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Distinct brain pathologies associated 
with Alzheimer’s disease biomarker-related 
phospho-tau 181 and phospho-tau 217 in App 
knock-in mouse models of amyloid-β 
amyloidosis

Yu Hirota,1,2 Yasufumi Sakakibara,1 Kyoko Ibaraki,1 Kimi Takei,1 Koichi M. Iijima1,3 

and Michiko Sekiya1,3

Phospho-tau 217, phospho-tau 231 and phospho-tau 181 in cerebrospinal fluid and plasma are promising biomarkers for the diagnosis 
of Alzheimer’s disease. All these p-tau proteins are detected in neurofibrillary tangles in brains obtained post-mortem from Alzheimer’s 
disease patients. However, increases in p-tau levels in cerebrospinal fluid and plasma during the preclinical stage of Alzheimer’s disease 
correlate with amyloid-β burden and precede neurofibrillary tangles in brains, suggesting that these p-tau proteins are indicative of 
amyloid-β-mediated brain pathology. In addition, phospho-tau 217 has greater sensitivity than phospho-tau 181, though it is unclear 
whether each of these p-tau variants contributes to the same or a different type of neuropathology prior to neurofibrillary tangle for
mation. In this study, we evaluated the intracerebral localization of p-tau in App knock-in mice with amyloid-β plaques without neuro
fibrillary tangle pathology (AppNLGF), in App knock-in mice with increased amyloid-β levels without amyloid-β plaques (AppNL) and in 
wild-type mice. Immunohistochemical analysis showed that phospho-tau 217 and phospho-tau 231 were detected only in AppNLGF 

mice as punctate structures around amyloid-β plaques, overlapping with the tau pathology marker, AT8 epitope phospho-tau 202/ 
205/208. Moreover, phospho-tau 217 and phospho-tau 202/205/208 colocalized with the postsynaptic marker PSD95 and with a ma
jor tau kinase active, GSK3β. In contrast and similar to total tau, phospho-tau 181 signals were readily detectable as fibre structures in 
wild-type and AppNL mice and colocalized with an axonal marker neurofilament light chain. In AppNLGF mice, these phospho-tau 181- 
positive structures were disrupted around amyloid-β plaques and only partially overlapped with phospho-tau 217. These results indi
cate that phospho-tau 217, phospho-tau 231 and a part of phospho-tau 181 signals are markers of postsynaptic pathology around 
amyloid-β plaques, with phospho-tau 181 also being a marker of axonal abnormality caused by amyloid-β burden in brains.
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Abbreviations: Aβ = amyloid-β; BSA = bovine serum albumin; CD68 = cluster of differentiation 68; CNPase = cyclic nucleotide 
phosphodiesterase; CSF = cerebrospinal fluid; EAAT2 = excitatory amino acid transporter 2; FSB = 1-fluoro-2,5-bis 
(3-carboxy-4-hydroxystyryl) benzene; GFAP = glial fibrillary acidic protein; GSK3β = glycogen synthase kinase 3β; 5-HT = 
5-hydroxytryptamine; Iba1 = ionized calcium-binding adapter molecule 1; LAMP1 = lysosomal-associated membrane protein 1; 
LC = locus coeruleus; MAP2 = microtubule-associated protein 2; NfL = neurofilament light chain; NFTs = neurofibrillary tangles; 
P2Y12 = purinergic receptor P2Y12; PBS = phosphate-buffered saline; PBS-T = PBS containing 0.1% Triton X-100; PET = Positron 
emission tomography; PSD95 = postsynaptic density protein 95; p-tau 181 = tau phosphorylated at Thr181; p-tau 217 = tau 
phosphorylated at Thr217; p-tau 231 = tau phosphorylated at Thr231; VAChT = vesicular acetylcholine transporter; VGAT = 
vesicular GABA transporter; VGLUT1 = vesicular glutamate transporter 1; WT = wild-type

Graphical Abstract

Introduction
Alzheimer’s disease is a progressive neurodegenerative disease 
and a major cause of senile dementia worldwide.1

Pathologically, Alzheimer’s disease is characterized by senile 
plaques composed of amyloid-β peptides (Aβ) and neurofibril
lary tangles (NFTs) composed of hyperphosphorylated 
microtubule-associated tau proteins, resulting in brain atro
phy.2 Investigations of the mechanisms underlying 
Alzheimer’s disease pathogenesis have indicated that the accu
mulation of Aβ in the brain induces chronic neuroinflamma
tion, tau pathology and irreversible neuron loss.3–5 Methods 

to definitively diagnose the preclinical stage of Alzheimer’s dis
ease are needed to develop disease-modifying treatments.

Positron emission tomography (PET) and the detection of 
biomarkers such as Aβ and tau in cerebrospinal fluid (CSF) 
and plasma are highly accurate methods of detecting brain 
pathology in patients with Alzheimer’s disease.6 Amyloid 
PET has revealed that Aβ accumulation in brains can be de
tected more than two decades before the clinical onset of 
Alzheimer’s disease.7–10 The level of Aβ42, a major constitu
ent of Aβ plaques, in CSF was found to correlate negatively 
with Aβ burden.11 The Aβ40-to-Aβ42 ratio in plasma, as de
termined by immunoprecipitation–mass spectrometry-based 
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methods, is a minimally invasive, cost-effective and highly 
sensitive blood-based biomarker for Alzheimer’s dis
ease.12,13 In contrast, tau-PET has shown that tau-positivity 
coincides with the clinical onset of Alzheimer’s disease and 
that affected brain areas correlate with clinical manifesta
tions.14 The levels of total tau and tau phosphorylated at 
Thr181 (p-tau 181) in CSF, in combination with Aβ, are add
itional diagnostic biomarkers for Alzheimer’s disease.15–17

