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Phenotypic plasticity and genetic control in 
colorectal cancer evolution

Jacob Househam1,2,11, Timon Heide1,3,11, George D. Cresswell1, Inmaculada Spiteri1, 
Chris Kimberley2, Luis Zapata1, Claire Lynn1, Chela James1, Maximilian Mossner1,2, 
Javier Fernandez-Mateos1, Alessandro Vinceti3, Ann-Marie Baker1,2, Calum Gabbutt1,2, 
Alison Berner2, Melissa Schmidt2, Bingjie Chen1, Eszter Lakatos1,2, Vinaya Gunasri1,2, 
Daniel Nichol1, Helena Costa4, Miriam Mitchinson5, Daniele Ramazzotti6, Benjamin Werner2, 
Francesco Iorio3, Marnix Jansen4, Giulio Caravagna1,7, Chris P. Barnes8, Darryl Shibata9, 
John Bridgewater4, Manuel Rodriguez-Justo4, Luca Magnani10, Andrea Sottoriva1,3 ✉ & 
Trevor A. Graham1,2 ✉

Genetic and epigenetic variation, together with transcriptional plasticity, contribute 
to intratumour heterogeneity1. The interplay of these biological processes and  
their respective contributions to tumour evolution remain unknown. Here we show 
that intratumour genetic ancestry only infrequently affects gene expression traits  
and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired 
whole-genome and transcriptome sequencing, we find that the majority of 
intratumour variation in gene expression is not strongly heritable but rather ‘plastic’. 
Somatic expression quantitative trait loci analysis identified a number of putative 
genetic controls of expression by cis-acting coding and non-coding mutations, the 
majority of which were clonal within a tumour, alongside frequent structural 
alterations. Consistently, computational inference on the spatial patterning of tumour 
phylogenies finds that a considerable proportion of CRCs did not show evidence of 
subclonal selection, with only a subset of putative genetic drivers associated with 
subclone expansions. Spatial intermixing of clones is common, with some tumours 
growing exponentially and others only at the periphery. Together, our data suggest 
that most genetic intratumour variation in CRC has no major phenotypic consequence 
and that transcriptional plasticity is, instead, widespread within a tumour.

Genetic intratumour heterogeneity (gITH) is an inevitable consequence 
of tumour evolution2. Extensive gITH has been documented across 
human cancer types1, and its precise pattern within an individual cancer 
is a direct consequence of the evolutionary dynamics driving the devel-
opment of the tumour3. Consequently, clones that undergo positive, neg-
ative or neutral selection can be identified through analysis of gITH4–6. 
However, clonal selection in cancer operates on the phenotypic character-
istics of a cell—for example, the ability of a cancer cell to evade predation 
by the immune system7 or to survive in oxygen-poor environments8,9  
and can be modulated by spatial competition9–14. Knowledge of the 
genotype–phenotype map of cancer cells is limited and thus, while 
genomics offers us a window into determination of which clones are 
selected, the methodology provides limited information on precisely 
why they are selected. Interrelatedly, the extent to which subclonal 
mutations in tumours lead to phenotypic change is unclear.

RNA sequencing (RNA-seq) enables high-throughput profil-
ing of phenotypic characteristics of cancer cells by quantitative 

measurement of gene expression levels15. Historically, studies have 
focused on intertumour differences in gene expression patterns 
and have led to the identification of gene expression signatures 
that correlate with clinical outcomes. In colorectal cancer (CRC), 
the focus of this study, consensus molecular subtypes (CMS)16 or 
cancer cell-intrinsic gene expression subtypes (CRIS)17 exemplify 
this approach. Because the transcriptome is a feature of the can-
cer cell phenotype, it is natural to view changes in expression, and 
the pattern of transcriptomic intratumour heterogeneity (tITH), 
as ‘functional’ and the substrate for tumour evolution. Potentially 
tITH could be driven entirely by underlying heritable (epi)genetic 
variation that evolves during tumour growth. However, the observa-
tion that local invasion is polyclonal in both CRC18 and early breast 
cancer19 challenges the notion that cancer cell phenotype (here, the 
ability to invade) is driven solely by the accrual of genetic mutations. 
Furthermore, observations of rapid transcriptional shifts following 
treatment (for example, in melanoma20) and, in CRC, variation in 
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subclone proliferation rates through serial retransplantation despite 
largely stable patterns of genetic alterations21, discount the notion 
that transcriptomic phenotypes are determined solely by clonal 
replacement. It has previously been determined that most driver 
mutations are clonal in metastatic CRC, meaning that intratumoral 
transcriptional variation often happens in the absence of the acquisi-
tion of new key driver mutations22. Collectively, these studies suggest 
that phenotypic characteristics are at least partially plastic—they can 
vary without acquiring a new heritable (epi)genetic alteration to drive 
expression changes, for instance as a response to the cellular environ-
ment. In patient samples we cannot measure longitudinally the exact 
same clones or cells, and so here we define a trait as plastic if it varies 
independently of evolutionary history. Conversely, non-plastic traits 
are fixed through tumour evolution.

