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Abstract

Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary

nature is well recognised. However, despite decades of research, the aetiological factors

are poorly understood and the genetic background has been elucidated in only a minority of

cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-

exome sequencing in 13 large families with at least three affected cases. A large proportion

of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-

throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes

associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the

entire families confirmed the following findings in three genes in three families: frameshift

LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also

found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases

but did not segregate with disease in families. In all, we demonstrate a likely causal gene

variant in 23% of the families. Whole-exome sequencing technology in combination with a

segregation study of the whole family is a useful tool when it comes to understanding patho-

genesis and improving molecular diagnostics of this highly heterogeneous malformation.

Introduction

Primary vesicoureteral reflux (VUR) is a congenital urinary tract defect that occurs in approxi-

mately 1 to 2% of young children [1]. High-grade VUR in infants is often associated with con-

genital generalised kidney damage, renal hypodysplasia, whereas the commonly seen acquired

focal scarring is caused by ascending urinary tract infections (UTI) [2]. The morbidity seen in

children with VUR is often related to recurrent UTI, with the risk of progressive kidney dam-

age. There is an initial difference in gender prevalence in VUR in infants. Initially it affects

mainly boys but there is a decline in the male-to-female ratio over time, with similar occur-

rences in boys and girls by the age of two [3].
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Familial clustering of VUR is well recognised, indicating a strong genetic contribution to

the pathogenesis. The risk that offspring will have reflux has been reported to be as high as

66%, while it is 27 to 51% for siblings [4–7]. The high frequency of VUR in relatives favours an

autosomal dominant inheritance pattern with reduced penetrance [8–12], although some

authors favour a possible recessive [13] or X-linked model [14]. Despite the apparent Mende-

lian inheritance pattern seen in many families, only a few causal genes such as EYA1, PAX2,

RET, ROBO2 and SALL1 have been identified so far [12, 15–17]. However, a large number of

additional candidate genes have been suggested as contributing to VUR aetiology and these

mainly includes genes functioning in pathways involved in the development of the kidney,

ureter and ureterovesical junction (UVJ). The two major embryological structures are the ure-

teric bud (UB), a budding on the metanephric duct, and the metanephric mesenchyme (MM)

which is invaded by the UB and initiate branching [18]. The UVJ, ureter, renal pelvis and col-

lecting ducts have been shown to originate from UB epithelial cells, whereas the epithelium in

the nephrons (tubuli and glomeruli) originates from MM through mesenchymal-epithelial

transition (MET) [19]. Interference in the interaction between the UB and the MM can result

in both renal parenchymal dysgenesis and urinary tract malformation. To emphasise this asso-

ciation, the term CAKUT (congenital anomalies of the kidney and urinary tract) was coined

[20]. Embryological work in mice has shown that many genes are involved in these develop-

mental processes, including Eya1, Pax2, Agtr2, Bmp4, Gdnf, Ret, Wnt11, Foxc1, Sall1, Robo2,

Slit2, Gata3, Fgfr2, Upk2, Upk3 and Six1 [19–21]. Nevertheless, the entire repertoire of relevant

genes is still unknown. The experimental models also suggest that a mutation affecting a single

gene may result in different phenotypes, while mutations of different genes can result in the

same disease [21].

In humans, different strategies have been used over the past few decades to elucidate the

genetic background of primary nonsyndromic VUR. These include gene expression studies

[22], association-, linkage- and exon-sequencing studies of candidate genes [23–27], genome-

wide linkage and association studies [1, 9, 13, 28–33] and array-based comparative genomic

hybridisation [34]. In recent years, next-generation sequencing has revolutionised genomic

research. Whole-exome sequencing (WES) provides rapid detection of DNA variants within

the coding part of the genome and an opportunity to arrive at a molecular diagnosis with a sin-

gle test. These recent studies using WES analysis detected various variants in candidate genes

in 3.2% to 17.6% of patients with CAKUT, including VUR [35–40]. The variety of candidate

genes and possible loci that have been suggested in these previous studies implies that VUR is

a genetically heterogeneous disease with mutations in different genes, each accounting for a

proportion of cases [13]. However, WES, has limited capacity to detect structural variants,

smaller copy number changes or aberrations in regulatory regions, meaning that additional

causative genetic alterations could be missed. Once we have discovered the genetic back-

ground of VUR, mutation analyses of blood samples or buccal smears may replace voiding

