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Abstract

BACKGROUND: Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been 

found in the early phase of schizophrenia and may underlie cognitive deficits. However, the 

association between cognitive function and levels of glutamatergic metabolites and GABA has not 

been investigated in a large group of antipsychotic-naïve patients.
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METHODS: In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder 

and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, 

glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and 

glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, 

and IQ were assessed.

RESULTS: The whole group of antipsychotic-naïve patients had lower levels of GABA in 

dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher 

glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ 

between groups. Glx levels in dorsal ACC were positively associated with working memory 

(logarithmically transformed: b = −.016 [higher score indicates worse performance], p = .005) and 

attention (b = .056, p = .035) in both patients and healthy control subjects, although the association 

with attention did not survive adjustment for multiple comparisons.

CONCLUSIONS: The findings suggest a positive association between glutamatergic metabolites 

and cognitive function that do not differ between patients and healthy control subjects. Moreover, 

our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia 

and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated 

in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive 

deficits may gain from glutamate-modulating compounds.

A growing body of studies suggest that glutamatergic and GABAergic (gamma-

aminobutyric acidergic) neurotransmission is disturbed in first-episode patients with 

schizophrenia or psychosis. Glutamate and GABA levels in antipsychotic-naïve or 

minimally treated patients have primarily been investigated in anterior cingulate cortex 

(ACC) (1–11), thalamus (2,3,7,9), and dorsal striatum (12,13) using proton magnetic 

resonance spectroscopy (1H-MRS). These regions are part of cortico-striato-thalamo-cortical 

networks that are believed to be dysregulated in psychotic disorders (14,15). In the majority 

of the studies, higher levels of glutamine, glutamine+glutamate (Glx), glutamine/glutamate, 

and GABA have been found in pregenual ACC (1–6), and lower levels of glutamate (7) or 

Glx (11) have been found in dorsal ACC, although no differences in pregenual ACC also 

have been reported in some studies (5,8–10) and in a recent meta-analysis of antipsychotic-

naïve/free patients (16). In dorsal striatum higher glutamate levels have been found (12,13), 

and in left thalamus higher glutamine and glutamate levels have been reported (2,3,7), 

whereas a recent study did not find alterations in glutamate levels (9). Importantly, our group 

recently reported that thalamic glutamate levels in twins are heritable and associated with 

schizophrenia spectrum disorder (17) and that higher thalamic glutamate levels and lower 

GABA levels in dorsal ACC of antipsychotic-naïve patients were related to subsequent poor 

treatment outcome (7). Moreover, two other groups have reported an association between 

high levels of glutamate and GABA in pregenual ACC and lack of treatment response (6,9).

Interestingly, several lines of evidence suggest that abnormal glutamatergic and GABAergic 

neurotransmission also may underlie cognitive deficits. For example, a reduced cortical 

glutamate/GABA balance is believed to cause insufficient gamma band oscillations that 

might impair working memory (18,19), and administration of antagonists of the NMDA 

receptor induces schizophrenia-like cognitive deficits in healthy control subjects (HCs) and 

animals in the domains attention, spatial working memory (SWM), and executive function, 

Bojesen et al. Page 3

Biol Psychiatry. Author manuscript; available in PMC 2022 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



among others (20–24). While it is primarily cortical areas, such as dorsal ACC (25,26), that 

are believed to be involved in cognitive function, thalamocortical interactions might also be 

crucial for, for example, working memory and attention (27). Studies of mainly medicated 

patients have investigated the association between different cognitive domains and levels 

of glutamatergic metabolites and GABA. These studies report an association between 

prefrontal levels of glutamatergic metabolites and GABA and the cognitive domains 

working memory or executive functioning (28–33), attention (30,34), and intelligence (31). 

