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Abstract

BACKGROUND: Amyloid-β (Aβ) likely plays a primary role in Alzheimer’s disease 

pathogenesis, but longitudinal Aβ, tau, and neurodegeneration (A/T/N) measurements in the same 

individuals have rarely been examined to verify the temporal dynamics of these biomarkers.

METHODS: In this study, we investigated the temporal ordering of Aβ, tau, and 

neurodegeneration using longitudinal biomarkers in nondemented elderly individuals. A total 

of 395 cognitively unimpaired individuals and 204 individuals with mild cognitive impairment 

(320 [53%] were female) were classified into 8 A±/T±/N± categories according to the abnormal 

(+)/normal (−) status of Aβ (18F-florbetapir or 18F-florbetaben) positron emission tomography 

Address correspondence to Tengfei Guo, Ph.D., at tengfei.guo@berkeley.edu. 

DISCLOSURES
SML has served as a consultant to Cortexyme and NeuroVision. WJJ has served as a consultant to Genentech, Novartis, Curasen, and 
Grifols and owns an equity interest in Optoceutics. The other authors report no biomedical financial interests or potential conflicts of 
interest.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2020.06.029.

HHS Public Access
Author manuscript
Biol Psychiatry. Author manuscript; available in PMC 2022 November 23.

Published in final edited form as:
Biol Psychiatry. 2021 April 15; 89(8): 786–794. doi:10.1016/j.biopsych.2020.06.029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.biopsych.2020.06.029


(PET), 18F-flortaucipir PET, and adjusted hippocampal volume (aHCV). Follow-up Aβ PET, tau 

PET, and aHCV measurements at 0.6 to 4.1 years were available for 35% to 63% of the sample. 

Baseline Aβ, tau, and aHCV were compared between different A/T/N profiles. We investigated the 

associations of baseline and longitudinal Aβ, tau, and neurodegeneration in relation to one another 

continuously.

RESULTS: Among T− participants, tau was higher for A+/T−/N− individuals compared with 

the A−/T−/N− group (p = .02). Among N− participants, neurodegeneration was worse among 

A+/T+/N− individuals compared with the A−/T−/N− group (p = .001). High baseline Aβ was 

associated (p < .001) with subsequent tau increase and high baseline tau was associated (p = .002) 

with subsequent aHCV decrease, whereas high tau and low aHCV at baseline were not associated 

with subsequent Aβ increase.

CONCLUSIONS: These findings define a sequence of pathological events in Alzheimer’s 

disease that support a current model of Alzheimer’s disease pathogenesis in which Aβ appears 

early, followed by deposition of abnormal tau aggregates and subsequent neurodegeneration.

Amyloid-β (Aβ) plaques and neurofibrillary tangles are hallmarks of Alzheimer’s disease 

(AD) and appear before the presence of manifest clinical symptoms (1). Measurement of 

amyloid (A) and tau (T) is possible with positron emission tomography (PET) scanning 

and cerebrospinal fluid assays, and neurodegeneration (N) can be quantified with structural 

magnetic resonance imaging (MRI) or PET glucose metabolism; dichotomous ratings for 

each category (A±/T±/N±) may be combined to define 8 possible biomarker categories 

in characterizing individuals for features of AD (2). According to the dominant model of 

disease pathogenesis (3), Aβ aggregation plays an initiating role in disease onset, followed 

by the deposition of abnormal tau aggregates and subsequent neurodegeneration, which 

then eventuates in cognitive decline. This model generates empirically testable predictions, 

including the hypothesis that Aβ is the driver of subsequent downstream pathology, and the 

implication that the presence of abnormalities of Aβ, tau, and neurodegeneration together 

should be the most malignant biomarker profile. These hypotheses have been difficult to 

examine without longitudinal biomarker and cognitive data, but recent studies have begun 

to investigate them, revealing the importance of tau pathology and interactions between 

all 3 biomarkers in leading to cognitive decline (4,5). Characterization of individuals 

according to A/T/N profiles with either cerebrospinal fluid or imaging biomarkers has 

further demonstrated that the presence of Aβ and tau together, or all 3 abnormal biomarkers, 

is most strongly associated with cognitive decline in nondemented individuals (6–8).