cystourethrogram (VCUG) as a screening method for relatives of VUR patients. Furthermore,

these analyses will hopefully identify patients at risk by distinguishing severe cases that require

prompt treatment and frequent follow-up from those where the disease is relatively benign

and may resolve spontaneously. In the present study, our aim was to identify likely disease-

causing gene variants in familial primary nonsyndromic VUR, focusing on patients with the

infantile form of high-grade reflux and with congenital kidney hypodysplasia as we hypothe-

sise that congenital cases are more likely to have a genetic component than cases with kidney

damage due to multiple UTI. Thirteen large families with three or more affected cases were

analysed by WES, focusing on genes previously established as having links to VUR as well as

other candidate genes associated with embryological development of the kidney. The questions
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were whether one candidate gene causes the disease in all or some of the families or, if this is

not the case, whether members of a family all share the same variant of a candidate gene.

Materials and methods

Patients and families

Thirteen families with three or more members with primary VUR were recruited at Queen Sil-

via Children’s Hospital (a tertiary referral centre) in Gothenburg, Sweden. All recruited fami-

lies were from the south-western region and of Swedish ancestry. The families were contacted

and given verbal and written information about the study. Before entering the study, all sub-

jects and/or their parents signed an informed consent for genetic screening. Individuals older

than 18 years of age signed the consent themselves. For minors written consent was obtained

from both guardians. The Regional Ethical Review Board in Gothenburg approved the study

(Dnr 589–05). All methods were carried out in accordance with relevant guidelines and regula-

tions including the Declaration of Helsinki.

Blood samples or buccal swab specimens were collected by standard procedures. For the

individuals in the families selected for WES, blood sampling was mandatory. Seven of these

families had already participated in our previous study of hereditary VUR [27]. The selection

process for the study, with initial cases and with subsequent inclusion and exclusion criteria, is

presented in Fig 1.

Clinical data was obtained from medical records, VUR grade from voiding cystourethro-

grams (VCUG), permanent kidney damage from scintigraphy with Tc-99m dimercaptosucci-

nic acid (DMSA) or Tc-99m mercaptoacetyltriglycine (MAG3) and total kidney function from

glomerular filtration rate (GFR) measurements or by estimations following the Schwartz for-

mula [41, 42]. In the case of bilateral VUR, the patient was classified according to the more

severely affected side in terms both of VUR grade and kidney damage. Focal kidney damage

was defined as one or more areas with reduced uptake or indentation of the kidney outline

caused by postnatally acquired kidney scarring [2]. Generalised damage was defined as a small

kidney with reduced tracer uptake or a diffuse parenchymal anomaly, referred to as congenital

renal hypodysplasia [43, 44]. A GFR of< 80% (<2SD) of expected GFR was considered sub-

normal. GFR reference values in children under two years of age were calculated using Win-

berg’s algorithm [45]. For older children a rate of 110 ml/min/m2 was used.

To clarify the relationship and analyse the pattern of inheritance, pedigrees were con-

structed for each family (Fig 2). Additional members of families with a history strongly sug-

gesting VUR but with no radiological test results, were classified as probable cases. Patients

with secondary VUR, e.g., patients with neurogenic bladder or posterior urethral valves, were

excluded from the study.

Whole-exome sequencing

The most severely affected family member, meaning a member with confirmed generalised

kidney damage (renal hypodysplasia), was chosen for WES. When this was not possible, the

selection criterion used was high-grade VUR. In three families, WES was carried out on an

additional individual. What the three additional study subjects had in common was that they

were the most distantly-related, affected relatives of the proband in their respective pedigree

(aunt, uncle and cousin).

Genomic DNA was isolated from blood lymphocytes and subjected to WES (GATC, Con-

stance, Germany) on Illumina instrumentation (Illumina, San Diego, CA) after DNA enrich-

ment using Agilent SureSelect human All exon v6 (Agilent technologies, Santa Clara, CA)

reaching an average coverage of 70X (range 46-114X). Coverage and mapping metrics are
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presented in S1 Table. Read trimming, mapping, and variant calling were performed using

CLC Biomedical Genomics Workbench software (Qiagen, Aarhus, Denmark) (S1 File) with

consecutive variant filtering using Qiagen QCI interpret translational tool (Qiagen). Only

high-quality called variants with a variant allele frequency above 0.15 and a total read coverage

of at least ten were considered for further analysis. Variants with a minor allele frequency

above 0.01 in either SweGen dataset (https://swegen-exac.nbis.se), 1000 genomes, Exome

Aggregation Consortium (ExAC), Cambridge, MA (http://exac.broadinstitute.org), Genome

Aggregation Database (gnomAD) http://gnomad.broadinstitute.org or NHLBI Exome

Sequencing Project (http://evs.gs.washington.edu/EVS/) were discarded, as well as all synony-

mous variants or variants in non-coding regions, except those affecting canonical splice sites.