Moreover, increases in the levels of neurofilament light chain 
(NfL), a general biomarker for neurodegeneration,18 in CSF 
and plasma are predictive of cognitive impairment and neu
rodegeneration in Alzheimer’s disease.19

In addition to p-tau 181, tau phosphorylated at Thr217 
(p-tau 217) and Thr231 (p-tau 231) in CSF and plasma is 
diagnostic of Alzheimer’s disease during the preclinical peri
od with high accuracy.16,20–24 Although all of these p-tau 
species are present in pretangles and NFTs in post-mortem 
Alzheimer’s disease brains,25–27 p-tau 181 and p-tau 217 le
vels in CSF begin to rise two decades before tau-PET positiv
ity in patients showing dominant inheritance of Alzheimer’s 
disease.28 The levels of p-tau 181 and p-tau 217 start to in
crease slightly before Aβ-PET positivity and correlate with 
Aβ pathology in cognitively unimpaired individuals.29,30

Interestingly, p-tau 217 detects Alzheimer’s disease slightly 
earlier than p-tau 181 during the preclinical period,24,28

whereas plasma p-tau 181 levels gradually increase from 
the preclinical stage of Alzheimer’s disease to mild cognitive 
impairment and dementia.16,31 Taken together, these find
ings indicate that increased levels of p-tau 181, p-tau 217 
and p-tau 231 are promising biomarkers for the detection 
of the preclinical stage of Alzheimer’s disease as being corre
lated with Aβ pathology.32 However, the mechanism under
lying the correlations between these p-tau species and Aβ 
pathology and whether these p-tau species are characteristic 
of the same or different brain pathologies before definitive 
NFT formation remain unclear.

The relationships of p-tau 181, p-tau 217 and p-tau 231 sig
nals with neuropathology induced by Aβ accumulation in 
brains were investigated using App knock-in mouse models. 
AppNLGF mice harbour three familial Alzheimer’s disease mu
tations, Swedish (NL), Arctic (G) and Beyreuther/Iberian (F) 
and exhibit cognitive deficits and neuroinflammation accom
panied by progressive Aβ pathology in the brain parenchyma, 
whereas AppNL mice carry only the Swedish (NL) mutation 
and overproduce human Aβ without the formation of Aβ pla
ques for up to 24 months.33,34 Neither AppNLGF nor AppNL 

mice develop NFTs or neuropil threads composed of tau aggre
gates, suggesting that these mouse models recapitulate the pre
clinical stage of Alzheimer’s disease. Immunohistochemical 
analysis using p-tau-specific antibodies in combination with a 
series of neuronal and glial marker antibodies revealed that 
p-tau 217, p-tau 231 and some p-tau 181 signals were asso
ciated with postsynaptic pathology around Aβ plaques, where
as p-tau 181 also reflects axonal abnormalities due to Aβ 
burden. These results suggested that the biomarkers p-tau 
217 and p-tau 181 represent distinct types of brain pathology 
induced by Aβ plaques before pretangle or NFT formation.

Materials and methods
Animals
Experiments were performed using 6- or 24-month-old male 
C57BL/6J and App knock-in (AppNL, AppNLGF) mice and 
24-month-old female C57BL/6J and AppNLGF mice. App 
knock-in mice on a C57BL/6J genetic background33 were 
obtained from the RIKEN Center for Brain Science (Wako, 
Japan) and maintained at the Institute for Animal 
Experimentation, the National Center for Geriatrics and 
Gerontology, as described previously.35 After weaning, all 
mice were housed socially in same-sex groups (3–5 animals 
per cage) in a controlled environment (constant temperature 
22 ± 1°C, humidity 50–60%) under a 12 h light/dark cycle 
(lights on at 7:00; lights off at 19:00), with access to food 
and water ad libitum. All handling and experimental proce
dures were performed in accordance with the NIH Guide 
for the Care and Use of Laboratory Animals and other na
tional regulations and policies with the approval of the 
Animal Care and Use Committee at the National Center 
for Geriatrics and Gerontology, Japan (approval number: 
2–45).

Tissue preparation
All animals were deeply anaesthetized by intraperitoneal ad
ministration of a combination of medetomidine (0.3 mg/ 
kg), midazolam (4.0 mg/kg) and butorphanol (5.0 mg/kg), 
and immediately perfused intracardially with ice-cold sa
line, followed by 4% paraformaldehyde in 0.1 M phosphate 
buffer , as previously described.35 Whole brains were col
lected and immersed in the same fixative at 4°C overnight. 
For cryoprotection, the fixed brains were transferred to 
20% and then 30% sucrose in 0.1 M phosphate buffer at 
4°C until the tissues sank. After freezing rapidly in cold 
isopentane, the brains were stored at −80°C until use. 
Brains were sectioned coronally at 25 μm with a cryostat 
(CM3050S; Leica Biosystems, Germany). Tissue sections 
were stored in cryoprotectant [30% glycerol and 30% ethyl
ene glycol in phosphate-buffered saline (PBS)] at −20°C un
til immunostaining.

