Skip to main content
. 2022 Nov 23;152:106331. doi: 10.1016/j.compbiomed.2022.106331

Table 5.

Performance comparison of the proposed method with others for identification of COVID-19 using chest x-ray image database.

Small Dataset
Ref. Models Accuracy (%) Precision (%) Specificity %) Sensitivity (%)
[46] AlexNet 99.00 98.00 99.00 99.00
[43] Covid-Net 93.30 98.90 91.00
[47] Modified MobileNet 95.00 99.00 96.00
Our Work ResNet50 98.82 98.65 98.66 98.98
AlexNet 98.82 99.16 99.15 98.50
Large Dataset
Ref
Models
Accuracy (%)
Precision (%)
Specificity %)
Sensitivity (%)
[44] COVID-Net 90.10 84.00 98.20
DenseNet-201 91.75 94.24 78.00
[48] ResNet50+SVM 95.38 93.47 97.29
[49] ResNet-101 71.90 71.80 77.30
[50] XCOVNet 98.44 99.29 99.48
[51] Xception 91.00 92.00 87.00
[52] ResNet-50 98.00 94.81 98.44 87.29
[53] DenseNet-121 88.00 90.00 87.00
[43] Modified ResNet 99.30 99.10
[54] XCOVNet 88.90 83.40 96.40 85.90
Our Work ResNet50 95.67 95.37 95.40 95.94
AlexNet 93.62 93.95 93.91 93.34