A random effects model could also be fit to these data, where

Rij = bi + ΔZij + ϵij

where bi, ϵij are independent normals with mean zero and variances τ2 and σ2, respectively, 

Rij is the relative change in CD4 count for patient i for the jth couple, and Zij is the indicator 

for whether this couple started with a blip in viremia. This approach makes parametric 

assumptions and the p value for testing Δ = 0 is .14.
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7.2. Heart Function in HIV-Infected Children

A retrospective study of 133 HIV-infected children was conducted at the National Institutes 

of Health to assess the contributions of progressive HIV disease (as measured by CD4 

counts and percentages), vertical transmission, and azidothymidine (AZT) on cardiac 

function (Domanski et al., 1995). Cardiac function was measured by the fractional 

shortening of the left ventricle, which is essentially the fractional decrease in volume during 

a heartbeat, and larger values are desirable. Table 5 provides some descriptive statistics for 

the variables of interest, including averages of all the measurements and averages of each 

patient’s values.

Of primary interest was the effect of the covariates on fractional shortening:

E FSij = β0 + ageijβ1 + CDijβ2 + %CDijβ3 + I(AZT)ijβ4 + I(vertical)iΔ (3)

where i = 1, . . . , n = 133 and j = 1, . . . , mi. Thus i, j is the jth visit of the ith patient and 

ageij, CD4ij are the age and CD4 count, % CD4ij is the percentage of CD4 cells among the 

white blood cells, I(AZT)ij is 1 if on AZT, and I(vertical)i is 1 if infected by the mother.

For regression, there are different approaches to permutation analysis (see Edgington, 1995; 

Kennedy and Cade, 1996; Manly, 1997). We use “permutation under the reduced model” 

(Freedman and Lane, 1983) as recommended by Anderson and Legendre (1999) to evaluate 

the effect of I(vertical). Permutation methods can be more powerful than the normal t-test 

approach if the errors are non-normal (Anderson and Legendre, 1999). Using an obvious 

notation, we write the regression model of Eq. (3), for a single resample J of n independent 

data points as

XJ(i) = W J(i)′ β + ZJ(i)Δ + ϵJ(i) (4)

for i = 1, . . . , n, where Z is I(vertical), and ϵJ(i) is an error term. As a test statistic, we use 

the usual t-statistic for testing Δ = 0 based on least-squares regression of X on W, Z:

T X(J), Z Π0 = Δ J, Π0
var{Δ J, Π0 }

(5)

To obtain a permutation distribution for this test, we randomly select a permutation П and 

perform an initial regression without Z:

XJ(i) = W J(i)′ βr + ϵJ(i)
r (6)

The permuted residuals, ϵJ(Π(i))
r  are added to the predicted Xs from this regression to form 

X*

XJ(i)* = W J(i)′ βr + ϵJ(Π(i))
r (7)
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where П(i) is the ith element of the permutation vector П. Then the newly created X* is 

regressed on the original W, Z:

XJ(i)* = W J(i)′ β + ZJ(i)Δ + ϵJ(i) (8)

and based on this regression, the usual t-statistic for testing Δ = 0 is formed: T{X(J), Z(П)} 

from Eq. (5). For Monte Carlo WCR with the 6-tens algorithm, the preceding steps (6), (7), 

and (8) are repeated MK times for both ПK and П0. One can show that the T{X(J), Z(П0)} 

as defined in Eq. (5) based on Eq. (4) also obtains from the procedure defined by Eqs. (6), 

(7), and (8) with П = П0.

Using the preceding methods we tested the relationship between fractional shortening and 

vertical transmission while controlling for the effects of the four confounders. We used the 

6-tens algorithms with B = 1999 and MMax = 105 and obtained a lower p value of p = .4745 

with standard error of 0.011, where 99.8% of the variance estimate is due to the second term 

of (10):Y (1 − Y )/B. This calculation took approximately 13 h on a PC.

One can also analyze these data using GEE (Liang and Zeger, 1986). We postulate a 

working independence correlation matrix and calculate a Wald statistic for Δ of −.32, which 

corresponds to a p value of .37. This method uses an asymptotic null distribution in contrast 

to WCRP, which can be liberal if the number of clusters is small or the covariates are not 

balanced (Fay and Graubard, 2001).