Immunohistochemistry
Immunohistochemical staining was performed as described 
previously.35 Briefly, tissue sections were washed with PBS 
containing 0.1% Triton X-100 (PBS-T) and blocked in a buffer 
containing 5% normal goat serum, 0.5% bovine serum albu
min (BSA), and 0.3% Triton X-100 in PBS for 1 h. The sec
tions were then incubated overnight at 4°C with primary 
antibodies (Supplementary Table 1) diluted in 3% normal 
goat serum, 0.5% BSA and 0.3% Triton X-100 in PBS. For 
anti-Aβ immunostaining, antigen retrieval was performed by 
incubating the sections for 5 min in 70% formic acid before 
blocking. The tissues were then washed three times with 
PBS-T and incubated for 2 h with appropriate fluorescent 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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secondary antibodies (Supplementary Table 1) in the same di
lution buffer. The sections were again washed three times with 
PBS-T and incubated with 4’,6-Diamidino-2-phenylindole 
(DAPI) (2 μg/mL in PBS) for 5 min. For the detection of Aβ 
amyloidosis, the tissues were stained with 1-fluoro-2,5-bis 
(3-carboxy-4-hydroxystyryl) benzene (FSB) solution (10 μg/mL 
in 50% ethanol) for 30 min. The sections were mounted in 
Aqua-Poly/Mount (Polysciences Inc., USA) and stored at 
4°C until image acquisition.

Image acquisition and analysis
Images were acquired using either an LSM700 or an 
LSM780 confocal laser-scanning microscope (Carl Zeiss, 
Germany) fitted with 20×, 40× or 63× objectives. Images 
were acquired from the cortex, the CA1 region of the hippo
campus and the locus coeruleus (LC). Laser and detection 
settings were maintained for each immunostaining. All im
age processing and analysis were performed with Fiji soft
ware. Z-stack confocal images were reconstructed with a 
maximum intensity projection. For high-magnification 
images, as indicated by the dashed orange squares in the fig
ures, orthogonal views of confocal z-stacks were recon
structed using a Fiji plugin . In the orthogonal views of the 
white dashed line in the high-magnification images, the x- 
and y-axes were aligned to focus on the p-tau 231 or AT8 
signal. For three-dimensional (3D) reconstructions, images 
were processed using a plugin (volume viewer) in max pro
jection mode. In the cross-sectional view of the green line 
in the reconstructed 3D image, the x- and z-axes were aligned 
to focus on the AT8 signal using the slice and borders mode 
in the volume viewer plugin.

Quantification of the ratio of 
p-tau-positive Aβ plaques and the 
number of p-tau signals around Aβ 
plaques
To quantify the number of Aβ plaques associated with p-tau 
signals in the cortical regions, we captured images using an 
LSM 700 confocal microscope with a 20× objective. The 
number of total Aβ plaques and that of p-tau-positive Aβ pla
ques were manually counted from acquired images by an un
biased individual. The values were expressed as the ratio of 
the number of p-tau-positive Aβ plaques to the number of to
tal Aβ plaques. The number of p-tau-positive signals around 
Aβ plaques was manually counted from acquired images by 
an unbiased individual. The values were expressed as the 
number of p-tau signals per Aβ plaque.

Quantification of the rate of 
colocalization of p-tau signals
To quantify the rate of colocalization of p-tau punctate sig
nals in the cortical regions, we captured images using an 
LSM 700 confocal microscope with a 40× objective. Each 

p-tau signal was manually counted from acquired images 
by an unbiased individual and the rate of colocalization 
was calculated between p-tau 217 and p-tau 202/205/208 
(AT8), p-tau 231 and p-tau 202/205 (AH36), p-tau 217 
and p-tau181, p-tau 217 and PSD95, p-tau 231 and PSD95 
or p-tau 181 and PSD95.

Statistical analysis
The data are presented as the mean ± standard error of the 
mean. Unpaired Student’s t-test (GraphPad Prism 9, 
GraphPad software) was used to determine statistical signifi
cance (*P < 0.05, **P < 0.01 and ***P < 0.001).

Data availability
All the data generated or analysed during this study are in
cluded in this published article.

Results
Detection of p-tau 217, p-tau 231 and 
p-tau 202/205/208 (AT8) signals as 
punctate structures around Aβ 
plaques in the brains of AppNLGF mice
Since the appearance of p-tau 181, p-tau 217 and p-tau 231 
in the CSF and blood correlates with Aβ pathology but not 
with NFT pathology, we utilized App knock-in mice with 
massive Aβ plaque in the brain parenchyma without 
NFTs (AppNLGF mice) to investigate the relationships be
tween the locations of these p-tau signals and Aβ-induced 
neuropathology. We chose to use App knock-in mice ra
ther than App transgenic mice because transgenic overex
pression of App by itself causes axonal transport 
defects36–39 and may affect the distribution and metabol
ism of axonal proteins, including tau. As age-matched con
trols, we utilized App knock-in mice with increased soluble 
Aβ levels but no Aβ plaques (AppNL mice) and their genetic 
background C57BL/6J wild-type (WT) mice without ex
pression of human Aβ.

The brain sections from 6- and 24-month-old male 
AppNLGF, AppNL and WT mice were stained with antibodies 
against p-tau 217 and p-tau 231, which are CSF and plasma 
biomarkers of the preclinical stage of Alzheimer’s dis
ease.21,23,24 These antibodies detected p-tau 217 and p-tau 
231 signals in the cortex (Fig. 1A and B) and hippocampus 
(Supplementary Fig. 1A and B) of AppNLGF mice, while no 
clear signal was detected in the brains of either AppNL or 
WT mice (Fig. 1A and B). The signals in AppNLGF mice ap
peared as punctate structures closely associated with Aβ pla
ques (Fig. 1E and F). The AT8 epitope p-tau 202/205/20840

is a marker for NFT and neuritic pathology in the brains of 
patients with Alzheimer’s disease and mouse models of 
Alzheimer’s disease.27,41 Like p-tau 217 and p-tau 231, 
p-tau 202/205/208 (AT8) signals were only detected in the 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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brains of AppNLGF mice as punctate structures around Aβ 
plaques (Fig. 1C and G). Similar staining patterns of p-tau 
217, p-tau 231 and p-tau 202/205/208 (AT8) were observed 
in 24-month-old female AppNLGF mice (Supplementary Fig. 
2A, B and C).

