Skip to main content
. 2022 Nov 5;219:109452. doi: 10.1016/j.comnet.2022.109452

Table 3.

Accuracy, F-measure, number of Trainable Parameters (#TP), and Training Time (Time) comparison of DL-based traffic classifiers when combining different mixes of modalities. Models are trained using App×Act class labels. Results are in the format avg.(±std.) obtained over 10-folds. The best result per metric (column) is highlighted in boldface. Training time is calculated by pre-training the individual modalities in parallel. The input types fed to each classifier are shown in Table 2.

Classifier Joint-TC
App-TC
Activity-TC
#TP [k] Time [min]
Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]
bPAY 42.34(±1.12) 35.80(±1.25) 76.27(±0.84) 77.22(±0.82) 53.57(±0.70) 46.83(±1.46) 460 22(±3)
bSEQ 57.56(±0.80) 51.37(±1.12) 91.03(±0.59) 92.36(±0.53) 62.13(±0.96) 59.12(±0.91) 706 26(±7)
bContext 66.44(±1.58) 64.68(±2.05) 81.12(±1.53) 80.64(±1.67) 78.91(±0.91) 77.75(±0.97) 99 2(±0)
Mimetic-Enhanced 67.12(±1.14) 62.29(±1.21) 98.54(±0.21) 98.75(±0.18) 67.94(±1.13) 65.33(±1.15) 1235 57(±6)
Mimetic-ConPay 78.09(±0.99) 76.94(±0.98) 95.15(±0.48) 95.01(±0.52) 81.17(±0.97) 80.36(±0.92) 628 30(±4)
Mimetic-ConSeq 81.15(±0.84) 80.32(±0.85) 97.39(±0.42) 97.61(±0.35) 83.02(±0.74) 82.39(±0.73) 875 33(±4)
Mimetic-All 82.53(±0.90) 81.04(±1.02) 99.05(±0.26) 99.17(±0.22) 83.13(±0.85) 82.51(±0.81) 1368 56(±7)