Table 2.
Results of top 30 algorithms in MEPS analysis
| Algorithma | MSEb (108) | Relative MSE | R2 | REc | MAE |
|---|---|---|---|---|---|
| Two-stage Super Learner + Thresholding | 2.1491 | 1.0000 | 0.1580 | 1.0000 | 5848 |
| Two-stage Super Learner | 2.1590 | 1.0046 | 0.1558 | 0.9865 | 5873 |
| I(P(Y>0)>=0.5) * (S1: RF + S2: RF) | 2.1878 | 1.0180 | 0.1446 | 0.9152 | 5929 |
| Discrete two-stage Learner + Indicator | 2.1878 | 1.0180 | 0.1446 | 0.9152 | 5929 |
| S1: RF + S2: RF | 2.1880 | 1.0181 | 0.1445 | 0.9148 | 5990 |
| Discrete two-stage Learner | 2.1880 | 1.0181 | 0.1445 | 0.9148 | 5990 |
| I(P(Y>0)>=0.25) * (S1: RF + S2: RF) | 2.1891 | 1.0186 | 0.1441 | 0.9121 | 5984 |
| S1: Xgboost + S2: RF | 2.1906 | 1.0193 | 0.1435 | 0.9084 | 6029 |
| I(P(Y>0)>=0.25) * (S1: Xgboost + S2: RF) | 2.1907 | 1.0194 | 0.1434 | 0.9081 | 6022 |
| I(P(Y>0)>=0.5) * (S1: Xgboost + S2: RF) | 2.1911 | 1.0196 | 0.1433 | 0.9070 | 5975 |
| S1: GLM + S2: RF | 2.1920 | 1.0199 | 0.1429 | 0.9050 | 6027 |
| I(P(Y>0)>=0.25) * (S1: GLM + S2: RF) | 2.1922 | 1.0201 | 0.1428 | 0.9043 | 6023 |
| S1: LASSO + S2: RF | 2.1925 | 1.0202 | 0.1427 | 0.9036 | 6026 |
| I(P(Y>0)>=0.25) * (S1: Lasso + S2: RF) | 2.1926 | 1.0202 | 0.1427 | 0.9034 | 6023 |
| I(P(Y>0)>=0.5) * (S1: GLM + S2: RF) | 2.1927 | 1.0203 | 0.1426 | 0.9031 | 5985 |
| I(P(Y>0)>=0.5) * (S1: Lasso + S2: RF) | 2.1931 | 1.0205 | 0.1425 | 0.9021 | 5985 |
| One-stage Super Learner | 2.2068 | 1.0269 | 0.1371 | 0.8681 | 5917 |
| Single: RF | 2.2273 | 1.0364 | 0.1291 | 0.8175 | 6052 |
| S1: NN + S2: RF | 2.2356 | 1.0403 | 0.1259 | 0.7968 | 6034 |
| I(P(Y>0)>=0.25) * (S1: NN + S2: RF) | 2.2360 | 1.0404 | 0.1257 | 0.7960 | 6034 |
| I(P(Y>0)>=0.5) * (S1: NN + S2: RF) | 2.2362 | 1.0405 | 0.1257 | 0.7955 | 6006 |
| S1: SVM + S2: RF | 2.2364 | 1.0406 | 0.1255 | 0.7948 | 6027 |
| I(P(Y>0)>=0.25) * (S1: SVM + S2: RF) | 2.2370 | 1.0409 | 0.1253 | 0.7934 | 6015 |
| I(P(Y>0)>=0.5) * (S1: SVM + S2: RF) | 2.2375 | 1.0411 | 0.1252 | 0.7923 | 6008 |
| Single: Zero-inflated Poisson (ZIP) | 2.2571 | 1.0503 | 0.1175 | 0.7436 | 6106 |
| I(P(Y>0)>=0.5) * (S1: RF + S2: Lasso) | 2.2579 | 1.0506 | 0.1172 | 0.7417 | 6044 |
| S1: RF + S2: LASSO | 2.2580 | 1.0507 | 0.1171 | 0.7415 | 6083 |
| I(P(Y>0)>=0.25) * (S1: RF + S2: Lasso) | 2.2582 | 1.0508 | 0.1170 | 0.7410 | 6081 |
| S1: Xgboost + S2: Lasso | 2.2607 | 1.0519 | 0.1161 | 0.7349 | 6127 |
| I(P(Y>0)>=0.25) * (S1: Xgboost + S2: Lasso) | 2.2609 | 1.0520 | 0.1160 | 0.7343 | 6124 |
Algorithms are presented in ascending order based on MSE.
Lower MSE and relative MSE indicate better performance.
Greater R2 and RE indicates better performance.
S1 refers to stage-1 algorithm
S2 refers to stage-2 algorithm
RF refers to Random Forest.
GLM in S1 refers to logistic regression
Lasso in S1 refers to logistic Lasso regression.
NN refers to Neural Network.
SVM refers to Support Vector Machine.