Remaining variants were assessed manually through the Integrative Genomics Viewer (IGV)

[46]. PolyPhen 2, SIFT and CADD were used to predict the functional relevance of called sin-

gle nucleotide variants (SNV)s. Possible relevance to the biological disease context was assessed

using QCI interpret translational (Qiagen). The filtering process and remaining variants after

each step are visualized in Fig 3. All genomic positions were given according to the human ref-

erence genome GRCh37/hg19.

Fig 1. Data selection process for the study.

https://doi.org/10.1371/journal.pone.0277524.g001
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Variant classification and prioritisation

The remaining potential rare causal gene variants were further filtered in an extensive litera-

ture search. This literature review focused on: 1) gene function and associated phenotype, 2)

gene-associated animal models, 3) tissue expression of the encoded protein, 4) association

with already known VUR genes and 5) location of the variant with respect to functional pro-

tein domains. Genes participating in Ureteric Bud/Metanephric Mesenchyme development

were regarded as highly relevant. Genes associated with syndromes were included if a connec-

tion to kidney development or VUR was stated. Syndromes with other CAKUT phenotypes

were excluded.

Our different strategies for prioritising the findings were: 1) screening for variants of genes

previously associated with VUR and kidney development, 2) screening for common variants

in different families and 3) screening for common variants within the family in the three appli-

cable cases.

Fig 2. Pedigrees of included families. Pedigrees describe the 13 participating families with three or more vesicoureteral reflux cases. A family identifier

is indicated above each respective pedigree with case-specific identifiers given under each individual. Squares males, circles females, rhombuses sex

unknown, black symbols indicate diagnosis confirmed by voiding cystourethrography, grey symbols indicate strong history of VUR but no available

radiological investigations, arrows index cases.

https://doi.org/10.1371/journal.pone.0277524.g002
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Sanger sequencing

Sanger sequencing was used to verify significant WES findings in subjects, as well as for segre-

gation analysis of all healthy and sick relatives where samples were available. DNA was

extracted using a Maxwell 16 Buccal Swab LEV DNA Purification Kit (Promega, Madison,

WI) for samples collected with Isohelix buccal swabs, while Qiagen DNeasy Blood & Tissue

Kit (Qiagen, Aarhus, Denmark) was used for blood. ExonPrimer (https://ihg.helmholtz-

muenchen.de/ihg/ExonPrimer.html) was used to design primers. Primer sequences and other

PCR details are available upon request. Sanger sequencing was performed by GATC Biotech

(Constance, Germany) and analysed using the SnapGene software (GSL Biotech, Chicago, IL).

Results

Clinical characteristics

A total of 41 patients from 13 different families with VUR were included (20 males, 21

females), of whom 16 were subjects for WES. There were two nuclear families and 11 extended

families. The relationship between the affected individuals and the pattern of inheritance is

shown in Fig 2 and S2 Table.

Demographics and phenotypic details of the study subjects are outlined in Table 1. The

whole-exome sequenced study subjects were more commonly male (62%), with a higher grade

of reflux (69% grade IV-V in the sequenced cohort vs. 49% in the whole group), with more

generalised kidney damage (81% vs. 53%) and frequently subnormal total kidney function

(25% vs. 13%). Only five cases showed additional malformations of the urinary tract, such as

bilateral duplex kidney (1), bladder diverticula (3) and unilateral megaureter (1). In addition,

three cases with extrarenal manifestations had syndromic features but did not have a known

diagnosis (S3 Table).

Fig 3. Filtering of called variants. Systematic filtering of single nucleotide variants called from CLC workbench with number of variants remaining

after each step and criteria for retaining variant as indicated.

https://doi.org/10.1371/journal.pone.0277524.g003
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Candidate variants in VUR/nephrogenesis genes

We performed WES on 16 individuals from 13 families with hereditary VUR and after multi-

step variant filtering and prioritisation, as described in Materials and Methods, 40 heterozy-

gous candidate variants in 32 genes previously associated with VUR or nephrogenesis were

retained (S4 Table). They included variants in genes previously associated with diseases show-

ing autosomal recessive inheritance such as FREM2, ROR2 and FRAS1 although none of them

were homozygous or compound heterozygous.