In addition to understanding how biomarkers may interact to produce cognitive decline, 

longitudinal data can provide insight into the temporal dynamics of biomarker changes. 

For example, the current model of AD pathogenesis is built on data indicating that 

Aβ is associated with subsequent tau deposition (9–11) or longitudinal tau change (12). 

Longitudinal measurement of Aβ and neurodegeneration has also been investigated (13–16), 

as have relationships between tau and neurodegeneration (17), with these results generally 

supporting a unidirectional model with Aβ as an early event, tau an intermediate event, and 

neurodegeneration a late event. However, data have also suggested that neurodegeneration 

may arise independently of Aβ (18–21), and other studies have claimed that either cognitive 

decline (22) or tau aggregation (23) may precede Aβ deposition. The longitudinal model of 
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AD is difficult to evaluate and test when only a subset of variables is analyzed. Here, we 

examined all variables, using a single cohort, in the proposed amyloid cascade model of AD, 

with a view toward understanding the directionality of each set of biomarker relationships.

In this study, we first compared Aβ, tau, neurodegeneration, and cognition dichotomously 

(A/T/N profiles) in nondemented adults from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database using both cross-sectional and longitudinal analyses. We 

subsequently investigated the relationships of continuous measures of Aβ, tau, and 

neurodegeneration in relation to cognition. The project aimed 1) to describe the baseline 

(cross-sectional) participant characteristics using the A/T/N schema and compare how 

abnormalities in biomarkers were related to one another; and 2) to examine the associations 

between continuous longitudinal Aβ, tau, and neurodegeneration in relation to each other 

and cognition. The ultimate end was to examine whether evidence supported a unidirectional 

pathway beginning with Aβ in disease pathogenesis.

METHODS AND MATERIALS

Participants

The data were obtained from the ADNI database (https://ida.loni.usc.edu). The ADNI 

study was approved by institutional review boards of all participating centers, and written 

informed consent was obtained from all participants or their authorized representatives. 

Cognitively unimpaired (CU) ADNI participants and ADNI participants with mild cognitive 

impairment (MCI) with concurrent (interval of acquisition <1 year) amyloid (18F-florbetapir 

[FBP] or 18F-florbetaben [FBB]) PET, 18F-flortaucipir (FTP) tau PET, structural MRI, and 

cognition were included in this study.

Amyloid PET Imaging

Details on FBP and FBB Aβ PET image acquisition are given elsewhere 

(http://adni-info.org). Baseline and follow-up FBP or FBB scans were coregistered 

to their corresponding baseline structural MRI scans. FreeSurfer (V5.3.0; https://

surfer.nmr.mgh.harvard.edu/) was used to extract cortical tracer retention in 34 regions of 

interest (ROIs) as described previously (24). FBP or FBB standardized uptake value ratios 

(SUVRs) were calculated by referring regional florbetapir or florbetaben to that found 

in the whole cerebellum. A cortical summary COMPOSITE SUVR was created from a 

composite cortical area (comprising frontal, cingulate, parietal, and temporal regions) (24). 

FBP and FBB SUVRs were converted to Centiloids using the equations Centiloid = (196.9 

× SUVRFBP) − 196.03 and Centiloid = (159.08 × SUVRFBB) − 151.65, respectively, as 

described on the ADNI website (ADNI_Centiloid_Methods-Instruction_20181113.pdf).

Tau PET Imaging

Details on FTP tau PET image acquisition are given elsewhere (http://adni-info.org). 

