Skip to main content
. Author manuscript; available in PMC: 2023 Nov 15.
Published in final edited form as: IEEE Sens J. 2022 Oct 5;22(22):21362–21390. doi: 10.1109/jsen.2022.3210773

TABLE XXII.

Impact of Runtime Optimizations vs. No Optimizations

Application Dataset Method Accuracy Latency/MAC Flash
Human Activity Recognition Custom* CNN-TFLM [189] 85% 58 mS 275 kB
CNN-Cube.AI [189] 85% 14 mS 192 kB
Audio Keyword Spotting Speech Commands* CNN-TFLM [189] - 380 mS 288 kB
CNN-Cube.AI [189] 373 mS 247 kB
Image Recognition ImageNet MCUNet MbNetv2 [121] 60.3%-68.5% 68M-126M 1MB-2MB
MCUNetV2 MbNetv2 [121] 64.9%-71.8% 119M-256M 1MB-2MB
Pascal VOC MbNetv2+CMSIS [121] mAP: 31.6% 34M OOS
MCUNetV MbNetv2 [121] mAP: 51.4% 168M <2 MB
MCUNetV2 MbNetv2 [121] mAP: 64.6% 172M <1 MB
CIFAR-10@ CNN [164] 80.3% 456 mS < 1 MB
CNN-CMSIS [164] 80.3% 99 mS < 1 MB
*

Device: STM32 Cortex-M4

@

Device: STM32 Cortex-M7, OOS: Overflowed SRAM

Inline graphic Superior optimization techniques than comparing method in the same dataset class