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C A N C E R

Widespread hypertranscription in aggressive  
human cancers
Matthew Zatzman1,2, Fabio Fuligni2, Ryan Ripsman2, Tannu Suwal1,3, Federico Comitani2,  
Lisa-Monique Edward2, Rob Denroche4, Gun Ho Jang4, Faiyaz Notta4, Steven Gallinger4,5,6,7, 
Saravana P. Selvanathan8, Jeffrey A. Toretsky8, Matthew D. Hellmann9,10, Uri Tabori2,3,11, 
Annie Huang1,3,12, Adam Shlien1,2,13*

Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of 
global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. 
Hypertranscription’s prevalence, underlying drivers, and prognostic significance are undefined in primary human 
cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output 
between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 
human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive 
disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest 
that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals 
hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with 
hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide funda-
mental insights into gene dysregulation across human cancers and may prove useful in identifying patients who 
would benefit from novel therapies.

INTRODUCTION
Transcriptional misregulation is a defining feature of cancer. How-
ever, even consistently misregulated genes often fail to predict prog-
nosis or therapeutic response. The number of genes misregulated, 
as well as their individual expression levels, is thought to be tightly 
controlled in cancer. This control helps to maintain cell identity and 
promote tumor-specific oncogenic signaling. In contrast, tumor DNA 
can undergo chromosomal doubling (1), massive rearrangements (2), 
and localized (3) or genome-wide hypermutation (4). Because most 
mutations are passengers, even global shifts in DNA are tempered 
by modest changes in RNA expression.

Hypertranscription, also called RNA amplification, refers to the 
global increase in RNA across all genes. This phenomenon, which is 
a distinct form of transcriptional misregulation, has been best de-
scribed in cell lines and model systems (5, 6), not primary human 
cancers. The prevalence of hypertranscription within and between 
tumor types is therefore unknown.

Historical observations have associated variable RNA levels with 
proliferation rates in different cell types (7, 8). For example, early 

work in a mouse model of leukemia demonstrated that the RNA 
content of rapidly proliferating transplanted cells is greater than either 
normal cells or of that of slower growing spontaneous leukemias 
(4.2-fold change versus 1.6-fold change in transcription above normal 
cells, respectively) (8). Therefore, the limited available data from cell 
line studies suggest that cancer cells that globally increase transcrip-
tion have a growth advantage. Whether hypertranscription occurs 
in human tumors, and how it may correlate with patient pheno-
types and treatment response, remains to be determined.

MYC has been implicated as a driver of hypertranscription in 
cell lines [acting directly (5) or indirectly (9) via its targets]. We 
previously observed a correlation between RNA output and expres-
sion of estrogen receptor in breast cancer (BRCA), suggesting that 
it is also a driver of hypertranscription (10). Another open question 
is whether there are additional drivers and if, collectively, these 
drivers provide insight into the mechanisms underpinning oncogenic 
hypertranscription across human cancer.

Here, we use a novel method, called RNAmp, to answer funda-
mental questions on the prevalence, causes, and consequences of 
hypertranscription in human cancer. The transcriptional output of 
7494 cancer samples from 31 cancer types is measured. We find 
hypertranscription in most primary human tumors. Specific cancer 
subtypes exhibit >4-fold higher transcriptional output. Among these 
previously unidentified subtypes, which are otherwise missed by con-
ventional genomic analyses, hypertranscription confers a worse prog-
nosis, independent of somatic mutation burden, tumor ploidy, tumor 
stage, patient gender, age, or tumor subtype. Using single-cell analysis 
of multiple tumor regions, we identity specific clones that consistently 
produce copious amounts of RNA, irrespective of their clone size. 
We find that ETS family members are notable drivers of hypertran-
scription and then validate this in ETS-fused prostate cancer and 
Ewing sarcoma. In contrast to MYC-driven models, the most preva-
lent mechanism driving hypertranscription in primary cancer is through 
loss of transcriptional suppression. Having seen hypertranscription’s 
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ubiquity, prognostic impact, and drivers, we explore whether it led 
to more expressed neoantigens. Using four cohorts of melanoma 
treated with immune checkpoint inhibitor, we find that patients with 
hypertranscription have higher expression of mutations, which pre-
dicts improved response to immunotherapy.

RESULTS
Measuring hypertranscription in vivo in human cancers
Gene expression profiling is typically performed by introducing 
similar amounts of RNA from different sources onto an experimental 
platform and then normalizing overall signal across samples. Inherent 
to expression profiling, including RNA sequencing (RNA-seq), is 
the assumption that each sample’s RNA has come from a similar 
number of cells. Without accounting for the number of cells the RNA 
derived from, it is currently not possible to measure hypertranscrip-
tion (11). To overcome the challenges of analyzing hypertranscrip-
tion in human tumors, we developed a new computational method. 
This method distinguishes mRNA transcripts originating from either 
the cancer or normal cell population within a primary tumor and 
then statistically models the change in cancer versus normal cell 
transcript abundance (expressed as a fold change). A key advantage 
of this approach, called RNAmp, is the ability to analyze already- 
sequenced human tumors—usually genetically heterogeneous and 
often nondiploid—whose RNA was derived from bulk tissue com-
posed of an unknown number of cells.

To distinguish cancer cell from normal cell transcription, we 
used expressed somatic single-nucleotide substitutions (Subs) and 
germline single-nucleotide polymorphisms (SNPs) contained within 
regions of loss of heterozygosity (LOH) (Fig. 1A). A typical adult 
cancer contains ~17,000 somatic substitutions, of which ~134 are 
coding (12). LOH is also a common feature of cancer cells (13). 
Heterozygous SNPs in LOH regions will be monoallelically expressed 
in the tumor, whereas the intermixed normal cells with retained 
heterozygosity express both alleles. Considered together, expressed 
Subs and LOH-SNPs form hundreds to thousands of individual 
markers from which a tumor’s cancer cell–specific RNA output can 
be detected.

RNAmp compares the variant allele fraction (VAF) of these 
markers in the RNA relative to DNA to quantify cancer cell–specific 
changes in RNA output (see Materials and Methods and Fig. 1B). 
When there is no elevation in the cancer’s global transcription, the 
fraction of reads supporting cancer variants in the RNA would be 
consistent with that of the DNA (i.e., similar VAFs). In cases of 
elevated RNA production, an increase in the fraction of RNA reads 
supporting cancer variants relative to the DNA is expected. To 
accurately quantify RNA output levels, we removed loci in imprinted 
regions and unexpressed variants and then corrected for tumor purity 
and regional DNA copy number (see Materials and Methods). Thus, 
RNAmp measures the relative fold increase in cancer cell transcrip-
tion per DNA copy.

To assess the accuracy of RNAmp, we performed experimental 
analyses on three tumor-derived cell lines, mixed in different pro-
portions with matched normal cells (Fig. 1C). Each of the cancer 
cell lines showed increased RNA output relative to their matched 
normal control (Fig. 1D and fig. S1A). The RNA from the mixed 
dilution samples also displayed increased RNA expression of tumor- 
specific markers (LOH-SNPs and Subs), relative to the nontumor- 
specific copy-neutral SNPs (fig. S1B). This was also true for silent 

mutations, demonstrating that selective pressure on coding muta-
tions did not explain the increased expression of tumor-specific 
mutations (fig. S1C). We then applied the RNAmp algorithm, which 
accurately detected the level of hypertranscription in every mixed 
sample (Fig. 1E). Across all cell lines and at all purity levels, there 
was a high concordance between the observed and expected tumor 
RNA content (r = 0.99, P < 0.0001; Fig. 1F). In silico downsampling 
experiments verified the accuracy of RNAmp even when variant 
counts are low (down to 10 to 15 variants per sample) (fig. S1, D 
and E). Regardless, a minimum of 25 somatic substitutions or LOH 
SNPs and maximum tumor purity of 90% were used in all subse-
quent analysis.