Importantly, the association between glutamatergic metabolites and cognitive function seems 

to change after treatment (28). Therefore, antipsychotic-naïve patients are needed to study 

the pathophysiology of cognitive deficits. To date, only 4 studies have included subgroups 

of antipsychotic-naïve or minimally treated patients (4,10,28,35) and reported conflicting 

results. In ACC, one study found a positive correlation between ACC glutamine and working 

memory (4), whereas others did not find correlations between glutamate or glutamine levels 

and working memory (28) or processing speed (10). In dorsolateral prefrontal cortex, Glx 

and GABA levels did not correlate with working memory and verbal learning (4,35). The 

studies were limited by small sample sizes (Ns = 7–26), no healthy control group (28), a 

long time interval (64 days) between cognitive testing and 1H-MRS (28), and the use of a 

1.5T scanner (35). Thus, larger studies of antipsychotic-naïve patients are needed to clarify 

whether glutamatergic and GABAergic abnormalities are involved in the pathophysiology of 

cognitive deficits.

In this study, we initially examined whether levels of glutamatergic metabolites and GABA 

in dorsal ACC were lower, and levels of glutamatergic metabolites in thalamus were higher, 

in a large group of lifetime antipsychotic-naïve patients or only in the subgroup with a 

schizophrenia diagnosis. This was based on our previous findings in a subsample of the 

participants (7). Thereafter, we tested the primary hypotheses that Glx and GABA levels 

in dorsal ACC are associated with cognitive performance in tests of attention, SWM, and 

premorbid IQ in patients and investigated whether the associations were different from those 

in HCs.

METHODS AND MATERIALS

Participants

In total, 56 antipsychotic-naïve patients with schizophrenia or psychosis were recruited from 

January 2014 to March 2019 from psychiatric units and outpatient services in the Capital 

Region of Denmark, and 51 HCs matched on age, sex, and parental socioeconomic status 

were recruited through online advertisement. The study was conducted as part of baseline 

examinations in a prospective follow-up study approved by the Committee on Biomedical 

Research Ethics described in the Supplemental Participants and Methods. Subgroups of 

participants are also included in another article investigating the associations among 

glutamate, GABA, and treatment outcome (nPatients = 39, nHCs = 36) (7) and in two other 

articles including participants from separate studies to describe patterns of cortical structure 

and cognition (36) (nPatients = 23, nHCs = 39) and the effect of age on verbal memory 

functions (nPatients = 47, nHCs = 41) (37). Study procedures were fully explained before 

written informed consent was obtained. Inclusion criteria for patients were as follows: 
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fulfillment of diagnostic criteria for schizophrenia, schizoaffective disorder, or nonorganic 

psychosis according to ICD-10 criteria assessed with the Schedules for Clinical Assessment 

in Neuropsychiatry (38); 18 to 45 years of age; never treated with antipsychotics or central 

nervous system stimulants during lifetime (confirmed by medical record); and legally 

competent. Participants with substance abuse during the past 3 months were excluded, but 

previous substance abuse and current occasional use were accepted for patients. Further 

exclusion criteria are reported in the Supplemental Participants and Methods. Information 

on alcohol, nicotine, cannabis, and drug use was obtained through self-report and confirmed 

with a urine test (Rapid Response; Jepsen HealthCare, Tune, Denmark). Occasional use of 

benzodiazepines was accepted in patients. Benzodiazepine users were excluded from the 

main analyses but were included in the Supplement.

Clinical and Cognitive Assessments

For patients, psychopathology was assessed by trained raters with the Positive and Negative 

Syndrome Scale (39), symptom severity was assessed with the Clinical Global Impression 

scale (40), and level of function was assessed with Global Assessment of Functioning social 

and occupational functioning score (41). The Personal and Social Performance Scale (42) 

estimated level of function in patients and HCs. Participants completed a cognitive battery 

from which three measures were selected a priori: SWM (outcome was SWM strategy 

score) and sustained visual attention tested with rapid visual information processing (RVP) 

(outcome was RVP A′) from the Cambridge Neuropsychological Test Automated Battery 

(43,44), and premorbid intelligence estimated with the Danish Adult Reading Test (DART) 

(45) (outcome was number of words correctly pronounced). Magnetic resonance scans and 

clinical and cognitive assessments were performed within 7 days.