To further elucidate whether additional members within the same family had inherited the

same variant, WES was performed on a second affected member in three families (see Material

and methods). In one family (Fam. 32) with severe VUR and renal hypodysplasia, two DNA

variants in possible causal genes (LIFR, CLDN3) were detected in both patients while in the

second family (Fam. 17), a novel KIF26B variant was shared by the two family members who

had been investigated (Table 2, Fig 2). The third family (Fam. 82) did not share any variant in

Table 1. Demographic data, VUR grades, kidney abnormalities and function for the whole-exome sequenced

group and for the whole study group.

Characteristics Values WES cohort n = 16 Values all VUR cohort n = 41

Gender

Female 6 (38%) 21 (51%)

Male 10 (62%) 20 (49%)

Presenting symptom VUR

Pyelonephritis 11 (69%) 28 (68%)

Pre and postnatal screening 4 (25%) 10 (25%)

Other symptoms 1 (6%) 3 (7%)

Age at presentation (months) 7 (0.25–98) 7 (0.25–98)

Grade of reflux

I–III 5 (31%) 21 (51%)

IV–V 11 (69%) 20 (49%)

Uni or bilateral reflux

Unilateral 5 (31%) 16 (39%)

Bilateral 11 (69%) 25 (61%)

Recurrent UTIs

No 5 (33%) 13 (33%)

Yes 10 (67%) 26 (67%)

Kidney damage

No 2 (13%) 14 (35%)

Yes, focal 1 (6%) 5 (12%)

Yes, generalised � 13 (81%) 21 (53%)

Uni or bilateral kidney damage

Unilateral 10 (71%) 21 (81%)

Bilateral 4 (29%) 5 (19%)

Total kidney function

Normal 12 (75%) 32 (84%)

Subnormal 4 (25%) 6 (16%)

Categorical variables n (%), Continuous variables median (range),

�Hypodysplasia

https://doi.org/10.1371/journal.pone.0277524.t001

PLOS ONE Exome sequencing in familial vesicoureteral reflux

PLOS ONE | https://doi.org/10.1371/journal.pone.0277524 November 23, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0277524.t001
https://doi.org/10.1371/journal.pone.0277524


Table 2. Results of Sanger sequencing used for segregation analysis in 13 families with hereditary VUR.

Family Genes Protein change Investigated (WES) Investigated (Sanger sequencing)

9 221 F 220 M 204 F 218cM 219 F

SALL2 p.P168L + + - + -

SIM1 p.G254K + + - - -

17 351 F 369 F 347 F 355pF 368pF 367 M

KIF26B p.S123L + + + + + -

UPK2 splice site loss + - + + - -

19 357 M 329 F 233 F 348 M

SALL1 p.G1168E + - +

CHD7 p.L935F + + + -

LIFR p.D816G + - + -

30 250 M 251 F 253 F 252cF 248 M

MDM4 p.K374Q + - + + -

CLDN3 p.P134L + + + - Hom

SALL2 p.T45N + - + - +

32 236 F 656 F 395 M 235pF 234 M

LIFR p.V487A + + + + -

CLDN3 p.P134L + + + + -

GLI3 p.R114K - + - -

CHD7 p.L935F - + - - -

46 364 M 362 M 363 M 366cF 365 M

MMP9 p.R24C + + + Hom -

SALL2 p.P168L + - + - +

TGFBR3 p.F434S + - - - +

49 391 M 392 M 390cF 389 M

GATA3 p.P154S + - + -

PYGO1 p.N250I + - + -

76 650 F 648 M 660 F 644cF 653 M

ROBO2 p.I598T + - + - +

FRAS1 p.M2129V + - - - +

LAMC1 p.K646fs�3 + + + + -

GREB1L p.E93K + + + + -

77 645 M 649 F 690 F 651 M

BMP7 p.N321S + - -

WNT3A p.A172T + -

POSTN p.Q71K + -

KIF26B p.S1218F + - + -

79 715 M 647 F 693 M 659 F

FRAS1 p.Y1758C + + - -

NRTN p.V125L +

TGFBR3 p.P776S + + ? -

80 682 M 652 M 658 M 666 M 695 F 711 M

SLIT3 p.S629N + - + - + -

82 655 M 705 F 710 F 691 M

UPK3A p.W182� + - - +

CHD1L p.G491R + -

MMP9 p.R24C - + - -

TGFBR3 p.H155R - + - -

(Continued)
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kidney-associated genes, in spite of their astonishingly similar phenotype with explicit general-

ised kidney damage.