To further validate RNAmp, we stably overexpressed MYC, a 
known driver of hypertranscription, in a cell line model of medullo-
blastoma. As expected, this led to increased RNA output (Fig. 1G 
and fig. S1F), with a transcriptional increase of ~57% in the Myc- 
expressing cells (Fig. 1H).

Hypertranscription is a hallmark of human cancer
Having validated that RNAmp could accurately measure cancer cell–
specific hypertranscription, we set out to characterize hypertranscrip-
tion across a spectrum of human cancers. We analyzed 141,167 Subs 
and 3,906,502 LOH-SNPS in 7494 tumors from 31 cancer types (see 
Materials and Methods and table S1). We initially measured differ-
ences between RNA and DNA VAFs across the whole cohort. A 
shift in VAF, toward RNA, was seen for both (somatic substitu-
tions and LOH SNPs), suggestive of generally increased RNA output 
in human cancers (fig. S2A). As expected, no such change in VAF 
RNA was seen with diploid SNPs. Further, as was the case in our 
validation experiments, we saw a consistent increase in both mis-
sense and silent mutations in transcribed VAF RNA (fig. S2B).

Copy number and tumor purity were integrated, and then RNAmp 
was applied to the full cohort. Measures of RNA output compared 
between LOH-SNPs and somatic substitutions were moderately 
correlated (R = 0.51, P < 2.2 × 10−16; fig. S2C). However, most of 
RNAmp’s signal was derived from the far more frequent LOH-SNPs, 
as expected (fig. S2D). Across tumor types, cancer cells were more 
transcriptionally active than their normal counterparts, with a mean 
2.22-fold increase in RNA output (Fig. 2A and table S2). Increased 
transcription was nearly universal in human cancer (80% of tumor 
with >1-fold increase), with a 2-fold or greater increase observed in 
41% of tumors. RNA output correlated significantly with higher 
tumor mutation burden (TMB) (Fig. 2B) and ploidy (fig. S2E); 
particularly in genome-doubled tumors (2.6-fold versus 1.9-fold; 
P < 2.2 × 10−16; Fig. 2C). Notably, as RNAmp’s measures are nor-
malized per tumor DNA copy, the increased transcription observed 
in genome-doubled tumors is “above and beyond” what would be 
expected given their increased DNA copy number.

We wondered whether variability in RNA output was explained 
by differences in the tumors’ intrinsic features, such as the cell type 
they derived from, or somatically acquired changes. We used linear 
regression modeling to decompose the proportion of variability in 
RNA output that may be explained by common clinical and molec-
ular features, including tumor stage, ploidy, mutation burden, and 
patient age. Only 7.1% of the global variability in transcriptional 
levels could be explained by these factors alone (Fig. 2D and table 
S3). Notably, tumor purity or the number of genes with zero counts 
per sample was not considered significant confounders to RNAmp’s 
measures (fig. S2, F and G).
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We therefore further explored differences in RNA output between 
individual tumor types. Considerable variability in RNA output was 
seen across tumor types with median levels ranging from 0.9 to 3.2 
(Fig. 2E) Some tumor types—such as skin cutaneous melanoma (SKCM), 

squamous lung cancers (LUSC), and head and neck squamous cell 
carcinoma (HNSCs)—displayed consistently high levels of hyper-
transcription (>25% above threefold). In contrast, others—such as 
brain, prostate, sarcoma and ovarian—had a much lower frequency 
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of hypertranscription (<10% above threefold). Overall, however, indi-
vidual tumor types accounted for an additional 19% of the variability 
of RNA output across cancer (total variance explained: 26%; Fig. 2F).

In many cancers, we observed several orders of magnitude sepa-
ration between the least transcriptionally active samples from the 
highest. Examining the cohort based on established clinical subtypes 
resolved a significant amount of heterogeneity within cancer types 
(5 to 20%; Fig. 2G and fig. S2H), with canonically aggressive sub-
types having the highest levels of hypertranscription. For example, 
in BRCAs, the more clinically aggressive basal-like subtype had the 
highest levels of hypertranscription (2.55-fold), followed by Her2 
(2.13-fold), and then the less aggressive luminal B and A (1.60-fold and 
1.38-fold) and normal (1.15-fold) subtypes. Similarly, across all gliomas 
(low and high grades), the clinically aggressive IDH–wild type samples 
had notably increased transcription (34% higher than IDH-mutated 
tumors). In HNSCs, higher-risk human papillomavirus–negative 

(HPV−) tumors had 80% higher RNA output compared to HPV+ 
tumors (3.5-fold versus 1.95-fold). In addition to demarcating aggres-
sive subtypes, hypertranscription also correlated with distinct mutational 
subtypes. For instance, in colorectal cancer (CRC) and uterine corpus 
endometrial carcinoma (UCEC) types, subgroups that are driven by 
microsatellite instability (MSI) had more than doubled RNA output 
compared to the DNA polymerase epsilon, catalytic subunit (POLE)- 
mutated subtypes (2.5-fold versus 1.2-fold). Overall, tumor subtypes 
explained an additional 10% of the global variability in hypertran-
scription, bringing the total variability explained to ~36% (Fig. 2H).

Hypertranscription in single cells reveals transcriptionally 
dominant subclones
Having seen a high variability in RNA output between cancers (even 
of the same type), we wondered how much transcriptional hetero-
geneity exists within a single tumor. The RNA output of individual 
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cells can be measured by incorporating unique molecular identifiers 
(UMIs), which tag each transcript per cell in standard single-cell 
RNA-sequencing assays. We obtained UMI-tagged single-cell RNA-seq 
(scRNA-seq) data from five patients with non–small cell lung 
cancer [representing The Cancer Genome Atlas (TCGA) types lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)] 
(14). Each tumor contained three spatially distinct biopsies, enabling 

the analysis of transcriptional output differences between cells and 
tumor regions.

By comparing the overall proportion of transcripts derived from 
tumor and non-neoplastic cell populations in each tumor region, 
we can estimate each population’s RNA output fold change, similar 
to RNAmp (Fig. 3, A and B). Overall, tumor cells had increased RNA 
output for all patients and tumor regions (Fig. 3C). Furthermore, 
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the RNA output fold change calculated from individual lung cancer 
cells was highly consistent with values derived from RNAmp applied 
to bulk-sequenced lung tumors (mean fold changes of 2.57 and 
2.59, respectively; P = 0.95; Fig. 3B).

Comparing tumor regions to one another, we observed signifi-
cant variability in hypertranscription between different sites of the 
same cancer (Fig. 3C). To see whether these spatial differences in 
RNA output were due to the existence of specific cell populations, 
we performed gene expression clustering of individual tumor cells 
(Fig. 3D) and then measured the RNA output of each subcluster 
(Fig. 3E). Tumor cells from the same patient tended to cluster 
together, regardless of tumor region, with distinct subclusters iden-
tified in three patients. Hypertranscribing tumor cells were primarily 
localized to only one or two clusters per patient (of three or more 
clusters). These hypertranscriptional cells were found in each tumor 
region. They retained their transcriptional dominance even in regions 
where they represented only a minority of cells (Fig. 3F and fig. S3, 
A and B). Ultimately, tumor regions with the highest concentration 
of hypertranscriptional cells were those with the largest fold increase 
in their RNA output. Together, these data show that specific tumor 
cell subpopulations are responsible for the majority of transcriptional 
activity within a tumor. These populations can be unevenly distributed 

across spatially distinct tumor regions yet still maintain transcrip-
tional dominance irrespective of their clone size.