Magnetic Resonance Imaging and Data Analysis

Magnetic resonance imaging was performed on a 3T scanner as previously described (46). 

Levels of Glx, glutamate, and other major metabolites were acquired with point-resolved 

spectroscopy (PRESS) (repetition time = 3000 ms, echo time = 30 ms, 128 averages 

with MOIST [Multiply Optimized Insensitive Suppression Train] water suppression) in a 

2.0 × 2.0 × 2.0-cm3 voxel prescribed in dorsal ACC (Brodmann areas 24 and 32) and 

in a 2.0 × 1.5 × 2.0-cm3 voxel prescribed in left thalamus. Levels of GABA, Glx, and 

total creatine were acquired with the MEGAPRESS (Mescher–Garwood point-resolved 

spectroscopy) sequence (47) (echo time = 68 ms, repetition time = 2000 ms, 14-ms editing 

pulse applied at 1.9 and 7.5 ppm, 320 averages with MOIST water suppression) in a 3.0 × 

3.0 × 3.0-cm3 voxel prescribed in dorsal ACC. Unsuppressed water reference spectra were 

acquired separate as inbuild sequences in the PRESS and MEGAPRESS sequences. PRESS 

acquisitions were analyzed with LCModel version 6.3-1J (48) and fitted in the spectral range 

between 0.2 and 4.0 ppm as previously described (46). Glx was the main outcome because 

it is generally believed that glutamate measured at 3T cannot be reliably separated from 

glutamine and GABA. However, glutamate levels are also reported to allow for comparison 

with previous MRS studies of ACC or left thalamus in antipsychotic-naïve or minimally 

treated patients scanned at 3T or 4T (2,3,7,9). MEGAPRESS acquisitions were analyzed 

with Gannet version 2.1 (49) and fitted in the spectral range between 2.79 and 3.55 ppm. 

The in vivo water-scaled values of metabolites reported by LCModel and Gannet were 
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corrected for partial volume cerebrospinal fluid contamination to estimate concentration in 

institutional units as described in the Supplement. Details of 1H-MRS acquisitions, quality 

assessment, and analyses are reported in the Supplement together with motion estimates, 

metabolite levels scaled to total creatine (Table S5) and corrected for gray matter fraction, 

illustrations of and fidelity of voxel placements (Figures S1 and S2), representative spectra 

(Figure S3), and information about a scanner upgrade performed after inclusion of 10 

patients and 4 HCs.

Statistical Analyses

Demographic and clinical variables, cognitive performance, and spectral quality of patients 

and HCs were compared using χ2, Fisher’s exact test, or independent t tests as appropriate. 

Separate multivariate linear regression models investigated whether glutamate and GABA 

levels in dorsal ACC (dependent variables) were different in antipsychotic-naïve patients 

compared with HCs (diagnosis as independent variable) with inclusion of the covariates sex 

and age, which may affect the metabolite levels (50,51), and smoking status that differed 

between patients and HCs (Table 1). Levels of other metabolites are provided in Table 2.

The primary hypotheses that levels of Glx and GABA in dorsal ACC were associated 

with cognitive performance was examined separately for DART, RVP A′, and SWM 

strategy scores as dependent variables in the following multivariate linear regression model: 

cognitive score = b0 + b1 × metabolite + b2 × metabolite2 + b3 × diagnosis + metabolite × 

diagnosis + metabolite2 × diagnosis, with the significance level adjusted for 6 comparisons 

(3 cognitive tests associated with Glx and GABA) (p < .0083). The metabolite2 (included to 

test a U-shaped association), metabolite × diagnosis (testing whether the association differed 

between patients and HCs), and metabolite2 × diagnosis interactions all were insignificant 

and therefore removed from the main analyses. SWM strategy scores were logarithmically 

transformed due to non-normality.