Baseline and follow-up FTP scans were coregistered to the baseline MRI scan that was 

closest in time to the baseline FTP scan. FTP SUVRs in FreeSurfer-defined ROIs were 

calculated based on mean uptake over 75 to 105 minutes postinjection normalized by a mean 

inferior cerebellar gray matter uptake (25). FTP SUVRs in a temporal metaROI (entorhinal, 
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amygdala, parahippocampal, fusiform, inferior temporal, and middle temporal) (26) were 

calculated to represent tau deposition, because this region has been commonly used to detect 

AD-related tau deposition in the human brain (7,27–31).

Structural MRI

Hippocampal volume (HCV) (cm3) was calculated across hemispheres from the structural 

MRI scans using FreeSurfer and adjusted by estimated total intracranial volume using the 

approach employed by Jack et al. (32): the adjusted HCV (aHCV) was calculated as the 

difference between the raw HCV and the expected HCV from a linear regression of raw 

HCV (y-axis) and total intracranial volume (x-axis) among 328 Aβ− ADNI CU participants.

Cutoffs of Biomarkers

Aβ positivity of FBP and FBB were defined as COMPOSITE FBP SUVR ≥1.11 and FBB 

SUVR ≥1.08 as described on the ADNI website. FTP SUVRs and aHCVs do not have clear 

bimodal distributions (Figures S2A and S4A). The threshold for the temporal-metaROI FTP 

SUVR was set as ≥1.25 according to the receiver operating characteristic curve analysis 

using the Youden index classifying 277 Aβ− ADNI CU participants and 176 Aβ+ ADNI 

MCI and AD patients as the end point (Figure S1), which was consistent with the threshold 

calculated in another sample (7). The threshold of abnormal aHCV was set ≤−0.82 cm3 

according to a receiver operating characteristic analysis classifying 440 ADNI Aβ− CU 

participants and 555 Aβ+ patients with MCI and AD as the end point (Figure S3). In order 

to examine the effect of cutoffs selection for FTP SUVR and aHCV, we also used previously 

reported cutoffs for temporal-metaROI FTP SUVR (26) ≥1.23 and aHCV (32,33) ≥−0.70 

cm3 defined by different samples as alternative cutoffs to define T± and N±.

Cognition

Preclinical Alzheimer’s cognitive composite (PACC) scores (34) that were concurrent with 

baseline Aβ PET and tau PET and up to 4-year follow-up were used to represent cognitive 

ability. The delayed recall portion of the Alzheimer’s Disease Assessment Scale, the delayed 

recall score on the logical memory IIa subtest from the Wechsler Memory Scale, the digit 

symbol substitution test score from the Wechsler Adult Intelligence Scale–Revised, and the 

Mini-Mental State Examination total score were transferred to standard z scores (using the 

mean values of ADNI CU participants), and these 4 cognitive z scores were summed to form 

the PACC score.

Statistical Analysis

Participants were classified as positive (+) or negative (−) for each biomarker, resulting 

in 8 A/T/N groups. A−/T−/N− participants were considered “AD-biomarker normal” and 

were used as the reference for statistical comparison relative to the other A/T/N groups. 

All other A− participants were characterized as suspected non-Alzheimer’s pathology, and 

all A+ groups were characterized as on the AD continuum (2). Data are presented as 

median (interquartile range [IQR]) or number and percentage. Different A/T/N groups 

were compared using a Mann-Whitney test. We assessed categorical differences using 

Fisher’s exact test. Baseline Aβ PET (Centiloid), tau PET (temporal-metaROI FTP SUVR), 
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neurodegeneration (aHCV), and cognition were compared among different A/T/N groups. 

A false discovery rate of .05 using the Benjamini-Hochberg approach was employed 

for multiple comparisons correction. Linear mixed-effects (LME) (lme4 package) models 

investigated subsequent longitudinal changes in aHCV and the PACC score over time in 

different A/T/N groups based on the following independent variables: time, A/T/N group, 

A/T/N group × time, diagnosis, APOE-ε4 status, age, gender, and education.