Consistent signaling pathways underpin  
oncogenic hypertranscription
Beyond MYC, which contributes to increased transcriptional output 
in cell lines (5), the drivers of oncogenic hypertranscription are un-
known. Much in the same way that cancer genes can be oncogenic 
or tumor suppressive, we hypothesized that drivers of hypertran-
scription could do so via their expression being increased (such as 
MYC) or decreased (Fig. 4A). Because RNAmp uses standard RNA-seq 
data, it allows for the analysis of focal and global gene expression 
changes in tandem. We leveraged this to explore genes and pathways 
differentially expressed in tumors with hypertranscription.

Using ridge regression, we modeled the associations between 
hypertranscription and 50 hallmark signaling pathways (Fig. 4B, 
fig. S4, and table S4) (15). Master signaling pathways including tumor 
necrosis factor–a (TNFa)/nuclear factor kB (NFkB), mammalian 
target of rapamycin complex 1 (MTORC1), and peroxisome pathways 
were associated with hypertranscription. These pathways have been 
implicated as transcriptional activators across many cancers (16–18). 
The association between MYC and hypertranscription was confirmed 
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in vivo (fig. S5, A and B). This was particularly evident in CRC and 
HNSC—tumor types characterized by frequent MYC amplification 
and elevated expression (fig. S5C) (19). The association in other 
tumor types was less evident (fig. S5, D and E). Beyond the hall-
mark pathways, we found that cancers harboring stem-like features 
display higher levels of RNA output (fig. S6, A and B), which is 
consistent with hypertranscription in rapidly proliferating stem 
cells (6, 20).

In general, hallmark pathways were as likely to activate as sup-
press hypertranscription, with the direction of association depending 
on tumor type (Fig. 4B). The major exception was glycolysis; in more 
than 80% of the tumor types analyzed, increased glycolysis was 
associated with increased hypertranscription. We wondered whether 
increased glycolysis helped tumors meet the elevated nucleosynthetic 
demands put upon a cell by hypertranscription itself. This could 
occur through pathways that shunt glycolytic carbon into nucleotide 
production. To explore this possibility, we measured the expression 
of key metabolic genes implicated in generating nucleotide precur-
sors, including the provision of nitrogen and carbon for nucleotide 
synthesis, and found that nearly every gene was up-regulated in 
hypertranscribing tumors (Fig. 4C and fig. S6C). This included genes 
required for glucose and glutamine uptake (GLUT1 and ASCT2) 
and genes essential in the pentose-phosphate pathway (PPP), re-
sponsible for shunting either glycolytic carbon molecules (G6PD, 
TKT, TALDO1, and PRPS2) or glutamine-derived nitrogen (CAD) 
toward nucleotide synthesis. We further validated these findings by 
measuring expression of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) metabolic pathways, confirming that simple sugar metab-
olism and purine and pyrimidine metabolism are among the most 
active pathways in hypertranscriptional samples (fig. S6D). This 
was also validated in our single cell dataset—the same expression 
pathways that defined hypertranscribing tumors also defined intra-
tumoral heterogeneity in RNA output (fig. S7).

Overall, the expression of hallmark signaling pathways explained 
a large amount of variability in tumor hypertranscription—an addi-
tional 17% of the pan-cancer variability in its RNA output (Fig. 4D). 
In more than two-thirds of cancer types, most of the variability 
in RNA output could be explained by the differential expression of 
these core signaling pathways (fig. S4B).

Oncogenic hypertranscription occurs by loss of 
transcriptional inhibition
To gain deeper insight into how hypertranscription occurs, we sys-
tematically identified and characterized transcription factors (TFs) 
modulating RNA output. Candidate TFs were identified using a 
stepwise approach (fig. S8A). First, all genes (including non-TFs) 
were given a score based on their enrichment in high– or low–RNA 
output tumors using Fisher’s test. Notably, this distribution was sig-
nificantly enriched for genes involved in proteasomal degradation, 
ribosome biogenesis, splicing, and nucleocytoplasmic transport 
(fig. S8B). We then used this distribution to perform gene set enrich-
ment analysis (GSEA) on TFs (482 total tested), filtering for those 
where both the TF and its targets showed significant enrichment in 
either hyper- or hypotranscriptional samples [false discovery rate 
(FDR) < 0.05]. In this way, we found 202 transcriptional modula-
tors, predicted to regulate global transcriptional levels in one or 
more cancer types (table S5).

Consistent with our finding of the association between oncogenic 
signaling pathways and hypertranscription, the TFs identified were 

significantly enriched in cancer pathways (fig. S9A). Eighteen tumor 
types contained at least one TF modulator (range 1 to 79 per type, 
481 total; fig. S9B) with 22 TFs found in ≥5 cancer types (fig. S9C). 
Twenty-eight genes were identified as putative drivers of hypertran-
scription in more than one tumor type (fig. S9D). MYC was among 
these genes, along with other known cancer drivers DROSHA, 
HMGA1, ETV4, and HIF1A.

Most of the TF modulators of RNA output displayed a suppres-
sive relationship with RNA output (72%)—that is, their increased 
expression led to decreased RNA output (Fig. 5A). For example, the 
expression of ETS family members ERG, FLI1, and ETS1 was sig-
nificantly diminished in cancers with hypertranscription (Fig. 5B). 
ETS family members commonly form cancer driving fusions, 
which lead to their increased expression. Nearly half of prostate 
cancers harbor TMPRSS2-ERG fusions (21). Consistent with this, 
in TMPRSS2-ERG prostate cancers, the relationship between ERG 
expression and RNA output flipped—RNA output increased with 
elevated ERG expression, in contrast to prostate cancers with wild-
type ERG. The EWSR1-FLI1 fusion is pathognomonic for Ewing 
sarcoma. To validate FLI1’s role as a modulator of hypertranscrip-
tion, we stably expressed both the full length and a truncated ver-
sion of the fusion in mesenchymal stem cells, the likely cell of origin 
of Ewing sarcoma, and then measured RNA output directly (see 
Materials and Methods). Consistent with our in silico analysis, full-
length EWS-FLI1 led to a significant increase in RNA output com-
pared to the empty vector control, while RNA output was restored 
to near control levels by introducing a C-terminal EWS-FLI1 
deletion (Fig. 5C).

Last, we compared the expression of TF modulators in tumors 
and tissue-matched normal samples from Genotype-Tissue Expres-
sion (GTEx) (table S6). In normal tissues, transcriptional suppressors 
were more highly expressed compared with transcriptional drivers, 
while the opposite trend was observed in tumor samples as expected 
(Fig. 5D). We then measured the log fold change in tumor versus 
normal expression for each gene-tumor-tissue–type pair, finding that 
transcriptional drivers become overexpressed in tumors, whereas 
transcriptional suppressors become underexpressed compared to 
their matched normals (Fig. 5E). Overall, these data suggest that 
loss of transcriptional suppression is critical to development of the 
hypertranscription phenotype during malignant transformation.