Pearson’s correlation was used to explore associations between Glx and GABA levels as 

well as correlations among metabolites, psychopathology, and level of function.

Statistical analyses were performed using SAS version 7.1 (SAS Institute, Cary, NC).

RESULTS

Participant Characteristics

Table 1 summarizes participant characteristics. In total, 43 patients had a schizophrenia 

diagnosis and 13 were diagnosed with nonorganic or paranoid psychosis. The patients had 

significantly less education and a lower level of function, and more were smokers and 

used benzodiazepines. There were no differences in sex, age, parental educational status, or 

current cannabis use.

Levels of Glx, Glutamate, and GABA in Antipsychotic-Naïve Patients and Healthy Control 
Subjects

Spectral Quality.—For the PRESS data, 99 dorsal ACC spectra (48 patients and 51 HCs) 

and 95 thalamus spectra (48 patients and 47 HCs) were included. For the MEGAPRESS 
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data, 84 spectra (37 patients and 47 HCs) were included. Details of excluded data are 

provided in the Supplemental Participants and Methods. Spectral quality measures were 

good for both glutamate and Glx as reported in Tables S1 and S2. Mean metabolite levels, 

the fraction of cerebrospinal fluid and gray and white matter, and statistics after adjustment 

for sex, age, and smoking status are shown in Table 2 for all participants and in Table S3 for 

the subgroup with a schizophrenia diagnosis. A significant main effect of sex was found for 

Glx levels in dorsal ACC as described below, but no other significant main effects of sex, 

age, and smoking status were found for metabolite levels in the two regions.

Dorsal ACC: Glx.—The levels of Glx did not differ between antipsychotic-naïve patients 

and HCs (main effect of diagnosis insignificant (F1,98 = 0.21, p = .64). Adjustment for 

covariates did not change the results (Table 2) but revealed a significant main effect of sex 

due to higher levels in male individuals (p = .001). In addition, there was no difference when 

analyzing only patients with a schizophrenia diagnosis (p = .67; after including covariates: p 
= .48).

Dorsal ACC: Glutamate.—For glutamate levels, there were no significant group 

differences (p = .30) and adjustment for covariates (Table 2), and analyzing only patients 

with a schizophrenia diagnosis did not alter the results (p values = .93–.96).

In addition, adjustment for gray matter fraction or excluding participants scanned before the 

upgrade did not alter the Glx and glutamate findings (Supplemental Results).

Dorsal ACC: GABA.—The levels of GABA were lower in the antipsychotic-naïve patients 

compared with HCs (main effect of diagnosis: F1,83 = 4.79, p = .03) (Figure 1A) also when 

adjusting for sex, age, and smoking status (Table 2), but not when restricting the analysis to 

include only patients with a schizophrenia diagnosis (p = .28; after including covariates: p 
= .31). Similar results were obtained when adjusting for gray matter fraction, and a similar 

trend was seen when including only subjects scanned after the upgrade (Supplemental 

Results).

Left Thalamus: Glx.—The levels of Glx did not differ between antipsychotic-naïve 

patients and HCs (main effect of diagnosis insignificant: F1,94 = 0.24, p = .63). Similar 

results were found when adjusting for covariates (Table 2), restricting analyses to only 

patients with a schizophrenia diagnosis (p = .29; after including covariates: p = .20), or 

adjusting for gray matter fraction and excluding participants scanned before the upgrade 

(Supplemental Results).

Left Thalamus: Glutamate.—There was a trend for higher levels of glutamate in left 

thalamus of all antipsychotic-naïve patients compared with HCs after adjustment for the 

covariates (p = .10) (Table 2). The increase was borderline significant when restricting the 

analysis to include only patients with a schizophrenia diagnosis (p = .05) and significant 

after adjusting for covariates (F1,82 = 6.21, p = .01) (Figure 1B). Similar results were found 

after exclusion of participants scanned before the upgrade, and results were at trend level 

after adjustment for gray matter fraction (Supplemental Results).
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Association Between Glx and GABA Levels in Dorsal ACC and Cognitive Performance

Cognitive testing was completed in all HCs and all but 2 antipsychotic-naïve patients, 

although some patients did not complete the entire cognitive battery. The number of 

participants completing each test, mean scores for cognitive tests, and statistics for main 

effects of Glx, GABA, and diagnosis on cognition are provided in Table 3 and are briefly 

described below.