In order to avoid findings dependent on dichotomous A/T/N biomarkers, LME models 

investigated 1) the associations between baseline FTP SUVR and aHCV as well as their 

interaction and subsequent change in Aβ PET over time; 2) the associations between 

baseline Aβ PET and aHCV as well as their interaction and subsequent change in FTP 

SUVR over time; and 3) the associations between baseline Aβ PET and FTP SUVR 

as well as their interaction and subsequent change in aHCV over time, controlling for 

diagnosis, APOE-ε4 status, age, and gender. Finally, we used LME models to investigate the 

associations between baseline Aβ PET, FTP SUVR, and aHCV as well as their interaction 

and subsequent change in PACC score over time, controlling for diagnosis, APOE-ε4 status, 

age, gender, and education. Baseline Aβ PET, FTP SUVR, and aHCV were computed 

as a z score (centered and scaled), and the sign of aHCV was changed to negative (−) 

to facilitate the comparison with Aβ and tau in these LME models with continuous Aβ, 

tau, and neurodegeneration variables. All the LME models included a random slope and 

intercept for each participant, with 2-tailed tests and p < .05 as the significance level. All 

statistical analyses were performed in the statistical program R (version 3.6.2; R Foundation 

for Statistical Computing, Vienna, Austria).

RESULTS

Demographics

Measurements were acquired between August 12, 2015, and December 4, 2019, and the 

characteristics of the 599 participants included in this study can be found in Table 1. Overall, 

43% of participants were AD-biomarker normal, and 39% were on the AD continuum. 

A total of 34% of participants had MCI, with the A+/T+/N+ group showing the largest 

proportion (82%). The 4 N+ groups were older than the 4 N− groups (age, median [IQR] = 

79 [9] years vs. 71 [9] years; estimate = 6.56 [95% confidence interval (CI), 5.31–7.83], p < 

.001). The proportion of APOE-ε4 carriers was greater among the 4 A+ groups than among 

the 4 A− groups (49% vs. 19%; odds ratio, 4.9 [95% CI, 3.3–7.5], p < .001). Longitudinally, 

121, 185, 218, and 299 participants had ≥2 Aβ PET, tau PET, structural MRI, and PACC 

scores, and the duration of follow-up was a median of 2.0 (IQR, 0.2; range, 0.8–4.1), 2.0 

(IQR, 1.0; range, 0.6–4.0), 1.2 (IQR, 0.9; range, 0.9–4.1), and 1.2 (IQR, 1.0; range, 0.8–4.1) 

years, respectively.

Baseline Aβ, Tau, Neurodegeneration, and Cognition of Different A/T/N Groups

Cross-sectional continuous biomarker levels are shown in Figure 1, and these were elevated 

according to the classification schemes. Compared with the reference (A−/T−/N−), among 

T− participants (Figure 1B and Figure S5B), the A+/T−/N− individuals had a higher FTP 

SUVR (estimate = 0.02 [95% CI, 0.004 to 0.03], p= .02), and the A+/T−/N+ individuals 
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had weakly but not significantly higher FTP SUVR; however, among A− participants, 

the A−/T+ individuals did not show higher Aβ PET, and A−/T+/N+ individuals even had 

significantly lower Aβ PET, perhaps owing to atrophy (Figure 1A and Figure S5A). Among 

N− participants, A+/T+/N− individuals had lower aHCV (estimate = −0.301 [95% CI, 

−0.487 to −0.119], p= .001) (Figure 1C and Figure S5C), whereas A−/T−/N+ individuals 

did not show either higher Aβ or tau (Figure 1A, B and Figure S5A, B), consistent with 

Aβ and tau lowering hippocampal volume even in N− individuals, but there was no effect 

of neurodegeneration on Aβ or tau in A−/T− individuals. PACC scores were lower than 

the reference in all groups except the A−/T+/N− and A+/T−/N− groups (p ≤ .007). The 

A+/T+/N+ group had lower (p < .001) PACC scores than other groups, except for the 

A−/T+/N+ group (Figure 1D). The details of comparisons of baseline Aβ, tau, aHCV, and 

PACC between different A/T/N profiles and the reference group can be found in Tables S1 

and S2. The results were substantially the same using the alternative cutoffs for FTP SUVR 

and aHCV to define T± and N± (Figure S6).