7.3. Correlated Angular Measurements

Follmann and Proschan (1999) discuss the problem of testing uniformity with correlated 

angular data. Of interest was whether times of seizures have a circadian pattern, or whether 

they are uniformly distributed on the 24-hour clock. Data from 12 patients were provided; 

one patient had one seizure, while another had 36 with a cluster of seizures a little before 

midnight.

Follmann and Proschan (1999) introduced a definition of uniformity called rotation 

invariance and provided several tests for rotation invariance that explicitly allowed for 

arbitrary clustering/correlation of angles within a cluster. Developing new methodology can 

be time-consuming, and it is also nice to have simple tools to attack complicated problems. 

The basic data here is the long vector

X = X11, …, X1m1, X21, …, X2m2, …, Xn1, …, Xnmn ,

where Xij is the jth seizure time on the 24-hour clock (in radians) for individual i. A seizure 

at 6:00 a.m. = 0 radians and a seizure at noon = 3π/2 radians.

A standard test of uniformity for angular data is the Rayleigh test. For a single “resample” J, 

the Rayleigh test statistic is
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T{X(J)} =
∑cos Xi(J)

n
2

+
∑sin Xi(J)

n
2

If T{X(J)} is close to 0, the angles are scattered, while if T{X(J)} is close to 1, the angles 

have a definite preferred direction. Mardia (1972) provides the exact null distribution of 

R and argues that for large n, 2nT{X(J)}2 is approximately chi-square with 2 degrees of 

freedom. Though unnecessary here since the null distribution is known (Mardia, 1972), one 

could simulate the null distribution of T{X(J)} by forming

T{X(J), Z} =
∑cos Xi(J) + Zi

n
2

+
∑sin Xi(J) + Zi

n
2

where Z = (Z1, . . . , Zn), and the Zi are independent and uniform (0, 2π). One would 

generate many such Zs and the associated Ts would comprise a simulated null reference 

distribution.

We apply the idea of Monte Carlo WCR permutation using the general setup described in 

Section 5. We randomly generate B n-vectors, Z1, . . . , ZB, where ZK = (ZK1, . . . , ZKn) and 

each ZKi is uniform (0, 2π). For each ZK, we form

DKℓ = ∑
J = 1

MK
T X JJ , ZK − T X JJ , 0

We applied the 6-tens algorithm with B = 1999 and MMax = 105 and obtained an upper 

p value of 1528/2000. The estimate of the standard deviation, from Eq. (10), of that p 
value is .011, with 98.7% of the variance estimate due to the second term of Eq. (10):

Y (1 − Y )/B. This calculation took approximately 10 h on a personal computer (PC). The tests 

of Follmann and Proschan for the null hypothesis of rotation invariance all provide p values 

greater than .40.

8. SUMMARY

This paper has introduced a general method for obtaining exact permutation results in the 

presence of arbitrary within cluster correlation by using within cluster resampling. A fixed 

set of permutations is selected, and then for each cluster a single outcome is randomly 

selected and a test statistic calculated for each permutation. The procedure of drawing a 

single outcome from each cluster is repeated many times, and the test statistics for each 

specific permutation are averaged over all WC resamples. These averaged test statistics are 

used as the null reference distribution for the averaged test statistic. In practice, Monte 

Carlo methods to approximate the permutation distribution may be required. An algorithm 

is proposed where computational effort is focused to determine whether the support points 

of the null distribution fall to the left or right of the test statistic, thus ensuring an accurate 

approximate p value. Different examples are used to illustrate the broad application of WCR 
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permutation. WCR permutation is a handy and simple way to apply permutation methods 

when within-cluster correlation is a nuisance.
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APPENDIX: BIAS OF Y
It is instructive to explore how bias becomes a substantial problem if one uses a small 

number of Monte Carlo resamples. This analysis also demonstrates how the easy approach 

of doing single resamples and averaging the p values over many resamples is generally 

conservative.