To ask whether these p-tau signals were increased along 
with the exacerbation of Aβ pathology, we quantified the ra
tio of the number of p-tau 217- or p-tau 231-positive Aβ pla
ques to that of the total number of Aβ plaques in 6- and 
24-month-old AppNLGF mice. Compared with 6-month-old 

Figure 1 P-tau 217, 231, 202/205/208 (AT8) and 181 are present around Aβ plaques in AppNLGF mice. Representative images of 
cortices from frozen coronal brain sections immunostained with antibodies against p-tau 217 (A, E), p-tau 231 (B, F), p-tau 202/205/208 (AT8) (C, 
G), p-tau 181 (D, H), total tau (I) and NfL (J) in combination with an anti-Aβ antibody. Higher magnification views of the dashed orange squares in 
A–D are shown in E–H, respectively. Scale bars, 100 μm in A–D, I–J and 10 μm in E–H.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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mice, the ratio of p-tau-positive Aβ plaques was significantly 
increased in 24-month-old AppNLGF mice (Supplementary 
Fig. 3A, B and D). In addition, the number of p-tau 217 or 
p-tau 231 signals around Aβ plaque was significantly in
creased in 24-month-old AppNLGF mice than in 6-month-old 
AppNLGF mice (Supplementary Fig. 3A, B and E). Taken to
gether, these results indicate that p-tau 217, p-tau 231 and 
p-tau 202/205/208 (AT8) signals are present in similar punc
tate structures and are closely associated with Aβ plaques in 
mouse brains.

Detection of p-tau 181 signals as fibre 
structures in the brains of WT and 
AppNL mice and disruption of these 
structures around Aβ plaques in 
AppNLGF mice
The concentration of p-tau 181 in CSF has long been used in 
clinical practice as a biomarker for Alzheimer’s disease. 
Increases in plasma p-tau 181 have also been found to differ
entiate Alzheimer’s disease from non-Alzheimer’s disease and 
predict cognitive decline during the preclinical and prodromal 
stages of Alzheimer’s disease.16,31,42,43 Interestingly, p-tau 
217 concentrations in CSF and plasma have been found to 
be more sensitive than p-tau 181 in detecting Alzheimer’s dis
ease during preclinical stages.20,44,45 To determine whether 
the localizations of p-tau 181 and p-tau 217 are similar, brain 
sections from 6- and 24-month-old AppNLGF, AppNL and WT 
mice were stained with an antibody against p-tau 181. In con
trast to p-tau 217, p-tau 231 and p-tau 202/205/208 (AT8) 
(Fig. 1A–C and Supplementary Fig. 1A–C), p-tau 181 signals 
were detected as fibre structures of the cortex and hippocam
pus in all three mouse genotypes (Fig. 1D and Supplementary 
Fig. 1D). However, p-tau 181 signals were present as aberrant 
fibre structures around Aβ plaques in AppNLGF mice (Fig. 1D 
and H). Similar staining patterns of p-tau 181 were observed 
in 24-month-old female AppNLGF mice (Supplementary Fig. 
2D).

To ask whether these p-tau 181-positive aberrant fibre struc
tures were increased along with the exacerbation of Aβ path
ology, we quantified the ratio of the number of Aβ plaques 
associated with p-tau 181-positive aberrant fibre structures 
to that of the total number of Aβ plaques in 6- and 
24-month-old AppNLGF mice. Compared with 6-month-old 
mice, the ratio of p-tau-positive Aβ plaques was significantly 
increased in 24-month-old AppNLGF mice (Supplementary 
Fig. 3C and F). These distribution patterns were similar to 
those of total tau, although total tau was much more abundant 
and ubiquitous than p-tau 181 (Fig. 1I and Supplementary Fig. 
1E). To determine whether prominent axonal degeneration oc
curs in AppNLGF mice, brain sections were stained with an anti
body against NfL, a biomarker of neurodegeneration in many 
neurodegenerative conditions.18,19,46,47 Similar to total tau, 

Figure 2 P-tau 217, 231, 202/205/208 (AT8) and 202/205 
(AH36) colocalize, but p-tau 181 does not. Representative 
images of cortices from frozen coronal brain sections 
immunostained with antibodies against (A) p-tau 217 and p-tau 202/ 
205/208 (AT8), (B) p-tau 231 and p-tau 202/205 (AH36), (C) p-tau 
217 and p-tau 231 and (D, E) p-tau 181 and p-tau 217. Aβ plaques 
are detected by staining with FSB. Scale bars, 20 µm. Higher 
magnification views of the dashed orange squares are shown on the 
right side. White arrows show colocalization. Scale bars, 2.5 μm.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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NfL was abundant and ubiquitous in all three mouse geno
types, including AppNLGF mice, although the NfL signal was 
disrupted in areas of Aβ plaques (Fig. 1J and Supplementary 
Fig. 1F). Taken together, these results indicate that the distribu
tion pattern of p-tau 181 differs from that of p-tau 217-, p-tau 
231- or p-tau 202/205/208 (AT8) in the brains of AppNLGF 

mice.