Hypertranscription predicts worse overall survival 
in multiple cancer types
The association between hypertranscription and aggressive cancer 
(e.g., basal-like BRCAs and IDH wild-type gliomas) led to the ques-
tion: Does RNA output add prognostic information beyond what is 
already known from the tumor’s molecular subtype? Patients were 
grouped into hyper- and hypotranscription groups using an auto-
mated threshold finding approach, and survival analysis was per-
formed (in cancers with sufficient numbers of events; see Materials 
and Methods). We performed Cox regression analysis, including 
several clinical and molecular covariates in our models such as tumor 
type, tumor stage, mutation burden, gender, and age at diagnosis. 
Hypertranscription predicted worse overall survival across cancer 
(50% versus 59% Cox-adjusted 5-year survival; fig. S10A). Patients 
with elevated RNA output had a 42% increased risk of mortality within 
the first 5 years of diagnosis, even when accounting for tumor type, 
mutation burden, tumor stage, and gender [fig. S10B; hazard ratio 
(HR), 1.42; 95% confidence interval (CI), 1.28 to 1.58; P < 0.0001).
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Hypertranscription was an independent prognostic factor in 
six cancer types (Cox-HR, P < 0.05), defining patient groups with 
significantly worse survival (even while accounting for somatic 
mutation burden, tumor ploidy, tumor stage, patient gender, age, or 
tumor subtype) (Fig. 6, A to C and fig. S10, C to F). Critically, 
hypertranscription’s prognostic utility across these types was also 
independent of expression of commonly used proliferative markers, 
KI67, proliferating cell nuclear antigen (PCNA), and minichromo-
some maintenance 2 (MCM2), or due to expression of MYC (expect 
for ovarian cancer; P = 0.068 with MYC included) (fig. S11, A and B). 
In uterine carcinosarcoma, a heterogeneous tumor of mixed epithelial 
and mesenchymal origin, the average 5-year survival for the hyper-
transcriptional group was 11% compared to 45% for the hypotrans-
criptional group (HR, 2.5; 95% CI, 1.1 to 5.9; P = 0.036; Fig. 5B). 
Notably, a previous study of this uterine carcinosarcoma cohort 
did not report significant associations between survival and several 

clinical and molecular features (22). Bone sarcomas were another 
tumor type in which hypertranscription had significant prognostic 
power and correlated with a ~21% decrease in 5-year overall survival 
(HR, 2.4; 95% CI, 1.4 to 4.2; P = 0.002; Fig. 6C).

Hypertranscriptional thresholds were recalculated within each 
subtype to account for differences in subtypes’ RNA output levels, 
and survival analyses were reperformed. We again saw a consistent 
trend of worsened survival corresponding with increased RNA output 
in nearly every subtype analyzed (fig. S12A). In nine subtypes, 
hypertranscription correlated with a statistically significant decrease 
in survival by either the log-rank test or by Cox-adjusted survival 
(Fig. 6, D to G, and fig. S12, B to F).

For instance, in dedifferentiated liposarcomas (DDLPSs) and 
myxofibrosarcoma and undifferentiated pleomorphic sarcomas 
(MFS/UPS), hypertranscriptional patient subgroups had a 37 and 
58% decrease in 5-year overall survival, respectively (DDLPS: HR, 
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3.7; 95% CI, 1.4 to 12.8; P = 0.04; MFS/UPS: log-rank P = 0.003; 
Fig. 6, D and E). In MFS/UPS, all 13 patients in the hypotranscrip-
tional group survived compared to a 42% survival rate for patients 
with hypertranscription. Similarly, in luminal A BRCAs, all 90 pa-
tients in the hypotranscription group survived compared to the 84% 

5-year survival rate in the hypertranscription group (Fig. 6F). In HPV+ 
and HPV− subtypes of HNSC, hypertranscriptional subgroups had 
a 76 and 17% decrease in 5-year overall survival, respectively (HPV+: 
HR, 10.1; 95% CI, 1.9 to 53.5; P = 0.007; HPV−: HR, 1.4; 95% CI, 1.0 
to 2.0; P = 0.105; log-rank P = 0.048; Fig. 6G and fig. S12B). Overall, 
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undifferentiated pleomorphic sarcoma (MFS/UPS), (E) dedifferentiated liposarcoma (DDLPS), (F) luminal A BRCA, and (G) HPV+ HNSC. Only Kaplan-Meier plots are shown for 
patients with MFS/UPS sarcoma and luminal A BRCA, as all hypotranscriptional patients survive preventing analysis by Cox regression. Error bars on all HR coefficients 
represent the 95% CI. NA, not applicable.
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hypertranscription was a significant independent prognostic indi-
cator in six subtypes, highlighting the ability for hypertranscription 
to uncover “hidden” tumor subtypes (Fig. 6, D to G, and fig. S12, 
C and D).

Transcriptional mutant abundance predicts immunotherapy 
response in nonhypermutant patients
The success of immune checkpoint inhibition (ICI) therapy hinges 
on the immune system’s ability to recognize tumor cells as foreign. 
For this reason, high genomic TMB, yielding increased neoepitopes, 
is associated with ICI responsiveness (23). However, TMB alone is 
an imperfect predictor of ICI therapeutic response: Low-TMB 
(nonhypermutant) tumors can respond, while many high-TMB 
(hypermutant) tumors do not (24). We hypothesized that hyper-
transcriptional tumors, which, in effect, express more tumor-specific 
transcripts, including somatic mutations, would invoke a stronger 
immune response (10). To test this, we first quantified expressed 
TMB (eTMB) in the TCGA cohort by defining a mutation as ex-
pressed if it had ≥3 supporting reads and dividing by exome capture 
size (~30 Mb) to get expressed mutations per megabase. We then 
searched for correlations with hypertranscription. In low-TMB 
cancers (<10 coding mutations per megabase), eTMB increased 
with RNA output, while the opposite occurred in high-TMB tumors 
[>10 mutations (mut)/Mb] (Fig. 7A). Within lung and skin cancers, 

we found significant overlap in eTMB in tumors with low- and 
high-TMB tumors (Fig. 7B). This suggested that expressed mutation 
burden due to hypertranscription may better identify patients who 
would respond to ICI therapy. Low-TMB tumors can effectively 
“look like” high-TMB tumors in the setting of hypertranscription.

To see whether transcriptional mutant abundance was relevant 
in the context of ICI treatment, we investigated four clinical mela-
noma ICI cohorts for which both DNA sequencing and RNA-seq 
were conducted (25–28). Again, overlap in eTMB was observed for 
high- and low-TMB tumors (Fig. 7C). Overall, a greater proportion 
of patients with high TMB had clinical benefit compared to patients 
with low TMB (62% of hypermutant patients and 43% of nonhyper-
mutant patients; fig. S13A). Because eTMB is simply a count of ex-
pressed mutations, it does not effectively capture how abundantly 
these mutations are expressed in the transcriptome. To measure 
true transcriptional mutant abundance, we integrated RNA output 
from RNAmp, VAFs, gene expression count data, and sample purity 
(see Materials and Methods). We observed no significant difference 
in transcriptional mutant abundance between low- and high-TMB 
tumors (fig. S13B). However, transcriptional mutant abundance was 
significantly elevated in clinically benefitting patients (fig. S13C). 
Upon closer inspection, we found that expressed mutation abundance 
was significantly elevated in patients with low TMB with clinical 
benefit (fig. S13D). Patients with low TMB but high transcriptional 
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mutant abundance were as likely to benefit from ICI therapy as pa-
tients with high TMB (68% versus 62%; Fig. 7D). Overall, transcrip-
tional mutant abundance had more predictive value for patients treated 
with ICI therapy, particularly able to identify nonhypermutant pa-
tients for whom ICI therapy was effective (Fig. 7E).

DISCUSSION
This study has shown elevated RNA output across human cancer. 
The pervasiveness of this phenomenon, seen in nearly every cancer 
type and frequently predictive of poor survival, strongly suggests 
that hypertranscription is an essential feature of cancer.

Multiple lines of evidence implicate hypertranscription with 
tumor aggressiveness. It is especially prevalent in tumors with high 
mutation load, doubled genomes, or markers of oncogenic stemness. 
Hypertranscription is not merely a general (nonspecific) pheno-
type; RNA output levels delineated new cancer subgroups and were 
independent prognostic factors, even after accounting for established 
molecular or histopathological markers of prognosis.

In this study, hypertranscription was defined as a relative mea-
sure, and hence, our method (RNAmp) was designed to estimate 
the transcriptional output of cancer cells versus all noncancer cells 
that are intermixed within a bulk tumor sample, as a relative fold 
change. We do not differentiate between different types of noncancer 
cells, which is a current limitation of our method. A recent manu-
script, published while ours was under review, used a different 
approach to report that tumor-specific expression has prognostic 
and phenotypic importance (29).