Longitudinal Changes of Neurodegeneration and Cognition Over Time of Different A/T/N 
Groups

Results of LME models showed that both the A+/T+/N+ and A+/T+/N− groups showed 

greater decline than the reference group in aHCV (n = 218; A+/T+/N− vs. A−/T−/N−: 

estimate = −0.127 [95% CI, −0.211 to −0.043], SE = 0.043, p = .003; A1T+/N+ vs. 

A−/T−/N−: estimate = −0.162 [95% CI, −0.252 to −0.072], SE = 0.046, p < .001) (Figure 

2A) and PACC (n = 299; A+/T+/N− vs. A−/T−/N−: estimate = −0.85 [95% CI, −1.54 to 

−0.15], SE = 0.36, p = .02; A1T+/N+ vs. A−/T−/N−: estimate = −1.39 [95% CI, −2.10 to 

−0.67], SE = 0.36, p < .001) (Figure 2B). The details of comparisons of longitudinal changes 

of aHCV and PACC between different A/T/N profiles and the reference group can be found 

in Table S3. The results were substantially the same using the alternative cutoffs for FTP 

SUVR and aHCV to define T± and N± (Figure S8).

Aβ, Tau, and Neurodegeneration in Relation to Each Other

In 121 participants with longitudinal Aβ PET, neither high baseline FTP SUVR nor low 

aHCV (Figure 3A) was associated with subsequent Aβ PET increases. However, in 185 

participants with longitudinal tau PET, high baseline Aβ PET (but not low aHCV) was 

associated (estimate = 0.059 [95% CI, 0.031 to 0.087], p < .001) with subsequent tau 

PET increase (Figure 3B). In addition, subsequent longitudinal aHCV decreases of 218 

participants with longitudinal aHCV data were significantly associated with high baseline 

tau PET (estimate = −0.053 [95% CI, −0.086 to −0.021], p= .002) and were marginally 

associated with high Aβ PET (estimate = −0.024 [95% CI, −0.051 to 0.003], p = .07), 

and there was no significant interaction between Aβ PET and tau PET (estimate = 0.014 

[95% CI, −0.009 to 0.036], p = .23) (Figure 3C). In order to avoid the different longitudinal 

sample sizes of Aβ PET, tau PET, and MRI scans affecting the conclusions, we also did 

the same analyses based on 76 participants with longitudinal Aβ PET, tau PET, and MRI 

scans all available at follow-up. The results were substantially the same (Figure 4 and 

Supplement).
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Aβ, Tau, and Neurodegeneration in Relation to Cognition

Results of LME models showed that high baseline tau PET (estimate = −0.060 [95% 

CI, −0.115 to −0.005], p = .04) and low aHCV (estimate = −0.059 [95% CI, −0.100 to 

−0.017], p= .003) (but not high Aβ PET) were associated with subsequent longitudinal 

PACC score decline over a median of 2.0 (IQR, 1.0) years of follow-up in 299 participants 

with longitudinal cognitive data (Figure 5). In addition, there was an interaction between 

baseline high Aβ PET and tau PET in relation to subsequent PACC score decline (estimate 

= −0.044 [95% CI, −0.081 to −0.006], p = .02), but no other significant interactions (Aβ × 

aHCV: estimate = 0.037 [95% CI, −0.009 to 0.083], p = .11) were detected.