A segregation analysis was performed on all candidate variants (except the genes with auto-

somal recessive inheritance lacking biallelic alterations, as judged from WES) in all relatives

with available DNA samples. Sanger sequencing showed variants segregating with disease in

three different families (Table 3, Fig 4). This was in three nephrogenesis-related genes

(KIF26B, LAMC1 and LIFR) in which autosomal dominant inheritance had previously been

reported. Despite being highly interesting in regard to VUR aetiology, the remaining variants

which were analysed did not segregate with the phenotype in all the families concerned

(Table 2, S4 Table).

Predicted deleterious or truncating variants that did not show consistent co-occurrence

with a VUR phenotype included predicted deleterious, missense variants in the known VUR

genes, SALL1 (Fam. 19), ROBO2 (Fam. 76), and UPK3A (Fam. 82). These were inherited from

healthy fathers in the families while splice site variants in UPK2 (Fam. 17) and DSTYK (Fam.

83) were present in some but not all affected family members (Table 2). Variants in GREB1L
and CLDN3 segregated with disease in Family 76 and Family 32 respectively. However, both

variants were also detected in other families in the study cohort: the GREB1L was also detected

Table 2. (Continued)

Family Genes Protein change Investigated (WES) Investigated (Sanger sequencing)

83 698 M 670 F 657 F

DSTYK splice site loss + + -

MDM4 p.K374Q + - -

GREB1L p.E93K + - -

bold digit, affected family members; bold gene symbol, the gene variant segregates with the phenotype in the family; F, female; hom, homozygous variant; M, male; +,

variant present in heterozygous form; -, variant missing; ?, Sanger sequencing failed, chromatogram not assessable
c Probable carrier according to the pedigree
p Probable VUR, strong history of VUR but no available radiological investigations.

https://doi.org/10.1371/journal.pone.0277524.t002

Table 3. Three possibly pathogenic variants identified in nephrogenesis-related genes in three families with hereditary VUR.

Gene Family-

Individual

Renal phenotype Extrarenal

phenotype

Variantsa MAF

SweGene

MAF

gnomAD

Impact SIFTb PP2c Reference

KIF26B 17–351 B VUR, U FRD Scoliosis, MI, JIA,

Marfan?

NM_018012.4:c.368C>T p.

(S123L)

Novel Novel M D 0.952 16, 53–55

17–369 U VUR NM_018012.4:c.368C>T p.

(S123L)

LAMC1 76–650 B VUR, U RHD NM_002293.4:c.1935delG

p.(K646fs�3)

Novel 0.000004 F NA NA 16, 40, 51,

52

LIFR 32–656 B VUR, U RHD,

SubnRF

NM_002310.6:c.1460T>C

p.(V487A)

Novel Novel M A 0 38, 56, 57

32–236 U VUR, U RHD NM_002310.6:c.1460T>C

p.(V487A)

Abbreviations; A, activating; B, bilateral; D, damaging; F, frameshift; FRD, focal kidney damage; JIA, juvenile idiopathic arthritis; M, missense; MI, mitral insufficiency;

NA, no prediction available; RHD, renal hypodysplasia; SubnRF, subnormal total kidney function; T, tolerated; U, unilateral; VUR, vesicoureteral reflux.
a, All mutations are heterozygous;
b, Sorting Intolerant From Tolerant (http://sift.bii.a-star.edu.sg);
c, PolyPhen-2 prediction score ranges from 0 (= benign) to 1 (= probably damaging) (http://genetics.bwh.harvard.edu/pph2/)

https://doi.org/10.1371/journal.pone.0277524.t003
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Fig 4. Variant identification and segregation analysis. Candidate variants detected by WES visualized in IGV with genomic position as indicated (left

panels). Electropherograms from Sanger sequencing over corresponding positions show that the variants in KIF26B (fam. 17), LIFR (fam. 32) and

LAMC1 (fam. 76) segregate with disease in respective families.

https://doi.org/10.1371/journal.pone.0277524.g004
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in the youngest individual in Family 83, but was not seen in other affected relatives while the

CLDN3 variant was also present in homozygous form in the unaffected father in Family 30.