Colocalization of p-tau 217, p-tau 231 
and 202/205/208 (AT8), but not p-tau 
181, with amyloid plaques in AppNLGF 

mice
Because the punctate structures of p-tau 217, p-tau 231 and 
p-tau 202/205/208 (AT8) were similar (Fig. 1A–C and 1E– 
G), brain sections from 24-month-old AppNLGF mice were 
stained with antibodies against p-tau 217 and p-tau 202/ 
205/208 (AT8), against p-tau 231 and p-tau 202/205 
(AH36) or against p-tau 217 and p-tau 231. As expected, 
each of these pairs of signals colocalized around Aβ plaques 
(Fig. 2A–C). Quantification of the rate of colocalization of 
p-tau 217 and p-tau 202/205/208 (AT8) around four amyl
oid plaques showed that an average of 82.0% of punctate 
signals positive for p-tau 217 colocalized with those of 
p-tau 202/205/208 (AT8). Similarly, an average of 91.6% 
of punctate signals positive for p-tau 217 colocalized with 
those of p-tau 231. In contrast, co-staining of brain sections 
from 24-month-old AppNLGF mice with antibodies against 
p-tau 181 and p-tau 217 showed that the majority of p-tau 
181 signals did not colocalize with those of p-tau 217 
(Fig. 2D), although some did (Fig. 2E). Quantification of 
the rate of colocalization of p-tau 181 and p-tau 217 around 
four amyloid plaques showed that an average of 12.5% of 
punctate signals positive for p-tau 181 colocalized with those 
for p-tau 217. Taken together, these results suggest that sig
nals for both p-tau 181 and p-tau 217 are altered around Aβ 
plaques, although they may reflect different aspects of neur
onal pathology induced by Aβ burden in the mouse brain.

Absence of tau pathology positive for 
p-tau 217, p-tau 231 and p-tau 181 in 
the LC of AppNLGF mouse brains
The LC noradrenergic neurons in the brainstem are among the 
earliest brain regions to develop NFT pathology in patients 
with Alzheimer’s disease. To determine whether p-tau 217 or 
p-tau 231 was present in the LC of aged mouse brains, brain 
sections containing LC regions from 24-month-old AppNLGF, 
AppNL and WT mice were stained with antibodies against 
p-tau 217 or p-tau 231, along with antibodies against tyrosine 
hydroxylase, a marker for noradrenergic neurons. Neither 
p-tau 217 nor p-tau 231 was detected in the LC of all geno
types, suggesting that either ageing or Aβ pathology in the cor
tex was not sufficient to induce tau phosphorylation at these 

Figure 3 P-tau 202/205/208 (AT8) is not present at 
dystrophic neurites or presynaptic terminals. Representative 
images of cortices from frozen coronal brain sections immunostained 
with (A) antibodies against p-tau (217, 202/205/208:AT8 or 181) and 
LAMP1, a marker of dystrophic neurites. Aβ plaques are stained with 
FSB. (B) antibodies against p-tau AT8 and the glutamatergic presynaptic 
marker VGLUT1, the GABAergic presynaptic marker VGAT, the 
cholinergic terminal marker VAChT or the serotonergic terminal 
marker 5-HT. Scale bars, 20 μm in each left panel. Each right panel 
shows a higher magnification view of the corresponding dashed orange 
squares; scale bars, 2.5 μm.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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sites in the LC (Supplementary Fig. 4A and B). To determine 
whether p-tau 181 and total tau were accumulated and formed 
tau pathology in the noradrenergic neurons of the LC, brain 
sections of aged AppNLGF, AppNL and WT mice were stained 
with antibodies against p-tau 181 and total tau, but there 
were no differences in their staining patterns in any of these 
mice (Supplementary Fig. 4C and D). These results confirmed 
that neither ageing nor Aβ pathology in the cortex is sufficient 
to induce p-tau 217-, p-tau 231- or p-tau 181-positive tau path
ology in the LC of the AppNLGF mouse brain.

Colocalization of p-tau 217, p-tau 231 
and p-tau 202/205/208 (AT8) with 
PSD95, a marker for postsynaptic 
density of glutamatergic neurons, in 
the brains of AppNLGF mice
To determine the subcellular localization of punctate struc
tures positive for p-tau 217 and p-tau 202/205/208 (AT8) 
in neurons, we first examined whether these signals coloca
lized with dystrophic neurites around Aβ plaques. 
Co-staining of brain sections from 24-month-old AppNLGF 

mice with antibodies against p-tau 217 or p-tau 202/205/ 
208 (AT8) and lysosomal-associated membrane protein 1 
(LAMP1), a marker for dystrophic neurites, showed that nei
ther p-tau 217 nor p-tau 202/205/208 (AT8) signals over
lapped with those of LAMP1 (Fig. 3A). In addition, p-tau 
181 did not colocalize with LAMP1 (Fig. 3A). These results 
are consistent with a recent report showing that LAMP1 sig
nals are more abundant than p-tau 202/205/208 (AT8) sig
nals and that they colocalize weakly around Aβ plaques in 
the hippocampus of the human brain.48

Tau is a microtubule-binding protein that normally loca
lizes to axons.49,50 To determine whether p-tau 217- and 
p-tau 202/205/208 (AT8)-positive punctate signals localize 
to axons or presynaptic terminals, brain sections from 
24-month-old AppNLGF mice were stained with antibodies 
against p-tau 202/205/208 (AT8) and various neurotransmit
ter or presynaptic markers, including the glutamatergic neur
onal vesicle marker vesicular glutamate transporter 1 
(VGLUT1), the gamma amino butyric acid (GABA)-ergic 
neuronal vesicle marker vesicular GABA transporter 
(VGAT), the cholinergic neuronal vesicle marker vesicular 
acetylcholine transporter(VAChT) and the serotonergic neur
onal marker 5-hydroxytryptamine (5-HT) (Fig. 3B), as well as 
with the Bassoon, a marker for presynaptic cytomatrix pro
tein (Fig. 4A). None of these marker proteins colocalized 
with p-tau 202/205/208 (AT8), although a cross-sectional 
view from 3D reconstruction revealed that p-tau 202/205/ 
208 (AT8) signals were often adjacent to those of Bassoon, 
a marker for presynaptic terminals (Fig. 4B).