Here we analyse spatially resolved paired genomic (whole-genome 
sequencing), epigenomic (assay for transposase-accessible chromatin  
using sequencing, or ATAC-seq), and transcriptomic (whole-transcript  
RNA-seq) profiling, coupled with computational modelling, to char-
acterize the evolution of phenotypic heterogeneity in CRC. Paired 
DNA–RNA data enable assessment of the interrelationship between 
genetic evolution and gene expression patterns, and of the functional 
consequence of gene expression change for cancer evolution.

We analysed our spatially resolved, multiomic, single-gland profil-
ing dataset from primary CRCs23 that were part of our Evolutionary 
Predictions in Colorectal Cancer (EPICC) study. Single-gland profiling 
allowed multimodal DNA, chromatin and RNA characterization of the 
same small clonal unit of tissue (glands or crypts). We focused our 
analysis on 297 samples from 27 CRCs (mean, 11 samples per tumour; 
range, 1–38) in which we had obtained high-quality, full-transcript 
RNA-seq data. Paired deep and shallow whole-genome sequencing 
and chromatin accessibility analysis by ATAC-seq were available for a 
subset of these samples. An analysis of the ATAC-seq data is available 
in the associated paper23.

Expression heterogeneity in CRC
First, we explored the heterogeneity of gene expression within and 
between CRCs. We clustered a filtered set of 11,401 genes (including 
removal of very lowly expressed genes and those significantly nega-
tively correlated with purity; Methods) using both the mean and vari-
ance of gene expression within each tumour (Fig. 1a), and separated 
the dendrogram into four groups (Methods): group 1 had high aver-
age expression and relatively low variance in gene expression (‘highly 
expressed, limited heterogeneity’); groups 2 and 3 had progressively 
lower average gene expression and high variance in expression, whereas 
group 4 genes had low average gene expression and low variability 
between samples from the same tumour (Fig. 1b,c and Supplemen-
tary Table 1). Meta-pathway analysis showed weak, non-significant 
enrichment for pathways involved in cell growth and death in group 1, 
and significant enrichment for cancer-related genes in group 2 and 
pathways related to replication and repair in group 3 (Fig. 1d). Group 4 
was weakly and non-significantly enriched for signalling pathways 
but, due to generally low expression, it was excluded from further 
analyses. We confirmed that transcriptional heterogeneity evident in 
group 2 genes in tumours was less prominent in an equivalent analysis 
of normal colon single-cell RNA-seq (scRNA-seq) data, thus excluding 
the possibility that the gene expression variation we observed was 
simply the natural transcriptional noise of colon cells (Methods and 
Supplementary Figs. 1 and 2).

We repeated the clustering analysis using hallmark pathways24 
(Methods) rather than individual genes (Extended Data Fig. 1a), and 
separated the dendrogram into four groups of pathways based on the 
degree and heterogeneity of enrichment score within and between 
cancers, respectively (Extended Data Fig. 1b,c). Hallmark pathways 
were grouped into ‘classes’ according to their biological mechanism 

(oncogenic, immune, stromal and so on)25. Homogeneously enriched 
pathways (pathway group 1) showed moderate but not significant 
enrichment for cellular stress response; heterogeneously enriched 
pathways (pathway group 2) were moderately but not significantly 
enriched for oncogenic signalling (Extended Data Fig. 1d), congru-
ent with the gene-level result. Pathway group 4 (low average pathway 
enrichment and high heterogeneity) contained two pathways, epi-
thelial–mesenchymal transition and angiogenesis; these were both 
classed as stromal, meaning that pathway group 4 was enriched for 
stroma-related pathways (Extended Data Fig. 1d).

Consensus molecular subtypes16 and CRIS17 are useful approaches 
in classification of CRC by gene expression patterns. We investigated 
the intratumour heterogeneity of these classifiers. For CMS, only 2 out 
of 17 tumours with sufficient samples for analysis were homogene-
ously classified (both CMS3; Extended Data Fig. 2a). For CRIS, only a 
single tumour was homogeneously classified (CRIS-A; Extended Data 
Fig. 2b). CRIS classification exhibited higher intratumour expression 
heterogeneity than CMS (Extended Data Fig. 2a,b), and heterogeneity 
remained when the analysis was limited to only those samples that 
could be subtyped with high accuracy (Extended Data Fig. 2e–h). Cor-
respondence between CRIS and CMS type calls was weak (Extended 
Data Fig. 2c). We note that others have published data showing the 
heterogeneity of molecular subtypes in CRC26,27 and the discordance 
between CRIS and CMS classifications17,28. The genes used for both 
CMS and CRIS classification were depleted for highly homogeneously 
expressed genes (group 1; Extended Data Fig. 2d). Consequently, both 
CRIS and CMS classifiers exhibited extensive ITH.