What leads to hypertranscription in human cancer? We provide 
direct in vivo confirmation of MYC’s association with this pheno-
type. By measuring precise levels of hypertranscription in primary 
human tumors, we also reveal multiple additional pathways, many 
tumor type specific. Elevated glycolysis was associated with hyper-
transcription in almost every cancer type. This suggests that increased 
glycolytic flux supplies the nucleotides needed for the sustained 
growth of hypertranscriptional tumors.

In total, 202 putative drivers of hypertranscription were found, 
many of which are established cancer genes. While exploring 
how these genes regulated transcriptional output, a notable pattern 
emerged. Rather than hypertranscription being driven by a positive 
feedback loop, in which the activation of a key gene contributes to 
the elevated global expression (as is the case with MYC), we found 
that inactivation of transcriptional suppressors was a far more com-
mon route to achieving hypertranscription. It is likely more efficient 
to remove a barrier that keeps already poised transcripts from accu-
mulating and then to turn on transcript production genome-wide. 
In general, studying hypertranscription may shed light on the 
fundamental nature of gene dysregulation in cancer, in which 
the balance between activating and suppressive signals is poorly 
understood.

Analysis of single cells revealed hypertranscriptional subclones 
responsible for producing the bulk of a tumor’s RNA, irrespective 
of the clone’s size. By cell proportion, these distinct populations 
were often minor clones yet still produced most of the tumor’s tran-
scripts. These cells may represent the actively growing component 
of a tumor. Whether these cells maintain a consistent dependence 
on this high level of transcription for their survival is unclear. Future 
studies are warranted to understand the fluctuations in transcriptional 
output both between cells and across time, in relapsed cancers after 

therapy, as well as the contribution of epigenetic dysregulation to 
global transcriptional levels. It may be the case that hypertranscription 
represents a dynamic phenotype; activated when nutrients are avail-
able then turned off, or even reversed toward a “hypotranscriptional” 
survival state, when the tumor is challenged by therapeutics (30).

No matter how it is initiated, the clinical consequences of hyper-
transcription are important, suggesting novel drug strategies. Recently, 
therapies targeting the transcriptional machinery have emerged 
(31, 32), yet it is not always clear to whom these should be given. 
Notably, we found that many of the cancer types with reported 
sensitivity to transcriptional inhibition were those for which hyper-
transcription identified prognostically significant subgroups. This 
included HNSC (33) (Fig. 5G and figs. S8B and S9B), CRC (34) 
(figs. S7C and S9D), kidney cancer (35) (fig. S7E), and other cancers 
(36–43) (Fig. 5F and figs. S7, D and F; S8C; and S9, E and F). Whether 
hypertranscription can identify novel subtypes, or individual patients, 
sensitive to transcriptional inhibition will require future validation. 
A compelling example in this regard is provided by tumors with ETS 
fusions, including TMPRSS2-ERG prostate cancer and EWSR1-ETS 
Ewing sarcoma. In the setting of these fusions, RNA output was 
elevated. Consistent with this, Ewing sarcomas have been found to 
be particularly sensitive to transcriptional inhibition (44).

Last, hypertranscription identified patients with melanoma with 
improved response to immune checkpoint inhibitors, particularly 
in low-TMB tumors. Intriguingly, the burden of expressed mutations 
increased with RNA output specifically in patients with low TMB.  
This was not observed in high-TMB tumors, suggesting a threshold 
or protective mechanism that avoids excessive mutant overexpres-
sion. With accurate measures of hypertranscription, we quantified 
the abundance of expressed mutations, a powerful predictor of 
response in patients with low TMB.

Looking more broadly, the combined results reveal a new mech-
anism to subvert normal transcription used by human tumor cells 
in vivo. In addition to maintaining aberrant levels of specific genes 
belonging to select pathways, it is clear that tumors can also sustain 
increased gene levels across the genome, to their advantage. The 
relationship between local aberrant gene expression and global 
hypertranscription is akin to the balance between focal DNA copy 
number changes, restricted to key loci, and overall ploidy changes, 
involving the complete set of chromosomes (1). Future research will 
be needed to understand the relative importance of and balance be-
tween local versus global gene expression changes. From these data, 
it is likely that local and global transcription, when considered 
together, will explain heterogeneity in clinical presentation and 
patient survival.

Together, this study has shown that transcription differs in both 
type and amount across cancer. Hypertranscription represents an 
unappreciated dimension of oncogenic signaling. While it is often 
thought of as having carefully balanced levels, gene expression can 
undergo marked global shifts, with consequences for tumor subtyping, 
patient prognostication, and response to novel therapies.

MATERIALS AND METHODS
Overview of the RNAmp method
Solid tumors are typically preserved as bulk tissue, which is composed 
of an unknown number of cells. Without knowing the number of 
cells from which the nucleic acid was extracted, it is not possible to 
measure RNA output per cell. Likewise, many tumor specimens are 
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made up of multiple genetically distinct cell populations, which also 
includes an unknown amount of stromal (normal cell) contamina-
tion. Once processed, the tumor cells’ contribution to the total RNA 
pool becomes unknown. To measure cancer cell–specific transcrip-
tional output, one would need to perform cell sorting (to account 
for normal cell contamination), then normalize for the number of 
cells (11), and use RNA spike-in controls mixed into the sequencing 
run itself (45). Even if these additional steps were technically feasible 
for ongoing specimens (without destroying the RNA), they have 
not been used by most publicly available RNA-seq datasets, which 
includes the nearly 10,000 tumor samples from TCGA.

To overcome these challenges, RNAmp uses somatic substitutions 
(Subs) and LOH-SNPs as markers of tumor-specific transcription. 
By quantifying the relative proportion of sequencing reads support-
ing these marker variants in both the DNA and RNA and integra-
tion of tumor copy number and purity, one can assess relative fold 
change in transcriptional output between cancer and normal cells 
within a primary tumor sample. The calculations for measuring 
transcriptional output from Subs and LOH-SNPs are derived sepa-
rately below. These metrics are then summarized to derive a final 
fold change estimate for transcriptional output levels.

Measuring transcriptional output using somatic substitutions
The RNA fraction (VAFRNA) of a given mutation (i) at locus (l) can 
be predicted by dividing the number of mutant RNA transcripts 
produced per tumor cell at locus (l) by the total number of RNA 
transcripts (both mutant and nonmutant) produced from that locus 
by both cancer and normal cells

   VAF   RNA  (i,l)     =   
Mutant RNA  copies  (i,l)    ─────────────  Total RNA  copies  (l)  

    (1)

For a mutation with copy number, CM, in a tumor of a purity, p, 
local tumor total copy number, CT, and with normal copy number, 
CN, the RNA fraction can be approximated if the level of hypertran-
scription (amp) at locus l is known

   VAF   RNA  (i,l)     =   
  C   M  (i,l)       *   amp  (l)    ──────────────────   

(  C   T  (l)       *   amp  (l)   ) +  (     C   N   (  l)       *   (    1 − p _ p   )   )  
    (2)

where CM * amp represents the number of RNA copies produced 
from chromosomes harboring the mutated allele per cancer cell, 
CT * amp represents the number of RNA copies produced from 
both mutant and normal chromosomal alleles per cancer cell, and 
    C  N     *   (    1 − p _ p   )     represents the number of RNA copies produced per 
contaminating normal cell. The mutation copy number (number of 
chromosomal alleles harboring the mutation per cancer cell) is 
given by (46)

   C   M  (i,l)     =    
 VAF   DNA  (i,l)     ─ p     *  (( p   *   C   T  (l)     ) +    C   N  (l)       *  (1 − p ) )  (3)

Substituting Eq. 3 into Eq. 2 rearranging to solve for amp gives us

   amp  (i,l)   =   
  VAF   RNA  (i,l)       *    C   N  (l)    (1 − p)

   ────────────────────────────────     
  VAF   DNA  (i,l)       *   C   N  (l)    (1 − p ) −  p  C   T  (l)    ( VAF   RNA  (i,l)     −  VAF   DNA  (i,l)    )

   

(4)

Measuring transcriptional output using LOH-SNPs
The RNA fraction (VAFRNA) of a given LOH SNP (i) at locus l is 
predicted by dividing the number of RNA transcripts with the variant 
allele produced per tumor and normal cell at a given locus by the 
total number of RNA transcripts produced from that locus.