Glx Levels and Cognitive Performance: Attention.—There was a positive 

association between Glx levels and RVP A′ score in the combined group of antipsychotic-

naïve patients and HCs (p = .035) (Table 3 and Figure S4), although it was not significant 

when adjusting for multiple comparisons. The antipsychotic-naïve patients had significantly 

lower RVP A′ scores than the HCs (p < .001) (Table 3).

Glx Levels and Cognitive Performance: Spatial Working Memory.—There was a 

negative association between Glx levels and the logarithmically transformed SWM strategy 

score (higher score indicates worse performance) in the combined group of antipsychotic-

naïve patients and HCs (p = .005) (Table 3 and Figure S5) also after correcting for multiple 

comparisons. The logarithmically transformed SWM strategy score was not significantly 

higher in patients (Table 3).

Glx Levels and Cognitive Performance: Premorbid Intelligence.—There was no 

significant association between Glx levels and DART score (Table 3). Similar results were 

obtained when including glutamate levels in the model instead of Glx (Table S4).

GABA Levels and Cognitive Performance: Attention, Spatial Working Memory, 
and Premorbid Intelligence.—The main effects of GABA on all cognitive tests were 

insignificant (Table 3). Patients had significantly lower RVP A′ and DART scores compared 

with HCs but did not differ in logarithmically transformed SWM strategy scores (Table 3).

Association Between Glx Levels in Left Thalamus and Cognitive Performance

In explorative analyses, there were no significant associations between levels of Glx in 

thalamus and tests of cognitive performance (main effects: attention: p = .61; working 

memory: p = .77; premorbid intelligence: p = .69).

Associations Between Glx and GABA Levels as Well as Between Metabolites and Clinical 
Measures

Glx and GABA levels in dorsal ACC were positively associated in all participants (nPatients 

= 37, nHCs = 47, R = .28, p = .01) and were at trend level when analyzing HCs and patients 

separately (both ps = .06). Glx levels in thalamus were not associated with levels of Glx (p = 

.10) or GABA (p = .07) in dorsal ACC.

In the patients, there were no significant correlations between glutamate and GABA levels 

and Positive and Negative Syndrome Scale total scores or subscores, Global Assessment of 

Functioning social and occupational functioning scores, or Personal and Social Performance 

Scale scores.
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DISCUSSION

This study investigated the association between Glx and GABA levels and cognitive 

function in a large group of lifetime antipsychotic-naïve patients with schizophrenia or 

psychosis. Our main findings are that Glx levels in dorsal ACC of both patients and HCs are 

associated with SWM and at trend level with attention. Moreover, we found lower levels of 

GABA in a larger dorsal ACC voxel in patients with psychosis or schizophrenia and found 

higher glutamate levels in thalamus of patients with schizophrenia.

The positive association between Glx levels in dorsal ACC and performance on cognitive 

tests suggests that glutamatergic neurotransmission or metabolism is involved in the 

cognitive domains of attention and SWM. We found a positive association between Glx 

levels and cognitive function and no difference in Glx levels between the patients and HCs. 

This is in line with the existing literature of mainly medicated patients, where studies tend 

to find that whenever levels of glutamate, Glx, or glutamine/glutamate in the patient group 

are lower or similar compared with HCs, there is a positive association with cognitive 

performance (29,35,52–54). In contrast, a negative correlation is found when levels are 

higher in patients (30,55–57). Commonly, these studies suggest that there is an optimal 

range of glutamatergic metabolite levels for cognitive function, although the studies are 

very heterogeneous with regard to age span, medication status, cognitive tests included, 

anatomical area studied, and field strength of the scanner. An optimal range of activation 

for cognitive function is also found for cortical D1 and D2/3 receptors (58,59). However, 

we were not able to show an inverted U-curved association in our study, probably owing to 

small variation of Glx levels.