For this section, suppose that MK = M for all K, and define p(B, M) = Y  as the p value based 

on B random permutations and M random resamples. For a fixed dataset, p(B, M) is still a 

random variable dependent on the specific resamples and permutations that were selected. 

Since E[p(B, M)] is free of B, we use E p(∞, M) = E(Y ) to denote the expected Monte 

Carlo WCR p value based on M resamples. To see the problem for small samples, consider 

again the made-up data of section 3.1. Suppose that we set M = 1 but enumerate the 20 

permutations. Thus the p value is either 1/20 or 4/20 and both occur with equal probability. 

Formally we can write

E[p(∞, 1)] = 1
20Pr J = j1 + 4

20Pr J = j2 = 5/40

which is larger than p(∞, ∞) = 2/20. If we set M = 2, then E[p(∞, 2)] = 9/80, which is 

still larger than p(∞, ∞). One can show that E[p(∞, M)] is not monotone for this small 

dataset, and one can produce datasets where E[p(∞, M)] ≤ p(∞, ∞) = y. Thus, the bias can go 

in either direction.

To get a handle on the form of the bias in large samples, we worked out some asymptotics 

for the two-group test statistic of Eq. (1). By the CLT, T ⋅ K ≈ N t ⋅ K, σK
2 /M  where 

σK
2 = ∑j = 1

m tjK − t ⋅ K
2/m. As n → ∞ the distribution of t ⋅ K, based on the difference in 

means statistic, approaches that of a normal distribution with mean 0 and some variance, say 

τ2, by the permutational CLT (Sen, 1985). One can also show that σK
2 = σ2 for the difference 

in means statistic. Thus, if we knew t ⋅ 0 we would have the following approximation for the 

expected p value based on M WC resamples:

E{p(∞, M)} = E I T ⋅ K − t .0 ≈ 1 − Φ t ⋅ 0
τ2 + σ2/M

(9)

where the second expectation is over K, the random permutation index.

With Eq. (9), we see that the approximate asymptotic bias decreases with M and increases 

with σ2/τ2. To graphically appreciate this point, consider Fig. 2, which is a plot of the 
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exhaustive and Monte Carlo WCR p values for a large dataset assuming normality of the 

t ⋅ Ks, normality of T ⋅ K ∣ t ⋅ K and knowledge of t ⋅ 0. The area to the right of t ⋅ 0 based on 

the T ⋅ Ks is approximately E{p(∞, M)}, and this is larger than the area to the right of t ⋅ 0
based on the t ⋅ Ks, which is p(∞, ∞). Thus, the average of single WC resample p values 

should be larger than the exhaustive WCR p value.

APPENDIX: JUSTIFICATION OF THE 6-TEN’S ALGORITHM

Note that for the fixed permutations П1, . . . , ПB, we have YK as independent Bernoullis 

with

P YK = 1 = P
T ⋅ K − T ⋅ 0

σK0
2 /MK

> 0 ≈ Φ
t ⋅ K − t ⋅ 0

σK0
2 /MK

≈ Φ ZK

In the preceding, the first approximation is by the CLT and the second one is because we 

replace the parameters t ⋅ K, t ⋅ 0, and σK0
2  with estimates. This approximation works because 

for each K (except those with t ⋅ K = t ⋅ 0), |ZK| → ∞ as MK → ∞. We thus can approximate 

the variance of pu for this set of permutations:

var Y ∣ Π1, …, ΠB = ∑
K = 1

B Φ ZK 1 − Φ ZK
B2

The overall variance estimate for our p value Y  is

var(Y ) = E var Y ∣ Π1, …, ΠB + var E Y ∣ Π1, …, ΠB

≈ E ∑
K = 1

B Φ ZK 1 − Φ ZK
B2 + var 1

B ∑
K = 1

B
yK

≈ ∑
K = 1

B Φ ZK 1 − Φ ZK
B2 + Y (1 − Y )

B

(10)

The second line approximation is because we approximate P(YK = 1) by Ф(ZK). The third 

line approximation is because we replace the expectation of a random variable with a 

realization of that random variable and we use Y  to estimate the exhaustive WCR p value y. 

