TABLE XXI.
Impact of NAS Vs. Handcrafted Models
Application | Dataset | Method | Accuracy | Latency/MAC | Flash |
---|---|---|---|---|---|
Inertial Odometry◦ | OxIOD | L-IONet TCN [231] | 2.82 m | 13.9M | 183 kB |
RoNiN TCN [232] | 0.42m | 220M | 2.1 MB | ||
TinyOdom TCN [59] | 1.24m-1.37 m | 4.64M-8.92M | 71 kB-118 kB | ||
Audio Keyword Spotting | Speech Commands | DS-CNN [9] | 92% | 5.54M | 52.5 kB |
MicroNets DS-CNN [8] | 95.3% - 96.5% | 16M-129M | 102 kB-612 kB | ||
μNAS-CNN [122] | 95.4-95.6% | 1.1M | 19 kB-37 kB | ||
Image Recognition | Visual Wake Words* | MBNetv2 [8] | 86% | 0.46s | 375 kB |
MicroNets MBNetv2 [8] | 78.1%-88% | 0.08s-1.13s | 230 kB-833 kB | ||
MNIST-10* | Bonsai [57] | 94.4% | 8.9 mS | 1.97 kB | |
SpArSe-CNN [86] | 95.8%-97% | 27mS-286mS | 2.4kB-15.9kB | ||
CIFAR-10B,* | Bonsai [57] | 73% | 8.2 mS | 1.98 kB | |
SpArSe-CNN [86] | 70.5%-73.4% | 0.49s-2.52s | 2.7 kB-9.9 kB | ||
μNAS-CNN [122] | 77.5% | - | 0.69kB |
Accuracy metric is relative trajectory error [232] (lower is better)
Device: STM32 Cortex-M4 and M7
Binary dataset
Handcrafted models