DISCUSSION

This study provides cross-sectional and longitudinal evidence for the proposed sequence 

of pathological biomarker changes in AD that occur in one direction only, beginning 

with Aβ deposition, through tau deposition, neurodegeneration, and cognitive decline. We 

first used cross-sectional data to examine variability within the negative/normal ranges 

of Aβ, tau, and neurodegeneration biomarkers in order to identify the earliest signs of 

abnormality in A/T/N groups. This showed that tau in the negative range was elevated 

among A+/T−/N− individuals, presumably indicating very early signs of tau elevation 

following Aβ positivity among individuals. Conversely, Aβ was not elevated in the Aβ− 

range among A−/T+ individuals, suggesting that tau positivity does not lead to early Aβ 
changes. Compared with the A−/T−/N− group, we also found that hippocampal volumes 

were smaller among A+/T+/N− individuals, while there was no evidence for higher Aβ or 

tau among the A−/T−/N+ individuals. These cross-sectional data imply that elevated Aβ 
affects tau at an early stage and that Aβ and tau together are especially malignant with 

regard to hippocampal volume, but there is no evidence that elevated tau affects Aβ or 

that neurodegeneration affects either Aβ or tau. The longitudinal biomarker data extend 

these findings by indicating that high baseline Aβ was associated with subsequent tau 

accumulation, whereas baseline high tau was not associated with subsequent increase in Aβ. 

High baseline tau was associated with subsequent loss in hippocampal volume, and the most 

pronounced hippocampal atrophy was observed in A+/T+/N± individuals. In contrast, there 

is no evidence that either high baseline tau or low hippocampal volume is associated with 

subsequent Aβ increases, nor is there evidence that low baseline hippocampal volume was 

associated with subsequent increases in tau.

While these results support a unidirectional model beginning with Aβ, they do not prove 

that Aβ is the cause of AD. For example, it is possible that another more fundamental 

and undiscovered process results in Aβ deposition, or that Aβ is an epiphenomenon that 

reports on an entirely different causal event resulting in tau deposition. However, while these 

results do not prove causation, they argue strongly against a model in which tau deposition, 

neurodegeneration, or cognitive decline is consistently the initiator.

Other data would seem to contradict these results but are more consistent with the likelihood 

that there is more than one pathway to each individual biomarker abnormality. For example, 

it is well recognized from both pathological data and biomarker results that tau accumulation 

can occur in the absence of or can precede Aβ, particularly in normal older people (23,35). 
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While this has been attributed to non-AD processes such as primary age-related tauopathy 

(36), it is nevertheless possible that primary age-related tauopathy represents a substrate for 

the development of AD. However, there is no evidence from our data that this tau deposition 

leads to the deposition of Aβ, as has been proposed by others (12). In fact, our data echo 

previous findings that brain tau is rarely substantially elevated in the absence of abnormal 

Aβ (28,37,38), and that even in Aβ− individuals, higher Aβ and faster Aβ deposition predict 

later brain tau (9–11). Similarly, observations that cognitive decline may occur prior to Aβ 
deposition (22) are consistent with non-AD processes leading to cognitive decline, and with 

the observation that subthreshold, but elevated, Aβ levels predict cognitive decline (11,39). 

Our results do not support the idea that cognitive decline is an initiating process itself.

A subset of individuals labeled as suspected non-Alzheimer’s pathology (2,32) have 

neurodegeneration without significant Aβ. The A−/N+ suspected non-Alzheimer’s 

pathology individuals (13% of the whole cohort) in our data showed cross-sectional 

cognitive decline, as they have in other studies (33,40,41). However, both the cross-sectional 

and longitudinal analyses provided no evidence that neurodegeneration is associated with 

Aβ accumulation (13,14,33), nor is there evidence that neurodegeneration may lead to 

tau deposition. By contrast, high levels of tau but not of Aβ were associated with faster 

subsequent hippocampal volume loss, implying that the late-involved tau deposition is more 

related to subsequent AD-related neurodegeneration than to Aβ accumulation on the AD 

continuum (17,42).