Note that with the 6-tens algorithm, most |ZK|s are large so Y (1 − Y )/B is the dominant term 

of Eq. (10).
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Figure 1. 
Geometric representation of permutation tests for the data of section 3.1, where everyone 

provides one measurement except the last person in group 0 who gives 2. Each (x, y) dot 

corresponds to the pair of test statistics for one of the 20 possible permutations. The x-value 

(y-value) is based on the first (second) measurement from this last person, the permutation 

distribution is the horizontal (vertical) projection, and the one-sided p value is 4/20 (1/20). 

Exhaustive WCR permutation is equivalent to projecting the pair of test statistics onto the 

45-degree line. Here, the WCR permutation one-sided p value is 2/20.
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Figure 2. 
Illustration of the sources of variability in the averaged permutation distribution for the 

difference in means statistic. The top panel shows the approximate Gaussian (0, τ2) 

distribution of the tks, i.e., exhaustive WCR permutation distribution. Conditional on tk, 

T ⋅ k has an approximate Gaussian tk, σ2/M  distribution. Thus unconditionally, the Monte 

Carlo WCR permutation distribution (bottom panel) is more spread out than the exhaustive 

permutation distribution. The shaded area of the bottom panel is larger than for the top 

panel, illustrating that the Monte Carlo p value is likely to be larger than the exhaustive p 
value.
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Table 1

Schematic representation of exhaustive WCR permutation

Cluster Covariate Permutation Outcome

1 Z1 = 1 Z3 X11 X12 X13 X14 X15 X16 X17

2 Z2 = 1 Z1 X21

3 Z3 = 1 Z6 X31 X32 X33 X34

4 Z4 = 0 Z4 X41 X42 X43

5 Z5 = 0 Z2 X41 X52 X53 X54 X55 X56

6 Z6 = 0 Z5 X71 X62

j = (3, 1, 2, 3, 6, 1)

Z (π) = (Z3, Z1, Z6, Z4, Z2, Z5)

X(j) = (X13, X21, X32, X43, X56, X71)

t{X(j), Z(π)} = (1/3)∑i = 1
3 Zi(π)Xi(j) − (1/3)∑i = 1

3 1 − Zi(π) Xi(j)

Note. Within each cluster an outcome is randomly selected and denoted by a box. The indices of the randomly selected outcomes from each cluster 
are given by j. A permutation of the covariates π is given by Z(π). A WCR is given by X(j). A difference in means test statistic for permutation π 
and WCR j is provided in the bottom row.
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Table 2

Matrix of test statistics for exhaustive WCR permutation (WCRP)

Within-cluster resample (j)
Permutation (k) Original data

π 1 π 2 … π b π 0

j 1 t11 t12 … t1b t10

j 2 t21 t22 … t2b t20

· · · · ·

· · · · ·

· · · tjk · ·

· · · · ·

j m tm1 tm2 … t mb tm0

Average t ⋅ 1 t ⋅ 2 … t ⋅ b t ⋅ 0

Note. For each of m within cluster resamples, the test statistic is calculated over the same b permutations. The final row provides the single 
permutation distribution for the averaged test statistic. The “permutation” π0 denotes the original unpermuted setting.
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Table 3

Simulated performance of the 6-tens algorithm

σ t ⋅ 0 max(MK) y %|ZK|s < 6 bias MSE var[Y ] S2(Y )