Under pathological conditions, tau proteins can erroneous
ly localize to or be locally translated in the dendrites and post
synapses of the brains of patients with Alzheimer’s disease and 
mouse models of Alzheimer’s disease.51–55 Brain sections from 
24-month-old AppNLGF mice were therefore stained with 

antibodies against p-tau 202/205/208 (AT8) and micro
tubule-associated protein 2 (MAP2), a marker for cell bodies 
and dendrites of mature neurons, or postsynaptic density pro
tein 95 (PSD95), a marker for postsynaptic density. Although 
the signals of p-tau 202/205/208 (AT8) and MAP2 did not 
clearly overlap (Fig. 4D), p-tau 202/205/208 (AT8) and 
PSD95 signals showed colocalization (Fig. 4A). A cross- 
sectional view of a 3D reconstruction confirmed that p-tau 
202/205/208 (AT8) and PSD95 signals overlapped (Fig. 4C) 
and were often adjacent to MAP2 signals (Fig. 4D). To further 
confirm this result, brain sections from 24-month-old 
AppNLGF mice were co-stained with antibodies against p-tau 
217 or p-tau 231 and PSD95. Quantification of the rate of co
localization of p-tau signals and PSD95 around three amyloid 
plaques revealed that an average of 81.0% of p-tau 217-, 
83.3% of p-tau 231- and 83.5% of p-tau 202/205/208 
(AT8)-positive punctate signals colocalized with PSD95 
(Fig. 4A and E). In contrast, most p-tau 181-positive punctate 
signals did not colocalize with PSD95, although an average of 
7.7% of p-tau 181 signals did (Fig. 4F).

Next, to determine the subcellular localization of p-tau 
181-positive structures in neurons, brain sections from 
24-month-old AppNLGF, AppNL and WT mice were 
co-stained with antibodies against p-tau 181 and an axonal 
marker NfL. The p-tau 181 signals were well colocalized 
with NfL signals in all genotypes (Fig. 4G, inset with orange 
squares), and these structures were disrupted around Aβ pla
ques in AppNLGF mice (Fig. 4G, inset with green square). In 
contrast, p-tau 231-positive punctate signals were not colo
calized with NfL, as expected (Fig. 4H). Taken together, 
these results suggested that p-tau 217, p-tau 231 and a frac
tion of p-tau 181 are associated with postsynaptic pathology 
around Aβ plaques, while p-tau 181 signals are also asso
ciated with axonal abnormalities in the brain.

p-tau 202/205/208 (AT8) did not 
colocalize with glial markers in the 
brains of AppNLGF mice
Microgliosis has been observed in the brains of patients with 
Alzheimer’s disease, with recent studies showing that micro
glial cells around Aβ plaques engulf tau proteins and induce 
their propagation in mouse models.56,57 To determine whether 
punctate signals positive for p-tau 202/205/208 (AT8) around 
Aβ plaques colocalized with microglial cells, brain sections 
from AppNLGF mice were stained with antibodies against 
p-tau 202/205/208 (AT8) and markers for the active microglial 
marker, ionized calcium-binding adapter molecule 1 (Iba1); 
the resting microglial marker, purinergic receptor P2Y12 
(P2Y12) and the microglial lysosome marker, cluster of differ
entiation 68 (CD68). None of these microglial markers, how
ever, colocalized with p-tau 202/205/208 (AT8) (Fig. 5A).