One MMP9 variant was detected in affected individuals in Families 46 and 82, although

only segregating in Family 46, where one unaffected family member (individual 366) was

homozygous for the variant. Similarly, a variant in CHD7 was detected in two families (Fam.

19 and Fam. 32), but it segregated only in Family 19. None of the study subjects carrying this

CHD7 allele showed the syndromic phenotype described in the literature on this gene, indicat-

ing that this variant is most likely benign.

Signalling pathways in the embryological development of the kidney

The three genes with potential pathogenic variants in families with VUR and kidney damage

participate in different signalling pathways that are crucial for the development of the lower

urinary tract and kidney. They include mitogen-activated protein kinase (MAPK) (genes:

KIF26B, LIFR), Wnt (genes: KIF26B, LAMC1, LIFR), phosphoinositide 3-kinase (PI3K)/AKT

(genes: LAMC1, LIFR, KIF26B) and Janus kinase/signal transducers and activators of tran-

scription (JAK/STAT) (gene: LIFR). A simplified diagram of the interactions between the

genes (including our initially most promising candidate genes) is shown in S2 File. Due to the

interdependence between developmental pathways, mutations in different genes can result in

similar phenotypes.

Discussion

A cohort consisting of 13 large families, which originated from the west coast of Sweden and

three or more of whose members had primary VUR, was investigated by WES, focusing on

genes with known pathogenicity in VUR. Additional candidate genes not previously reported

in patients with VUR or other CAKUT (such as CLDN3, KCP, LAMC1, POSTN and WNT3A)

but where experimental models demonstrated expression and/or effect on UB outgrowth and

tubular growth [47–50], were also included. Among these, 40 heterozygous novel or rare vari-

ants were detected in 32 different genes affecting kidney development (S4 Table). The segrega-

tion with the disease phenotype within families was ascertained by Sanger sequencing,

validating three different variants affecting LAMC1, KIF26B, and LIFR as possible causes of

VUR in three of the 13 families (Fig 4).

Among the new candidate genes, an extremely rare frameshift variant in LAMC1 (Laminin

Subunit Gamma 1) was found to segregate with VUR in Family 76. In an early study of lami-

nins in kidney development, no phenotypic effect on the kidney was observed in mice with a

heterozygous Lamc1 mutation whereas homozygous mice died, having ectopic ureters and an

absence of kidneys [51]. Lamc1 was found to regulate branching morphogenesis where inacti-

vation of Lamc1 in the UB resulted in small kidneys or absence of kidneys, and ureters with

empty bladders [52]. Although it is not clear if heterozygous mutations in LAMC1 could affect

the kidney phenotype in humans, it is believed that there is a laminin concentration threshold

above which UB penetration is enabled, determining the development of renal hypodysplasia

or kidney agenesis [52]. In line with this, deleterious heterozygous variants in LAMC1 have

been reported in rare cases in two previous studies of CAKUT in patients with ureteropelvic

junction obstruction or duplex collecting system [16, 40].

The two missense variants, both predicted to be damaging, were detected in KIF26B (Kine-

sin Family Member 26B) in Families 17 and 77 respectively. However, only the novel variant

KIF26BS123L segregated with phenotype in individual members of the family who were tested.

KIF26B regulates the adhesion of mesenchymal cells in contact with ureteric buds and it is

thus essential for the UB invasion of MM and UB branching [53]. Variants in KIF26B have
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been previously described in patients with renal hypodysplasia [54], renal coloboma syndrome

[55] and multicystic dysplastic kidney [16]. The third heterozygous missense variant segregat-

ing with high-grade VUR and unilateral renal hypodysplasia was identified in LIFR (Leukemia

Inhibitory Factor Receptor) in Family 32. LIFR encodes a receptor in the MM that promotes

MET when bound to its ligand, LIF, secreted by the UB [56, 57]. Kosfeld et al. recently demon-

strated heterozygous LIFR variants in 3.3% of CAKUT patients and similar anomalies in Lifr-

deficient mice [38].