Patients performed significantly worse than HCs in the test of attention, and a similar but 

nonsignificant trend was seen for SWM. However, the association between Glx levels in 

dorsal ACC and cognitive function did not differ between patients and HCs. Therefore, 

factors other than Glx levels measured in rest may cause cognitive deficits in patients. 

First, a recent functional 1H-MRS study found that glutamate levels in dorsal ACC 

of HCs increased during a cognitive task, but in medicated patients this increase was 

delayed (60). Thus, the differences in cognitive function between patients and HCs may be 

caused by deficits in the dynamic increase of glutamatergic metabolites during a cognitive 

task rather than differences in resting levels. This might reflect deficient glutamatergic 

neurotransmission or dysfunction of metabolic processes during cognitive processing (61). 

In that case, our finding of a positive association might reflect a partial compensating 

effect of higher resting Glx levels in patients on a dysfunctional upregulation during 

cognitive performance. Second, neurotransmitter disturbances other than glutamatergic ones 

are believed to be implicated in cognitive deficits. Prefrontal dopaminergic function has 

also been related to optimal performance of attention and working memory (59,62,63), and 

dopamine receptors in the cortex are regulated by glutamate, among other neurotransmitters 

(64,65). The difference in cognitive function therefore may be due to insufficient 

glutamatergic modulation of the dopaminergic receptors in patients, which would not 

be reflected by 1H-MRS measures. Third, glutamatergic and GABAergic dysfunction in 

areas other than dorsal ACC may be related to cognitive deficits. Dorsolateral prefrontal 

cortex also plays a key role in cognitive function (66), although the majority of MRS 
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studies of dorsolateral prefrontal cortex did not find significant associations between GABA, 

glutamate, or Glx levels and cognitive performance (4,29,35,54,56).

GABA levels measured in a larger dorsal ACC voxel were not significantly correlated with 

cognitive performance. This is congruent with one study that did not find an association 

between GABA levels in medial prefrontal cortex and working memory in minimally treated 

patients. However, it contrasts with three studies of ACC or medial prefrontal cortex in 

medicated patients within a broad age range, where positive associations between GABA 

levels and tests of attention (34), working memory (33), and intelligence (31) were reported. 

We speculate whether these differences can be explained by age and medication status. 

GABA levels decline with age (33) and may be reduced by antipsychotic treatment (6), 

although this is not consistently reported (7). It is likely that the association between GABA 

levels and cognition changes with age and treatment, as is also indicated for glutamate (28).

In addition, we did not find an association between thalamic Glx levels and cognitive 

performance. Proper thalamic function has been associated with working memory and 

attention in preclinical studies (67–70), and especially the mediodorsal nuclei are believed 

to be related to cognitive deficits (27,71). Only 2 in vivo studies of first-episode patients 

exist, and these report a negative association between glutamine levels and working memory 

(28) but no significant association between glutamate levels in thalamus and cognition 

(28,54). However, a recent study of subjects at ultrahigh risk for psychosis found a positive 

association between thalamic glutamate and attention (72). Further studies are needed to 

clarify the possible association between glutamatergic metabolites in thalamus and cognitive 

performance.