   VAF   RNA  (i,l)     =   
Variant RNA  copies  (i,l)    ──────────────  Total RNA  copies  (l)  

    (5)

For an SNP with copy number, CS (see Eq. 13), in a tumor of a 
purity, p, local tumor total copy number, CT, with normal copy 
number, CN, and normal minor copy number CNm, the RNA frac-
tion can be approximated if the level of hypertranscription (amp) at 
locus l is known

   VAF   RNA  (i,l)     =   
  C   S  (i,l)       *   amp  (l)   +  (    1 − p _ p    )   *  C  Nm  

   ────────────────  
  C   T  (i,l)       *   amp  (l)   +  (    1 − p _ p   )   *  C  N  

    (6)

where CS(i,l) * amp(l) represents the number of alternate allele RNA 
copies produced from the tumor, CT(i,l) * amp(l) represents the total 
number of RNA copies produced from the tumor, and     C  Nm     *  (    1 − p _ p   )     
and     C  N     *  (    1 − p _ p   )     represent the number of variant allele and total copies 
produced per contaminating normal cell, respectively. Substituting 
1 and 2 for the minor and total normal copy number (as is expected 
on normal autosomal chromosomes) and then rearranging to solve 
for amp give

   amp  (i,l)   =   
  C  Nm     *  (1 − p ) +   C  N     *    VAF   RNA  (i,l)       *  (p − 1)

   ─────────────────────   
 p   *  (  C   T  (l)       *   VAF   RNA  (i,l)     −  C   S  (i,l)    )

    (7)

RNAmp variant filtering and final calculation
To be included in RNAmp’s analysis, variants were filtered for only 
missense or silent changes in loci with sufficient read depth (>8 reads 
in the DNA and >30 reads in the RNA) and located in autosomal 
regions. Somatic variants were filtered to include only clonal muta-
tions as identified using ASCAT (allele-specific copy number analysis 
of tumors) copy number calls and the ABSOLUTE method (46). These 
filters ensured that we only considered high-quality variants, in 
regions that were expressed, and variants that were not affected by 
strong selection pressures (such as stop-gain or stop-loss mutations).

Our measure of transcriptional output was focused on changes 
in transcription of both alleles (normal and mutated) across the entire 
transcriptome. To arrive at a final estimate of global transcriptional 
output fold change, the VAF DNA and RNA, as well as copy numbers 
for Subs and LOH-SNPs, are summarized across all variants passing 
depth filters before applying the RNAmp algorithm outlined above. 
Samples that do not contain at least 25 Subs or LOH-SNPs are ex-
cluded from analysis. For samples with only 25 or more variants of 
either Sub or LOH-SNPs, the RNAmp estimate derived from that 
variant type is used as the final RNAmp estimate. For samples that 
contain 25 or more of both Subs and LOH-SNPs, the fold change 
estimates are mean-weighted together on the basis of the number of 
each variant type present, giving the final fold change estimate for 
transcriptional output. Last, samples with purity above 90% or below 
10% are removed from final analysis, as these samples contained 
insufficient normal cells to estimate RNAmp. This yielded a final 
dataset of 7494 TCGA tumors for analysis.
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Tumor RNA content measurement
The theoretical tumor RNA content per sample—that is, the pro-
portion of all RNA in a tumor sample that is cancer cell–derived—
is given by

  Tumor RNA Content =   
 p   *   RNAt   *   ploidy ⁄ 2 

  ────────────────────   
 p   *   RNAt   *   ploidy ⁄ 2  + (1 − p ) * RNAn 

    (8)

where p is purity, RNAt is RNA output per tumor cell, and RNAn is 
RNA output per normal cell. Given that

  amp =   RNAt ─ RNAn    (9)

We then substitute   RNAt _ amp    for RNAn in the denominator and sim-
plify to give

 Tumor RNA Content =   
 purity   *   amp   *   ploidy ⁄ 2 

   ─────────────────────   
 (    purity   *   amp   *   ploidy ⁄ 2  )   + (1 − purity)

    (10)

Thus, given the relative fold change in transcriptional output of 
tumor cells versus normal cells and tumor purity and ploidy, we can 
estimate the proportion of tumor-derived RNA in a mixed sample.

Validation of the RNAmp method
The cell lines HCC1954, HCC1143, HCC2218, HCC1954BL, 
HCC1143BL, and HCC2218BL were obtained from American Type 
Culture Collection and cultured in RPMI 1640 with 10% fetal bovine 
serum (FBS). UW228 cells were obtained from J. R. Silber (University 
of Washington) and cultured in –minimum essential medium with 
10% FBS. UW228 cells were made to stably express c-Myc by infec-
tion with pMN–GFP–c-Myc as previously described (47). Cells were 
harvested and counted using the Vi-CELL XR Cell Viability Analyzer 
(Beckman Coulter) before DNA and RNA extraction using the AllPrep 
DNA/RNA Mini Kit (QIAGEN) and RNA quantification using 
NanoDrop 1000 (Thermo Fisher Scientific) to generate per cell esti-
mates of RNA output and fold change RNA output values. RNA 
from tumor and normal cell lines was then mixed in RNA cellular 
equivalents to create dilutions of 0, 20, 40, 60, 80, and 100% purity. 
External RNA Controls Consortium (ERCC) RNA spike-ins were 
added to RNA samples normalized to cell number before sequencing. 
UW228 does not have a matched normal; therefore, an unmatched 
peripheral blood cell line was used (HCC1954BL). These mixtures 
underwent library preparation using NEBNext and RNA-sequenced 
to at least 100× depth (average per base coverage across each tran-
script, averaged across all transcripts) using the Illumina HiSeq 
2500. All RNA-seq libraries generated were paired-end 2× 126–
base pair read length, each with >100 million mapped reads. DNA 
was extracted from the pure cell lines and underwent whole-exome 
sequencing (WES) using Agilent’s exome enrichment kit (Agilent 
SureSelect V5) as previously described (4). All sequencing was performed 
at The Centre for Applied Genomics (TCAG) at the Hospital for Sick 
Children. DNA from UW228 and HCC2218 cells was also used for 
Affymetrix CytoScan HD SNP array analysis. Affymetrix SNP6 array 
data were downloaded for HCC1954 and HCC1143 cell lines (sample 
Gene Expression Omnibus accessions: GSM888116 and GSM847319). 
Mutation calling was performed using MuTect2 (v3.5-0), and DNA 
copy number was derived using the Tumor Aberration Prediction 
Suite (TAPs v2.0) (48). For the UW228 cell line, LOH-SNPs were 
identified by finding the union between heterozygous SNPs in the 

HCC1954BL normal cell line and matching alleles in LOH regions 
of the UW228 cell line. DNA VAFs in the impure samples were 
corrected on the basis of purity and mutation copy number using 
the following equations for germline and somatic variants, respec-
tively [adapted from (46)]

 Purity − corrected VAF DNA (Germline SNPs ) =   
(1 − p ) + ( p   *   C  S  )

  ───────────  
 2   * (1 − p ) + ( p   *   C  T  )

   

(11)

 Purity − corrected VAF DNA (Somatic Subs ) =   
 p   *    C  M  
 ──────────────  

 p   *   C  T   +   C  N     * (1−purity)
   

(12)

Samples were then processed using the RNAmp method using 
parameters identical to those described above.