From this, a probable cause of the malformation is identified in 23% of the families in this

cohort. Recent sequencing studies presented pathogenic/likely pathogenic gene variants in a

smaller fraction of cases (3.2 to 17.6%) [15, 16, 37, 58]. One explanation is that their studies

were on mainly non-hereditary cases with a primary focus on CAKUT rather than the VUR/

renal hypodysplasia complex. Our families all had three or more individuals with the disease

phenotype, in this case VUR. However, despite compelling support for a strong hereditary

component, the lack of causative variants in the majority of the families and individuals in our

and other studies indicates a more complex VUR aetiology. VUR appears to be a complex

polygenic disorder, where a combination of risk alleles as well as environmental factors results

in the disease phenotype. Kidney and ureteric development are delicate processes for which

tempospatial precision is instrumental and they also involve a considerable network of pro-

teins (partly presented in S2 File). This contributes to great heterogeneity among genes and

gene variants, which could cause disease where dysfunctional. In line with this, we detect rare,

damaging variants that do not segregate fully with disease within the family. These include var-

iants in GREB1L, UPK2, DSTYK and SLIT3, all genes which have previously been associated

with impaired ureteric and kidney development. GREB1L, for which a missense variant was

detected in affected members of Family 76 and Family 83, encodes a cofactor in the retinoic

acid mediated signalling that regulates RET expression in the UB [59]. Heterozygous knockout

of Greb1l in mice causes a decrease in ureteric bud branching while the heterozygous GREB1L
mutation is common in patients with renal hypodysplasia and kidney agenesis [39, 59–61]. In

Family 17, which also displayed a KIF26B variant, the siblings and mother, but not the cousin

or the aunt, had a very rare heterozygous UPK2 splice site variant (S3 Table, Fig 2). Nicolaou

et al. identified a different UPK2 splice site variant in a patient with a duplex collecting system

[16]. A splice site loss in DSTYK was seen in the child and mother but not the grandmother in

Family 83. The same variant was identified in a large Italian family with CAKUT (where some

cases had VUR) and among an additional 311 unrelated patients with CAKUT, where 2.3%

displayed different DSTYK variants [62]. However, the pathogenicity could be disputed as a

study presented the detected splice variant in a patient with suspected branchio-oto-renal syn-

drome but with a normal kidney ultrasound but also in 10/425 in-house controls [58], i.e.

much higher than available population datasets (MAF SweGen = 0.0005, gnomAD = 0.0003).

Pathogenic or likely pathogenic variants in EYA1, HNF1B, RET and PAX2 have been identi-

fied in several extensive genetic screenings of CAKUT with VUR [15, 16, 58]. However, no

alterations of these genes were detected in our cohort. Instead, novel or rare variants in

KIF26B, LAMC1 and LIFR, genes associated with kidney development, were shown to segre-

gate with disease in three out of 13 families with hereditary VUR. The LAMC1 frameshift is

likely to result in a variant causing a loss of function, while functional predictions for KIF26B
and LIFR indicate damaging as well as activating effects on protein. Whereas constraint scores

calculated by Lek et al. [63] indicates that both KIF26B and LAMC1 are sensitive to mutations

and thereby support pathogenicity, this score also indicates that LIFR is relatively insensitive

(S4 Table). Ultimately, the degree of pathogenicity of these variants requires further functional

studies of their impact on embryonic development.
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One of the methodological limitations of the study is that genetic testing was not performed

on all study subjects diagnosed with the disease. The study was performed partly under finan-

cial constraints. Therefore, the most severely affected sibling and, when available, an affected

second-degree relative were tested, producing maximum information per test. In addition,

blood samples were not available or were not available in substantial amounts from all family

members. Although most people were positive to the study when they received the invitation

to participate, we had recruitment problems when they were asked to donate blood samples.

Using buccal smear kits sent home by post minimized the inconvenience for children and

their families, and increased the willingness to participate. However, in clinical settings this

method yielded DNA of suboptimal quantity and quality, insufficient for whole-exome

sequencing. Finally, as VUR is a non-visible malformation in asymptomatic individuals and is

sometimes spontaneously and naturally resolved during childhood, reflux is a difficult abnor-

mality to study in terms of inheritance. VCUG is the gold standard method of detecting VUR.

However, it is a highly invasive investigation, which limits its use in asymptomatic relatives,

and it was not available for older family members prior to the 1960s.

In summary, the diversity of our findings together with previous studies supports the

hypothesis that primary VUR from the perspective of genetics is a very heterogeneous disease,

making the genetic study of familial VUR challenging. The paucity of recurrent genes with

protein-changing variants could also indicate alterations in regulatory elements affecting key

genes during the embryonic development of the urinary tract.
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