It appears likely that Aβ and tau together have stronger effects on both neurodegeneration 

(15,43) and cognition (38,44–46) than either biomarker alone. We found that the A+/T+/N− 

and A+/T+/N+ groups showed the fastest rates of hippocampal volume loss, but continuous 

Aβ PET and tau PET did not show a synergistic effect for subsequent hippocampal 

volume loss, indicating that late-involved abnormal tau is closer to subsequent AD-related 

neurodegeneration than abnormal Aβ. There is an emerging consensus in the literature that 

the A+/T+/N+ group shows the fastest cognitive decline among nondemented individuals 

(6–8). In line with previous studies, we found that cross-sectional cognitive performance 

was generally lower in most groups than in the reference group, and was lowest in those 

abnormal on all 3 biomarkers; longitudinally, only the A+/T+ groups showed evidence of 

cognitive decline, and the A+/T+/N+ group showed the most rapid decline. In addition, 

we found that continuous baseline high tau and low hippocampal volume but not high 

Aβ were independently associated with subsequent cognitive decline, although we found 

that continuous baseline high Aβ and tau were synergistically associated with subsequent 

cognitive decline. These findings imply that the late-involved tau and neurodegeneration are 

closer to cognitive decline than Aβ, while Aβ deposition may have synergistic effects upon 

tau-related cognitive decline on the AD continuum (46).

A key strength of this study is that we analyzed both the cross-sectional and longitudinal 

associations between amyloid, tau, and neurodegeneration in relation to their prediction 

of subsequent cognitive decline in one large cohort, which is important to understand 

the temporal sequences of AD key pathologies. However, it is important to note 

several limitations in our study. All A/T/N biomarkers contain important continuous 

information for assessing progression of the disease. However, abnormal amyloid, tau, 
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and neurodegeneration were defined to classify individuals into different A/T/N profiles in 

order to study how their abnormalities contribute to the progression of AD. Some A/T/N 

groups had relatively small sample sizes owing to the classification of 8 A/T/N profiles. 

We did not observe significant tau elevations in the A+/T−/N+ group, suggesting that the 

tau increase in A+/T− individuals may be subtle and early. Further study may be needed 

to explore these results in this group. We cannot compare longitudinal changes of Aβ and 

tau in different A/T/N profiles because of limited longitudinal data. The number of visits 

and duration of follow-up of longitudinal Aβ PET, tau PET, and structural MRI data were 

limited and differed from one another; thus, those findings may need to be validated by 

further longitudinal data with more visits and longer follow-up in the future. For example, 

while we did not find associations between baseline Aβ and cognition, studies that include at 

least 4 years of observation have been able to detect this (47). As the academic community 

becomes increasingly concerned about the overuse and misinterpretation of significance 

testing and p values (48), our results do not exclude important biological significance for 

results with p values between .05 and .1.

Together, these findings support the current model of AD pathogenesis in which a 

unidirectional progression of AD biomarkers begins with Aβ elevation, followed by 

subsequent tau deposition, neurodegeneration, and cognitive decline. These results leave 

unanswered the ultimate question as to AD causation, as well as the roles of other 

pathological processes in leading to cognitive impairment. For example, cerebrovascular 

disease is an important determinant of cerebral atrophy measurements reflected in 

neurodegeneration biomarkers (49) and may also be associated with tau or Aβ deposition 

(50). Alzheimer’s clinical syndrome in older people is well recognized to be a multifactorial 

process, so the data presented here do not explain the full spectrum of the disorder. However, 

among the core pathological processes that define the neurobiology of the disease, data 

consistently demonstrate patterns of biomarker association and causal effects on cognition 

that support a unidirectional model that begins with Aβ.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Baseline amyloid-β (Aβ) (A), tau (T), neurodegeneration (N), and cognition of different 

A/T/N groups. Comparison of baseline (A) Aβ positron emission tomography (PET), (B) tau 

PET, (C) adjusted hippocampal volume (aHCV), and (D) preclinical Alzheimer’s cognitive 

composite (PACC) of suspected non-Alzheimer’s pathology (SNAP) and Alzheimer’s 

disease continuum groups with the reference group (Ref) (A−/T−/N−). The boxplot whiskers 

extend to the lowest and highest data points within 1.5 times the interquartile range, from 

the lower and upper quartiles. The dots represent individual points of each A/T/N group. 