1 1 100 .144 .415 4.2 × 10−3 3.5 × 10−5 1.9 × 10−5 1.8 × 10−5

1 1 10000 .161 .040 −5.0 × 10−5 1.9 × 10−6 1.7 × 10−6 1.6 × 10−6

1 1 1000000 .156 .003 −2.6 × 10−5 2.6 × 10−8 6.2 × 10−8 2.5 × 10−8

1 2 100 .020 .133 2.5 × 10−3 1.1 × 10−5 4.6 × 10−6 4.8 × 10−6

1 2 10000 .019 .006 6.6 × 10−4 9.3 × 10−7 4.0 × 10−7 4.9 × 10−7

1 2 1000000 .017 .000 0 0 2.6 × 10−14 0

.1 1 100 .174 .040 −1.5 × 10−3 3.4 × 10−6 1.5 × 10−6 1.2 × 10−6

.1 1 10000 .175 .004 −1.7 × 10−6 9.3 × 10−9 5.2 × 10−8 9.3 × 10−9

.1 1 1000000 .158 .0 0 0 4.7 × 10−15 0

.1 2 100 .022 .009 −1.9 × 10−4 3.8 × 10−7 3.7 × 10−7 3.4 × 10−7

.1 2 10000 .023 0 0 0 1.1 × 10−15 1.2 × 10−35

.1 2 1000000 .020 0 0 0 1.8 × 10−15 0

Note. Each line represents a summary of 10,000 estimates (y) of a single WCR permutation p value y based on a specific set of 1000 permutations 

(support points). Bias is the average of the 10,000 differences Y − y. MSE is the average of the 10,000 squared differences (Y − y)2.S2(Y ) is 

the sample variance of the Y s.
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Table 4

Proportion of rejections for different tests of equality of two distributions

mis μ ρ SWCRP EWCRP DS n/2

Rectangular 0 0 0.0510 0.0505 0.0538 15

Rectangular 0 .5 0.0504 0.0495 0.0529 15

Rectangular 0 1 0.0519 0.0519 0.0545 15

Rectangular a 0 0.3080 0.8180 0.8164 15

Rectangular a .5 0.5466 0.7341 0.7451 15

Rectangular a 1 0.7299 0.7299 0.7260 15

Triangular 0 0 0.0504 0.0508 0.0540 15

Triangular 0 .5 0.0498 0.0503 0.0532 15

Triangular 0 1 0.0505 0.0505 0.0526 15

Triangular a 0 0.3045 0.7874 0.7719 15

Triangular a .5 0.5456 0.7278 0.7338 15

Triangular a 1 0.7272 0.7272 0.7165 15

Informative 0 0 0.0503 0.0503 0.0539 15

Informative 0 .5 0.0501 0.0504 0.0375 15

Informative 0 1 0.0499 0.0499 0.0180 15

Informative a 0 0.5819 0.8061 0.7924 15

Informative a .5 0.6471 0.7438 0.6858 15

Informative a 1 0.7307 0.7307 0.5751 15

Rectangular 0 0 0.0472 0.0487 0.0615 5

Rectangular 0 .5 0.0486 0.0478 0.0621 5

Rectangular 0 1 0.0478 0.0478 0.0471 5

Rectangular a 0 0.2736 0.7547 0.7943 5

Rectangular a .5 0.6651 0.6651 0.6512 5

Rectangular a 1 0.4932 0.6723 0.7313 5

Triangular 0 0 0.2744 0.4847 0.5148 5

Triangular 0 .5 0.4900 0.6008 0.6474 5

Triangular 0 1 0.6667 0.6667 0.6797 5

Triangular a 0 0.0468 0.0463 0.0624 5

Triangular a .5 0.0487 0.0465 0.0607 5

Triangular a 1 0.0480 0.0480 0.0558 5

Informative 0 0 0.0484 0.0483 0.0653 5

Informative 0 .5 0.0471 0.0481 0.0436 5

Informative 0 1 0.0484 0.0484 0.0187 5

Informative a 0 0.5223 0.7567 0.7518 5

Informative a .5 0.5838 0.6813 0.6572 5

Informative a 1 0.6653 0.6653 0.5437 5

Note. Within clusters, data are multivariate normal with correlation ρ. The mean cluster difference between groups is μ and varies for different 
scenarios. Cluster sizes and tests are described in the text.
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Table 5

Descriptive statistics for the study of factors on the fractional shortening of the left ventricle in children with 

AIDS (Domanski et al., 1995)

Variable

Σmi = 486 measurements

Mean of n cluster averagesMean Minimum Maximum

Fractional shortening 0.34 0.05 0.59 0.34

CD4 cells 455.6 0 3421 544.8

Percent CD4 cells 16.1 0 63 18.1

I (AZT) 0.53 0 1 0.53

I (vertical) 0.51 0 1 0.60

Age 7.2 .33 17.11 6.4
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