Astrocytes around Aβ plaques are also thought to be in
volved in phagocytosis.58–62 To determine whether p-tau 
202/205/208 (AT8) signals colocalize with astrocytes, mouse 
brain sections were co-stained with antibodies against p-tau 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac286#supplementary-data
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Figure 4 Colocalization of p-tau 217, 231 and 202/205/208 (AT8) with a postsynaptic marker, PSD95. (A) Representative images of 
cortices from frozen coronal brain sections immunostained with antibodies against p-tau 202/205/208 (AT8) and the pan-presynaptic marker 
Bassoon or the glutamatergic postsynaptic marker PSD95. (B, C) 3D images reconstructed using the Fiji volume viewer plugin, showing that AT8 
colocalized with PSD95, but not with Bassoon. A cross-sectional view along the green line in the 3D images is shown. (D–F) Co-immunostaining of 
cortices with antibodies against (D) AT8 and the neuronal dendritic marker MAP2, (E-F) p-tau 217, 231 or 181 and PSD95. Scale bars, 20 μm. The 
right panel shows higher magnification views of the corresponding dashed orange squares; scale bars, 2.5 μm. White arrows show colocalization. 
(G) Representative images of cortices immunostained with antibodies against p-tau 181 and the axonal marker NfL. Aβ plaques are stained with 
FSB. Scale bars, 100 μm. The bottom panel shows higher magnification views of the corresponding dashed orange and green squares; scale bars, 
10 μm. Orange arrows show aberrant fibre structures. (H) Representative images of cortices immunostained with antibodies against p-tau 231 
and the axonal marker NfL. Aβ plaques are stained with FSB. Scale bars, 20 μm. Orthogonal views of different planes (yz, xz) of higher magnification 
images from the corresponding dashed orange squares are shown on the bottom. Scale bars in the orthogonal views, 2.5 µm.
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Figure 5 Glial markers do not colocalize with p-tau 202/205/208 (AT8) in the brain of AppNLGF mice. Representative images of 
cortices from frozen coronal brain sections immunostained with (A) antibodies against p-tau 202/205/208 (AT8) and the microglial markers Iba1, 
P2Y12 and CD68 antibodies, (B) antibodies against AT8 and the astrocyte markers GFAP and EAAT2 and (C) antibodies against AT8 and the 
oligodendrocyte marker CNPase. The two AT8 images in B were analysed using sections co-stained with GFAP and EAAT2, with colocalizations 
examined in the same images as AT8 signals. Scale bars, 20 µm. Orthogonal views of different planes (yz, xz) of higher magnification images from 
the corresponding dashed orange squares are shown on the right; Scale bars in the orthogonal views, 2.5 µm.
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202/205/208 (AT8) and the reactive astrocyte marker, glial fi
brillary acidic protein (GFAP) or the resting astrocyte marker, 
excitatory amino acid transporter 2 (EAAT2). Neither of these 
astrocyte proteins, however, colocalized with p-tau 202/205/ 
208 (AT8) (Fig. 5B). In addition, p-tau 202/205/208 (AT8) 
did not colocalize with the oligodendrocyte marker cyclic nu
cleotide phosphodiesterase (CNPase) (Fig. 5C). Taken to
gether, these results suggest that p-tau- and PSD95-positive 
punctate structures around Aβ plaques are not likely engulfed 
by glial cells in the brains of AppNLGF mice.

Colocalization of p-tau 217, PSD95 
and an active form of GSK3β in the 
brains of AppNLGF mice
Glycogen synthase kinase 3β (GSK3β) is a major kinase re
sponsible for tau phosphorylation, including phosphoryl
ation at Ser202, Thr205, Ser208, Thr217 and Thr231 
residues.63–65 To determine whether GSK3β colocalizes 
with these p-tau molecules and PSD95, brain sections from 
AppNLGF mice were stained with antibodies against the ac
tive form of GSK3β, p-tau 217 and PSD95. The results 
showed the colocalization of these three proteins (Fig. 6, 
white arrows and insets with orange squares), suggesting 
that tau phosphorylation by GSK3β could occur at postsy
napses in the AppNLGF mouse brain.

Discussion
Tau proteins are hyperphosphorylated at multiple sites and 
aggregated into NFTs in Alzheimer’s disease brains.66–70

Among these tau proteins, p-tau 181, p-tau 217 and p-tau 
231 in CSF and plasma are regarded as diagnostic biomarkers 
for Alzheimer’s disease.6,32,71,72 Immunohistochemical stud
ies using brains obtained post-mortem from patients with 
Alzheimer’s disease have shown that p-tau 181, p-tau 217 
and p-tau 231 are present in pretangles and matured NFTs 
in neurons and that the levels of these proteins correlate posi
tively with Aβ burden,25,26 suggesting that these p-tau species 
may reflect early as well as late stages of NFT pathology in 
Alzheimer’s disease pathogenesis. Interestingly, however, in
creased levels of these p-tau proteins in CSF and plasma pre
cede tau-PET positivity and well predict Aβ-PET positivity 
during the preclinical stage of Alzheimer’s disease.28,29

Moreover, studies in mouse models of familial Alzheimer’s 
disease and familial Danish dementia have shown that extra
cellular amyloidosis is sufficient to increase p-tau 181 and 
p-tau 217 levels in CSF in the absence of tau tangles.73 In 
this study, we demonstrated that p-tau 217, p-tau 231 and a 
fraction of p-tau 181 were detected as punctate structures 
around Aβ plaques only in AppNLGF mice, but not in AppNL 

or WT mice, suggesting that these p-tau molecules represent 
brain pathology induced by Aβ burden.

Our findings also suggest that p-tau 181 and p-tau 217 
may represent distinct aspects of neuronal pathology caused 
by Aβ plaques in the brains. Recent studies have consistently 
reported that elevated levels of p-tau 181, p-tau 217 and 
p-tau 231 in CSF and plasma accurately differentiate 
Aβ-positive from Aβ-negative individuals among both 
cognitively unimpaired and cognitively impaired indivi
duals.16,24,28,44,74,75 Several studies have also reported that 
p-tau 217 is slightly more sensitive than p-tau 181,30,45,75

suggesting that these p-tau species may reflect different 

Figure 6 Colocalization of p-tau 217, PSD95 and the active form of GSK3β in AppNLGF mice. Representative images of cortices from 
frozen coronal brain sections immunostained with antibodies against the active form of GSK3β (nonphospho-GSK3β) and PSD95 or p-tau 217. Aβ 
plaques are detected by staining with FSB. Scale bars, 20 µm. Higher magnification views of the corresponding dashed orange squares are shown in 
the right panel; scale bars, 2.5 µm. White arrows indicate colocalization.
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aspects of brain pathologies. We found that p-tau 217 was 
specifically detected as punctate structures around Aβ pla
ques in the AppNLGF mouse brains and only a part of these 
structures overlapped with p-tau 181. In contrast, p-tau 
181 was readily detectable as fibre structures in WT and 
AppNL mouse brains, whereas p-tau 181 signals formed en
larged aberrant fibres around the areas of Aβ plaques in the 
AppNLGF mice. These results suggest that p-tau 217 and 
p-tau 181 may represent a distinct type of neuritic pathology 
around Aβ plaques. These quantitative and qualitative differ
ences between p-tau 181 and p-tau 217 may affect their sen
sitivity in detecting the disease stages of Alzheimer’s disease.