In the whole group of antipsychotic-naïve patients with psychosis or schizophrenia, we 

found decreased GABA levels in dorsal ACC corresponding with a previous study of 

minimally treated patients (11) and our previous finding in a subsample of the patient group 

(7). In contrast, studies of the pregenual ACC or mPFC have mainly found increased GABA 

levels (1–6), which probably reflects the different receptor distribution of AMPA, NMDA, 

GABAA, and GABAB receptors in these two subregions of ACC (73). In thalamus, we 

found increased glutamate levels but not increased Glx levels in the 37 patients with a 

schizophrenia diagnosis, but not in the entire sample of patients also including those with 

a psychosis diagnosis (N = 48). Thus, increased glutamate levels seem to be associated 

with more severe psychopathology, which is in accordance with our previous findings that 

baseline thalamic glutamate can predict poor treatment outcome in initially antipsychotic-

naïve patients (7). However, there was no group difference in Glx levels, which might reflect 

that the difference in glutamatergic metabolites is small. Interestingly, approximately 80% 

of the thalamic voxel consisted of white matter (Table 2), suggesting that the glutamatergic 

abnormalities might be related to dysfunction in thalamic connections.

Metabolites estimated with 1H-MRS are commonly reported using either water or total 

creatine as a reference, and currently there is not consensus about one method being 

superior. We previously reported decreased glutamate levels in dorsal ACC when creatine 

scaled values were used, although they were not significant when using levels in institutional 

units (7). Similarly, we found no significant difference in dorsal ACC Glx or glutamate 
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levels in institutional units in antipsychotic-naïve patients compared with HCs, but we 

found borderline significant lower glutamate/creatine in patients in this study. Because 

total creatine did not differ between patients and HCs (Table S4), this might be explained 

by the fact that total creatine is assessed in the same acquisition as glutamate and other 

metabolites, whereas water is assessed separately. Thus, the glutamate/creatine ratio might 

be less influenced by, for example, motion and therefore may be able to capture minor 

group differences. However, it is also likely that we did not place our voxel where the 

glutamatergic disturbances are most pronounced given that two recent studies of medicated 

first-episode patients found lower glutamate levels in more dorsal regions of ACC (54,74).

Glx and GABA levels in dorsal ACC were correlated in patients and HCs, as was also 

previously found in a group of minimally treated patients (4).

Strengths of the current study are a large group of lifetime antipsychotic-naïve patients, 

short duration between MR scanning and cognitive testing, and assessment of both Glx and 

GABA. However, limitations should also be addressed. First, we used single voxel MRS 

limited by measures in a predefined area. Second, the MEGAPRESS sequence used did not 

suppress macromolecules that therefore contributed to the GABA signal in both patients and 

HCs (75). Third, the finding of a correlation between glutamate and GABA levels within 

the same voxel could be spurious (76). Fourth, preclinical studies are needed to clarify 

the relationship between MRS measures and glutamate involved in neurotransmission and 

metabolism. Finally, we chose 3 cognitive domains based on previous findings, but other 

cognitive tests may be associated with glutamate and GABA levels as well.

To conclude, our findings suggest that higher resting Glx levels in dorsal ACC are 

associated with improved cognitive function in both antipsychotic-naïve patients and HCs. 

Moreover, lower GABA levels in dorsal ACC seem to be involved in the pathophysiology 

of psychotic illness and higher thalamic glutamatergic levels in the pathophysiology of 

schizophrenia. Although the exact relationship among 1H-MRS measures of glutamatergic 

metabolites, neurotransmission, and metabolism remains to be established, the findings 

imply that glutamate-modulating compounds might be able to improve cognitive deficits in 

first-episode patients.
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Figure 1. 
Glutamate and GABA (gamma-aminobutyric acid) levels in antipsychotic-naïve patients 

(circles) and healthy control subjects (diamonds). (A) Levels of GABA in dorsal anterior 

cingulate cortex (ACC) in patients with schizophrenia or psychosis (n = 37) are significantly 

lower compared with healthy control subjects (n = 47). (B) Levels of glutamate in 

left thalamus in the subgroup of patients with a schizophrenia diagnosis (n = 37) are 

significantly higher compared with healthy control subjects (n = 46). Patients with a 
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psychosis diagnosis (n = 12) were removed from the analyses of left thalamus. Horizontal 

bars represent mean levels. *p < .05. IU, institutional units.
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