Skip to main content
. Author manuscript; available in PMC: 2023 Nov 15.
Published in final edited form as: IEEE Sens J. 2022 Oct 5;22(22):21362–21390. doi: 10.1109/jsen.2022.3210773

TABLE XXI.

Impact of NAS Vs. Handcrafted Models

Application Dataset Method Accuracy Latency/MAC Flash
Inertial Odometry OxIOD L-IONet TCN [231] 2.82 m 13.9M 183 kB
RoNiN TCN [232] 0.42m 220M 2.1 MB
TinyOdom TCN [59] 1.24m-1.37 m 4.64M-8.92M 71 kB-118 kB
Audio Keyword Spotting Speech Commands DS-CNN [9] 92% 5.54M 52.5 kB
MicroNets DS-CNN [8] 95.3% - 96.5% 16M-129M 102 kB-612 kB
μNAS-CNN [122] 95.4-95.6% 1.1M 19 kB-37 kB
Image Recognition Visual Wake Words* MBNetv2 [8] 86% 0.46s 375 kB
MicroNets MBNetv2 [8] 78.1%-88% 0.08s-1.13s 230 kB-833 kB
MNIST-10* Bonsai [57] 94.4% 8.9 mS 1.97 kB
SpArSe-CNN [86] 95.8%-97% 27mS-286mS 2.4kB-15.9kB
CIFAR-10B,* Bonsai [57] 73% 8.2 mS 1.98 kB
SpArSe-CNN [86] 70.5%-73.4% 0.49s-2.52s 2.7 kB-9.9 kB
μNAS-CNN [122] 77.5% - 0.69kB

Accuracy metric is relative trajectory error [232] (lower is better)

*

Device: STM32 Cortex-M4 and M7

B

Binary dataset

Inline graphic Handcrafted models