Table 3.
Results for top 10 algorithms in modeling four spine-related RVUs
Algorithma | MSEb | Relative MSE | R2 | REc | MAE |
---|---|---|---|---|---|
Spine-related RVUs (5% zero) | |||||
Two-stage Super Learner + Thresholding | 6253.45 | 1.0000 | 0.0713 | 1.0000 | 19.6995 |
Two-stage Super Learner | 6261.24 | 1.0012 | 0.0701 | 0.9838 | 19.7632 |
One-stage Super Learner | 6298.74 | 1.0072 | 0.0646 | 0.9057 | 19.8006 |
Discrete two-stage Learner + Thresholding | 6316.67 | 1.0101 | 0.0619 | 0.8683 | 19.8365 |
Discrete two-stage Learner | 6323.14 | 1.0111 | 0.0609 | 0.8548 | 19.8581 |
RFd | 6327.06 | 1.0118 | 0.0604 | 0.8474 | 19.8749 |
S1e: RF + S2f: RF | 6330.65 | 1.0123 | 0.0599 | 0.8401 | 19.8695 |
I(P(Y>0)>=0.5) * (S1: RF + S2: RF) | 6331.10 | 1.0124 | 0.0598 | 0.8386 | 19.8656 |
I(P(Y>0)>=0.75) * (S1: RF + S2: RF) | 6331.62 | 1.0125 | 0.0597 | 0.8379 | 19.8767 |
I(P(Y>0)>=0.75) * (S1: GLMg + S2: RF) | 6331.98 | 1.0126 | 0.0596 | 0.8364 | 19.8851 |
Spine-related imaging RVUs (55% zero) | |||||
Two-stage Super Learner | 54.9361 | 1.0000 | 0.0979 | 1.0000 | 4.2369 |
Two-stage Super Learner + Indicator | 55.2834 | 1.0063 | 0.0922 | 0.9417 | 4.2539 |
Discrete two-stage Learner | 55.4711 | 1.0097 | 0.0891 | 0.9102 | 4.2934 |
Discrete two-stage Learner + Indicator | 55.6390 | 1.0128 | 0.0863 | 0.8820 | 4.3064 |
S1: RF + S2: RF | 55.7874 | 1.0155 | 0.0842 | 0.8606 | 4.3505 |
S1: RF + S2: Lasso | 55.8547 | 1.0167 | 0.0828 | 0.8459 | 4.3264 |
I(P(Y>0)>=0.2) * (S1: RF + S2: RF) | 55.8598 | 1.0168 | 0.0827 | 0.8450 | 4.3232 |
S1: GLM + S2: Lasso | 55.8673 | 1.0169 | 0.0826 | 0.8437 | 4.3036 |
One-stage Super Learner | 55.8768 | 1.0171 | 0.0824 | 0.8421 | 4.2730 |
S1: GLM + S2: RF | 55.8850 | 1.0173 | 0.0823 | 0.8408 | 4.3299 |
Spine-related physical therapy RVUs (85% zero)h | |||||
Two-stage Super Learner | 2.4698 | 1.0000 | 0.2846 | 1.0000 | 0.5388 |
Two-stage Super Learner + Thresholding | 2.4741 | 1.0017 | 0.2834 | 0.9957 | 0.5391 |
Discrete two-stage Learner | 2.5111 | 1.0167 | 0.2734 | 0.9605 | 0.5446 |
Discrete two-stage Learner + Thresholding | 2.5163 | 1.0188 | 0.2719 | 0.9554 | 0.5452 |
S1: Lassoi + S2: Log-OLS smearingj | 2.5229 | 1.0215 | 0.2692 | 0.9460 | 0.5445 |
I(P(Y>0)>=0.02) * (S1: Lasso + S2: Log-OLS smearing) | 2.5242 | 1.0220 | 0.2689 | 0.9447 | 0.5450 |
S1: Lasso + S2: GLM-Gamma-Identity | 2.5288 | 1.0239 | 0.2674 | 0.9396 | 0.5473 |
I(P(Y>0)>=0.02) * (S1: Lasso + GLM-Gamma-Identityk) | 2.5294 | 1.0241 | 0.2673 | 0.9393 | 0.5490 |
S1: Lasso + S2: Adaptive GLM | 2.5304 | 1.0245 | 0.2671 | 0.9387 | 0.5529 |
I(P(Y>0)>=0.02) * (S1: Lasso + S2: Adaptive GLM) | 2.5307 | 1.0247 | 0.2670 | 0.9381 | 0.5483 |
One-stage Super Learner | 2.5337 | 1.0259 | 0.2661 | 0.9350 | 0.5552 |
Spine-related injection RVUs (91% zero)h | |||||
Two-stage Super Learner + Thresholding | 16.8832 | 1.0000 | 0.1323 | 1.0000 | 1.2578 |
Two-stage Super Learner | 16.9414 | 1.0034 | 0.1293 | 0.9774 | 1.2632 |
Discrete two-stage Learner + Thresholding | 17.1150 | 1.0137 | 0.1204 | 0.9100 | 1.2753 |
Discrete two-stage Learner | 17.1581 | 1.0163 | 0.1182 | 0.8932 | 1.2781 |
I(P(Y>0)>=0.01) * (S1: Lasso + S2: Lasso) | 17.2029 | 1.0189 | 0.1159 | 0.8758 | 1.2853 |
S1: Lasso + S2: Lasso | 17.2074 | 1.0192 | 0.1157 | 0.8741 | 1.2855 |
I(P(Y>0)>=0.05) * (S1: Lasso + S2: Lasso) | 17.2116 | 1.0195 | 0.1154 | 0.8724 | 1.2939 |
I(P(Y>0)>=0.01) * (S1: GLM + S2: GLM-Gamma-Identity) | 17.2284 | 1.0204 | 0.1146 | 0.8659 | 1.2647 |
S1: GLM + S2: GLM-Gamma-Identity | 17.2304 | 1.0206 | 0.1145 | 0.8651 | 1.2673 |
I(P(Y>0)>=0.01) * (S1: GLM + S2: Log-OLS smearing) | 17.2361 | 1.0209 | 0.1142 | 0.8629 | 1.2627 |
One-stage Super Learner | 17.2599 | 1.0223 | 0.1130 | 0.8537 | 1.3134 |
Algorithms are presented in ascending order based on MSE.
Lower MSE and relative MSE indicate better performance.
Greater R2 and RE indicate better performance.
RF refers to Random Forest.
S1 refers to stage-1 algorithms.
S2 refers to stage-2 algorithms.
GLM in S1 refers to logistic regression.
For spine-related physical therapy RVUs and spine-related injection RVUs, the one-stage super learner is not among the top 10 algorithms, we still list its results for comparison.
Lasso in S1 refers to logistic Lasso regression.
Log-OLS smearing refers to logarithmic OLS with smearing retransformation.
GLM-Gamma-Identity refers to GLM with Gamma distribution and Identity link function.