Gray dashed lines represent the median values of the reference. Values at the top of the 

bar indicate the p values of the comparisons with the reference. SUVR, standardized uptake 

value ratio.
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Figure 2. 
Longitudinal changes of neurodegeneration and cognition over time of different amyloid-

β (A)/tau (T)/neurodegeneration (N) groups. Comparisons of slopes of (A) adjusted 

hippocampal volume (aHCV) decreases in 218 participants with longitudinal magnetic 

resonance imaging data and (B) preclinical Alzheimer’s cognitive composite (PACC) 

cognitive score decline in 299 participants with longitudinal cognitive data. Error bars reflect 

the standard error of estimated slope in linear mixed-effects model analyses. Values at the 

top of the bar indicate the p values of the comparisons with the reference (Ref).
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Figure 3. 
Amyloid-β (Aβ) (A), tau (T), and neurodegeneration (N) in relation to each other. (A) 
Baseline high tau positron emission tomography (PET) and low adjusted hippocampal 

volume (aHCV) were not associated with subsequent Aβ PET increase (ΔAb) in 121 

participants with longitudinal Aβ PET data. (B) Baseline high Aβ PET but not low 

aHCV was associated with subsequent tau PET increase (Δ18F-flortaucipir [ΔFTP]) in 185 

participants with longitudinal tau PET data. (C) Baseline high tau PET but not high Aβ 
PET was associated with subsequent aHCV decrease (ΔaHCV) in 218 participants with 

longitudinal magnetic resonance imaging data. The error bars indicate 95% confidence 

interval of the estimated β coefficient. aHCV*FTP, Aβ*aHCV, and Aβ*FTP indicate the 

interaction between aHCV and FTP, Aβ and aHCV, and Aβ and FTP, respectively. **p < 

.01; ***p < .001.
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Figure 4. 
Amyloid-β (Aβ) (A), tau (T), and neurodegeneration (N) in relation to each other in 

76 participants with longitudinal Aβ positron emission tomography (PET), tau PET, and 

adjusted hippocampal volume (aHCV) data all available. (A) Baseline high tau PET and 

low aHCV were not associated with subsequent Aβ PET increase (ΔAb). (B) Baseline high 

Aβ PET but not low aHCV was associated with subsequent tau PET (Δ18F-flortaucipir 

[ΔFTP]). (C) Baseline high tau PET but not high Aβ PET was associated with subsequent 

aHCV decrease (ΔaHCV). The error bars indicate 95% confidence interval of the estimated 

β coefficient. HCV*FTP, Aβ*aHCV, and Aβ*FTP indicate the interaction between aHCV 

and FTP, Aβ and aHCV, and Aβ and FTP, respectively. *p < .05; **p < .01.
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Figure 5. 
Amyloid-β (Aβ) (A), tau (T), and neurodegeneration (N) in relation to cognition. Estimates 

of association with longitudinal preclinical Alzheimer’s cognitive composite changes of Aβ 
positron emission tomography (PET), 18F-flortaucipir (FTP) standardized uptake value ratio, 

and adjusted hippocampal volume (aHCV), as well as their interactions in a linear mixed-

effects model in 299 participants with longitudinal cognitive data. The error bars indicate 

95% confidence interval of the estimated β coefficient. Aβ*FTP, Aβ*aHCV, aHCV*FTP, 

and Aβ*FTP*aHCV indicate the interaction between Aβ and FTP; Aβ and aHCV; aHCV 

and FTP; and Aβ, and FTP and aHCV, respectively. *p < .05; **p < .01.
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