Tau is a microtubule-binding protein that normally loca
lizes to axons,49 and is also known to regulate synaptic plasti
city in the postsynaptic compartment.54,76 Under pathological 
conditions, tau proteins are accumulated in the soma, den
drites and postsynapses of neurons.49–55 In addition, micro
glia around Aβ plaques have been shown to actively engulf 
and release phosphorylated-tau proteins, which may contrib
ute to the propagation of tau in the brain.56,57 To identify the 
subcellular localization of p-tau signals around Aβ plaques, 
we performed immunohistochemical analyses with antibodies 
against various neuronal and glial marker proteins. This sys
tematic analysis revealed that p-tau 217-, p-tau 231- and a 
part of p-tau 181-positive punctate structures around Aβ pla
ques colocalized with a postsynaptic marker PSD95, while 
p-tau 181-positive fibre structures overlapped with the axonal 
damage marker NfL. These results further support the hy
pothesis that p-tau 217 and p-tau 181 signals may represent 
a distinct type of neuronal pathology around Aβ plaques. 
Interestingly, recent reports have shown that increased plasma 
p-tau 217 is the most sensitive biomarker for predicting future 
cognitive decline at the preclinical stage,77 while increased 
plasma p-tau 181 is the most sensitive biomarker for predict
ing cognitive worsening at the prodromal stage.31,43

Tau proteins can be locally translated from mRNA trans
ported to the postsynaptic region and this translation is regu
lated by neuronal activity at excitatory synapses stimulated 
by glutamate.78,79 In the context of Alzheimer’s disease, 
Aβ abnormally stimulates α-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid and N-methyl-D-aspartic acid recep
tors at postsynapses and activates kinases such as Fyn kinase 
and GSK3β,52,80 which can phosphorylate tau proteins at 
Alzheimer’s disease related sites.64,65 These reports suggest 
that p-tau proteins could be phosphorylated in the postsynaptic 
region of the Alzheimer’s disease brains. Supporting this, we 
found that p-tau 217 colocalized with activated GSK3β along 
with a postsynaptic marker, PSD95, suggesting that Aβ path
ology may cause aberrant postsynaptic activity, which induces 
local translation of tau and subsequent tau phosphorylation at 
postsynaptic sites. Increased levels of p-tau 217, p-tau 231 and 
p-tau 181 in CSF and plasma may therefore reflect aberrant ac
tivity in the postsynapses surrounding Aβ plaques, which may 
be related to the neuronal hyperexcitability observed in the 
early stage of Alzheimer’s disease.81,82

Tau proteins are truncated and secreted by neurons into 
the extracellular space and most are detected in the CSF as 

N-terminal fragments.44,83,84 The results of the present study 
showed that p-tau 217-, p-tau 231- and some p-tau 
181-positive signals localized around Aβ plaques, although 
it was unclear whether these p-tau species were full-length 
or truncated forms of tau. Moreover, the mechanisms by 
which these p-tau proteins are secreted into the CSF and plas
ma remain unknown. Elucidation of these mechanisms may 
enable the utilization of soluble biomarkers to evaluate po
tential treatments for Alzheimer’s disease.

Six tau isoforms with three microtubule-binding domain 
repeats (3R tau) or four microtubule-binding repeats (4R 
tau) are expressed in human brain and aggregated into tau 
pathologies in patients with Alzheimer’s disease.85 One of 
the limitations of this study using mouse models is that 
only three 4R tau isoforms are expressed in the mouse 
brain.51,86 Although the primary structures of human and 
mouse tau proteins are highly conserved, they differ in sev
eral amino acids, especially in their N-terminal regions. 
These differences may influence their ability to aggregate, 
their phosphorylation profile and their metabolism. 
Additional studies using human tau and AppNLGF double 
knock-in mice, which express all six isoforms of human 
tau with Aβ amyloidosis,84 may address these issues.

Most importantly, key findings from mouse models must 
be validated in human brains. A recent study using post- 
mortem Alzheimer’s disease brains demonstrated that 
p-tau 217 was detected in NFTs and neuropil threads, which 
are also positive for p-tau 181, 202, 202/205, 231 and 369/ 
404.25 Interestingly, p-tau 217 was colocalized with granulo
vacuolar degeneration bodies and multi-vesicular bodies mar
kers.25 However, since increases in the level of p-tau 217, 
p-tau 231 and p-tau 181 in CSF and plasma are well corre
lated with Aβ plaques before NFTs formation and the brains 
used in the study were from the advanced stage of Alzheimer’s 
disease,25 it will be important to analyse p-tau signals in the 
brains at the preclinical stage of Alzheimer’s disease.

Conclusion
This study demonstrated that the CSF and plasma 
Alzheimer’s disease biomarkers p-tau 181 and p-tau 217 re
present a distinct type of neuritic pathology around Aβ pla
ques in App knock-in mouse models of Aβ amyloidosis. 
The presence of p-tau 217, p-tau 231 and a fraction of 
p-tau 181 reflects postsynaptic pathology, with p-tau 181 
also representing axonal abnormality around Aβ plaques. 
These results suggest that proteins specifically associated 
with neuritic pathology around Aβ plaques could have po
tential as CSF and plasma biomarkers of the preclinical stage 
of Alzheimer’s disease and that mouse models of Aβ amyl
oidosis may be useful for identifying such biomarkers.
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