Downsampling experiment
To test RNAmp’s stability when variant counts are low, we used our 
validation dataset of three BRCA cell lines (HCC1143, HCC1954, 
and HCC2218) and took 1000 bootstrapped subsamples of either 
LOH-SNP or somatic variants at different variant counts (2, 5, 10, 
15, 20, 25, 50, 100, 250, 500 or 1000 depending on the total variants 
in a sample). We then recomputed RNA output for each of these 
subsamples and compared the resulting value to RNAmp’s original 
estimate (using the full set of variants).

TCGA dataset
Matched exome (tumor and normal) and RNA-seq (tumor-only) 
were downloaded from the Genomic Data Commons Portal (https://
portal.gdc.cancer.gov/) for 9727 TCGA tumors. Affymetrix SNP6 
CEL files (tumor and normal) were downloaded for 9211 tumors. 
Somatic mutation data in the mutation annotation format (MAF) 
produced by MuTect were downloaded from the GDC portal (v1.0.1). 
Clinical and tumor subtype information were obtained from the 
TCGA Pan-Cancer Atlas (49).

TCGA germline variant calling
Germline SNPs were identified from matched normal exome sequence 
data using GATK’s best practices (GATK v3.7). Briefly, each sample 
was first processed using HaplotypeCaller in single-sample geno-
type discovery mode. Joint genotyping was subsequently performed 
across the entire cohort. Variants were filtered using GATK’s Variant 
Quality Score Recalibration using known polymorphic sites from 
HapMap (v3.3) and Illumina’s Omni 2.5 M SNP chip array for 
1000 Genomes samples as true sites and training resources, 1000 Ge-
nomes high-confidence SNPs as nontrue training resource, and 
dbSNP (v138) for known sites but not training. The truth sensitivity 
filter level was set to 99.5%. Germline SNPs were filtered to select only 
biallelic heterozygous SNPs with a genotype quality score above 30.

TCGA allele-specific copy number analysis
Raw SNP6 CEL files were first preprocessed using the PennCNV- 
Affy pipeline (http://penncnv.openbioinformatics.org/en/latest/
user-guide/affy/) to generate LogR and BAF values for each sample. 
Briefly, Affymetrix Power Tools software was used to generate geno-
type clusters (apt-genotype) and to perform quantile normalization 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://penncnv.openbioinformatics.org/en/latest/user-guide/affy/
http://penncnv.openbioinformatics.org/en/latest/user-guide/affy/
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and median polish to produce signal intensities for A and B alleles 
of SNPs (apt-summarize). PennCNV was then used to convert the 
signal intensities into LogR and BAF values (normalize_affy_geno_
cluster.pl). LogR and BAF files were then processed in R using 
the ASCAT R package (v2.4) to generate allele-specific copy number 
calls and purity and ploidy estimates for each sample.

The copy number status of MYC was defined using ASCAT and 
defined parameters (https://cancer.sanger.ac.uk/cosmic/help/cnv/
overview). Briefly, a total copy number greater than or equal to 5 in 
a sample with ploidy less than 2.7 or a total copy number greater 
than or equal to 9 in a sample with ploidy greater than 2.7 is defined 
as copy gain events.

TCGA variant processing and allele counting
Somatic and germline single-base variants were merged into a 
single VCF file for each sample and annotated using vcf2maf v1.6.12 
(https://github.com/mskcc/vcf2maf) and the Ensembl Variant Effect 
Predictor (v86) to produce annotated MAF files for each sample. 
Allele counting was performed on variant sites for each sample using 
GATK’s ASEReadCounter on matched exome and RNA-seq data. 
Minimum read mapping quality and minimum base quality were 
set to 10 and 2, respectively. Depth downsampling was turned off.

The copy numbers of each SNP, CS, were determined from tumor 
exome read count data using the following equation [adapted 
from (46)]

   C  S   =   
  VAF  DNA     *  (( p   *   C  T   ) + ( 2   *  (1 − p ) ) ) −  (1 − p)

    ────────────────────────  p    (13)

These values were used to determine whether the reference or 
alternate allele at a given loci was lost in regions of LOH. SNPs 
where the exome-derived SNP copy number did not match the copy 
number status as given by ASCAT were removed before analysis. 
To harmonize all LOH-SNPs, we inverted the reference and alter-
nate allele counts for SNPs in regions where the alternate allele was 
lost before analysis.

Variability-explained analysis
To determine the variance explained in transcriptional output lev-
els by predictor variables, we used the relaimpo R package (v2.2-3) 
setting method = “lmg” and rela = TRUE (50). We assessed the pro-
portion of additional variability explained by tumor types and tumor 
subtypes by adding each in turn and comparing the differences in 
variability explained between each model.

Gene expression analysis
Duplicate reads were removed from RNA-seq data using Picard 
(v2.7.1) MarkDuplicates before gene- and exon-level expression 
counting. Gene expression counts were generated using HTSeq (v0.6.0). 
Exon expression counts were created using the dexseq_count.py 
script (v1.21.1). GENCODE V25 gene annotations were used for both 
genes and exons. Counts were normalized using the counts per million 
method for correlation analysis (51).

Gene lists for the 50 hallmark expression pathways were obtained 
from the Molecular Signatures Database (v6.2). To measure expres-
sion of the 50 hallmark expression pathways, we used gene set variation 
analysis (GSVA; v1.32.0) (52) on Reads per kilobase million (RPKM)– 
normalized gene expression counts. We trained a ridge regression 
model using a leave-one-out cross-validation approach. Our model 

included transcriptional output levels as the outcome variable and 
hallmark pathway expression data (50 pathways), purity, ploidy, 
tumor type, mutation burden, tumor stage, gender, and age at di-
agnosis as predictors. Sixty-four patients had missing values for one 
of TMB, tumor stage, gender, or age and were removed before ridge 
regression analysis. We repeated this procedure within tumor types 
in which at least 80 samples contained information for all included 
predictors and plotted the resulting normalized coefficients as a heat-
map. To assess the variability explained by hallmark pathway expres-
sion, we performed analysis of variance (ANOVA) with all 50 pathways 
included alongside all covariates used in the original variability- 
explained model and assessed, in aggregate, how much additional 
variability in each model was explained by inclusion of all hallmark 
pathway expression levels. This analysis was performed both across 
the pan-cancer cohort and within individual tumor types. Pathway 
correlations were summarized into groups on the basis of the strength 
of the correlation coefficient from the ridge regression as follows: 
strongly positive > 1, positive > 0.25, neutral between 0.25 and −0.25, 
negative < −0.25, and strongly negative < −1.

Metabolic gene analysis
A list of relevant metabolic genes involved in either the Warburg 
effect or rate limiting for nucleotide synthesis in cancer were man-
ually curated from review papers (53, 54). KEGG metabolic pathways 
were curated from the Molecular Signatures Database and processed 
by GSVA to produce pathway-level expression values. Pearson cor-
relations between each of these gene or pathway expression values 
and hypertranscription were determined. P values were adjusted 
using the FDR method.

Stemness analysis
mRNA expression–based stemness index values were obtained from 
(55). These values, which scale between 0 and 1, were derived from 
a one-class logistic regression machine learning algorithm trained 
on stem cell classes, differentiated ecto-, endo-, and mesoderm pro-
genitors, and then applied to TCGA RNA expression data. Stemness 
gene sets were curated by literature review and reflect signatures 
meant to capture stem-like or dedifferentiated cancer cell states 
(56–60). Pathway activity levels were determined using GSVA on 
RPKM-normalized gene expression counts. Correlations to hyper-
transcription levels were determined using Pearson correlation, and 
adjusted P values were produced using the FDR method.

scRNA-seq analysis
Raw scRNA-seq data were obtained from Lambrechts et al. (14) and 
reprocessed using the R package Seurat v3.0.1 using the SCTransform 
R function to perform normalization before plotting by Uniform 
Manifold Approximation and Projection (UMAP). This dataset 
contained 15 scRNA-seq experiments representing three spatially 
distinct tumor regions from five patients with lung cancer. To com-
pare transcriptional output across these samples, UMI counts from 
each scRNA-seq run were z-scale–normalized. UMIs tag each unique 
transcript from each cell and therefore represent global transcrip-
tional output in single cells. Fold changes in transcriptional output 
were estimated by taking the average zUMI score for a given cell 
population or subcluster compared with all other cells from a given 
sample, a calculation that is comparable to measurements made 
by the RNAmp method. We directly compared cell proportions in 
each tumor piece for each tumor subcluster to the overall proportion 

https://cancer.sanger.ac.uk/cosmic/help/cnv/overview
https://cancer.sanger.ac.uk/cosmic/help/cnv/overview
https://github.com/mskcc/vcf2maf
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of transcripts derived from each subcluster to infer transcriptionally 
dominant clones. To measure expression of glycolysis, MYC targets, 
MTORC1, and embryonic stem cell (ESC) pathways, GSVA was per-
formed on single-cell count data using the respective pathways  (52).

Hypertranscriptional driver analysis
To determine genes responsible for driving changes in transcrip-
tional output, we reasoned that a putative driver would meet certain 
criteria. First, we restricted our analysis to TFs. These factors should 
be themselves correlated with transcriptional output, and expression 
of their target genes should be enriched in either high– or low–RNA 
output samples.

TFs and their targets were curated from several public databases 
(61–65). For the ENCODE database (64), targets were selected on 
the basis of chromatin immunoprecipitation sequencing peaks with 
a score of 1000 or more. TFs were filtered to include only those with 
between 5 and 500 targets. In total, 482 TFs were selected for further 
analysis on the basis of these filtering criteria.

To create a transcriptional output dataset amenable to GSEA with 
the TFs and target lists, we scored 16,793 genes for their association 
with hypertranscription using Fisher’s test after median splitting 
expression values for each gene. For each gene, this analysis returned 
an odds ratio related to the enrichment or depletion of a given gene 
in high–transcriptional output samples. By log-transforming the 
resulting distribution of 16,793 genes, we obtained a normally dis-
tributed log score allowing for GSEA using the TF target gene lists. 
Fisher’s test and Pearson correlation P values for individual gene 
correlations were adjusted using FDR within each tumor type. Final 
TFs were filtered for those with a significant target enrichment in 
addition to a significant Pearson correlation and Fisher’s test P value, 
leading to the final list of 202 unique TFs (482 total hits) across 18 
tumor types. TFs whose expression was positively correlated with 
RNA output were considered drivers, and those where their expres-
sion was negatively correlated with RNA output were considered 
suppressors.

For each putative transcriptional driver and suppressor gene, we 
computed the mean expression of each gene in each tumor type and 
in a cohort of GTEx tissue-matched normal samples (table S6). We 
then took the fold change between each genes’ tumor expression 
level and normal expression level and compared the transcriptional 
amplifier and suppressor genes distributions. TCGA prostate cancer 
samples with ERG fusions were identified from (66).

Human mesenchymal stem cell EWS-FLI1 RNA 
output analysis
Human mesenchymal stem cells (hMSCs) were made to stably express 
either full-length EWS-FLI1 or EWS-FLI1 C-terminal truncal deletion 
mutants distal to the DNA binding domain of FLI1 (either 33 or 79 amino 
acids in length), before cell counting and RNA quantification. Briefly, 
the p53 and retinoblastoma tumor suppressor pathways were inacti-
vated by introducing the HPV-16 containing E6 and E7. Human telo-
merase reverse transcriptase was used to then immortalize the hMSCs. 
Cells were grown in triplicate, and each cell count was also per-
formed in triplicate before RNA quantification using NanoDrop.

Survival analysis
To accommodate the variable follow-up times in each tumor cohort, 
we focused our analysis on 5-year overall survival. To determine 
prognostically relevant hypertranscription thresholds in individual 

tumor types and subtypes, we used the R package OptimalCutpoints 
(v1.1-4) and maximized Youden’s index (67). Each tumor type or 
subtype was assigned an independently defined RNA output threshold, 
above which we considered samples to have hypertranscription.

We filtered out tumor types with 10 or fewer events (which ex-
cluded DLBC, KICH, PCPG, PRAD, TGCT, THCA, and THYM), 
10 or fewer survivors (which excluded LAML). For the subtype-specific 
analysis, those without at least five or more events were removed 
before analysis (which excluded BRCA normal, CRC MSI CIMP, 
CRC invasive GBM IDHmut-non-codel, SARC other, STES POLE, 
UCEC CN low, UCEC UCEC MSI, UCEC POLE subtypes).

Instances in which the high- or low-hypertranscription groups 
made up more than 90% of a tumor type’s samples were removed 
(which excluded types ACC, BLCA, and MESO). For subtypes, this 
cutoff was set at 95% [which excluded BRCA basal, HNSC HPV−, 
LGG IDHmut-codel, LGG IDHwt, STES Epstein-Barr virus (EBV), 
and STES chromosomal instable (CIN)]. The remaining tumor 
types (n = 20) and subtypes (n = 15) were used for Kaplan-Meier 
survival analysis and Cox regression. Tumor type, subtype, stage, 
age at diagnosis, TMB, purity, ploidy, race, and gender were in-
cluded in Cox regression models when available. Patients with 
missing values for one of TMB, tumor stage, gender, or age were 
removed before survival analysis. To assess MYC, MCM2, KI67, 
and PCNA expression and survival, we median split each group 
based on each genes’ expression and included it as a covariate in the 
Cox regression.

ICI dataset and expressed mutation burden
Whole-exome and RNA-seq data were downloaded for ICI-treated 
patients with melanoma (25–28). Only ICI-naïve, pretreatment sam-
ples were selected for analysis. WES sequence data were aligned as 
previously described (4). RNA-seq data were aligned using STAR 
(v2.4.2a) in two-pass mode (68). Somatic mutation data were down-
loaded from supplementary tables from the original publications. 
Allele-specific copy number calling and LOH-SNP identification 
was performed using FACETS (v0.6.1) on the matched tumor- 
normal WES data (69). Samples were then processed using RNAmp 
using default parameters, except for the Riaz cohort (27) in which 
duplicate reads were included in the allele-counting step for the 
RNA-sequenced data.

Only missense, nonsense, and nonstop mutations were consid-
ered for the eTMB analysis. To be considered expressed, a mutation 
required at least three alternate reads support it in the RNA. To 
estimate mutation burden per megabase, we only included muta-
tions located within coding exons that were common across multiple 
exome capture kits (including the TCGA), which totaled 28.7 Mb. 
Clinical benefit was defined as patients with complete or partial 
response or those with stable disease after 1 year.

Transcriptional mutant abundance
Transcriptional mutant abundance refers to the average expression 
level of each mutation in a sample. Gene expression counts from 
each sample were normalized using GeTMM (70). For each muta-
tion, we estimate the transcriptional mutant abundance by first 
multiplying the normalized counts for the gene containing the mu-
tation by the VAF of that mutation in the RNA. Then, a correction 
factor is applied that accounts for tumor purity, hypertranscription, 
and tumor copy number–related impact on expected mutation 
counts as follows
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 Transcript mutant abundance =  VAFRNA   *   Counts   *     1 ─  correction factor   

(14)

  Correction factor =   
 amp   *   total . cn ⁄ 2 

  ────────────────   
 amp   *   total . cn ⁄ 2  +  1 − purity ⁄ purity 

    (15)

where   amp   *   total . cn ⁄ 2   is the tumor ploidy–corrected hypertran-
scription level and   1 − purity ⁄ purity   is the normal:tumor cell ratio.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn0238

View/request a protocol for this paper from Bio-protocol.
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