Together, these analyses showed that gene expression programmes 
that define cancer cell biology and interactions with the surrounding 
tumour microenvironment were not uniformly expressed across CRCs.

Evolution of expression heterogeneity
We sought to understand the genetic determinants of the observed 
tITH. If variability in gene expression was caused by genetic change 
within the tumour (that is, if tITH is caused by gITH), then gene expres-
sion variability should mirror genetic ancestry. Phylogenetic signal is a 
statistical method derived from evolutionary biology that measures the 
degree to which phenotypic (dis)similarity between species is explained 
by genetic ancestry, and can be quantified by Pagel’s λ statistic29,30 
(Supplementary Fig. 3). We assessed the phylogenetic signal of gene 
expression heterogeneity in each of our CRCs with sufficient paired 
RNA-seq whole-genome sequencing (WGS) data (114 samples from eight 
tumours; median 11 samples per tumour, range 6–31). Phylogenetic 
trees for each tumour were constructed from WGS data (Methods) 
and terminal nodes overlaid with gene expression profiles (Fig. 1e,f 
and Extended Data Fig. 3). Pagel’s λ was computed for 8,368 genes from 
groups 1–3 (as defined in Fig. 1a), with group 4 genes removed due to 
low average expression. Within each tumour a median of 166 genes 
(range 67–2,335) had expression levels with detectable phylogenetic 
signal (P < 0.05), though with the exception of cancer C559 no associa-
tions remained after multiple testing correction. The number of genes 
with phylogenetic signal (at P < 0.05) did not significantly correlate with 
the number of samples per tumour (P = 0.25; Supplementary Fig. 4). The 
above analyses were rerun using standard log-normalization of gene 
expression and there was a high overlap between genes with evidence 
of phylogenetic signal, indicating that the normalization method has 
a negligible impact on results (Supplementary Fig. 5). Adjustment of 
expression for tumour content (purity) before running phylogenetic 
signal analysis was also found to have a minimal impact on results 
(Methods and Supplementary Fig. 6). Post hoc power analysis indi-
cated that our dataset was sufficiently sized to enable detection of the 
heritability of early subclonal, large-effect changes in gene expression 
(Supplementary Fig. 7); the expression of most genes did not show this 
pattern of heritability.
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Only 61 genes had expression patterns that recurrently mirrored 
phylogenetic ancestry in at least three tumours (Fig. 1g). Group 1 
genes (highly expressed, limited heterogeneity) were enriched for 

phylogenetic signal whereas group 3 genes (moderately expressed, 
moderate heterogeneity) were significantly depleted for phylogenetic 
signal (Fig. 1h). Interestingly, the Kyoto Encyclopedia of Genes and 
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Fig. 1 | Heterogeneity of gene expression and phylogenetic signal in CRC.  
a, Heatmaps showing clustering of genes by expression level across tumours 
(left) and expression variation within tumours (right). Hierarchical clustering 
showed four distinct groups, groups 1–4. Units are scaled by column in each 
heatmap. b,c, Summary box plots per gene group (group 1, 891 genes; 
group 2, 2,444 genes; group 3, 5,033 genes; group 4, 3,033 genes). Mean 
expression level (b) and intratumour heterogeneity of expression (c) per 
group, as measured by s.d. d, Meta-KEGG pathway analysis showing which 
pathway categories are most over-represented in each group (after removal of 
‘infectious disease: bacterial’ and ‘neurodegenerative disease’—most 
significant in group 1). e,f, Phylogenetic trees and heatmaps of genes with 
evidence of phylogenetic signal (at P < 0.05) for tumours C551 (e) and C554 (f). 
g, Heatmap of genes with recurrent phylogenetic signal across tumours (those 
which were found to have evidence of phylogenetic signal in at least three 
tumours). h, Results of chi-squared test showing whether gene groups were 

enriched for phylogenetic genes (those with evidence of phylogenetic signal  
in at least one tumour—“Phylo”) compared to all other genes (“Non-phylo”).  
i, Enrichment of KEGG PPAR signalling pathway for recurrently phylogenetic 
genes. j, Example phylogenetic tree and pathway enrichment heatmap for 
tumour C559. Pathways are ordered by decreasing significance of phylogenetic 
signal. k, Heatmap showing recurrence of phylogenetic signal of pathways 
across tumours. Pathways are ordered by decreasing recurrence. Refer to 
pathway key in Extended Data Fig. 4 for pathway names. *P < 0.05, **P < 0.01, 
***P < 0.001; Mean norm., mean gene expression in normal samples; Mean 
mean exp., mean of mean gene expression per tumour; Mean var., mean 
standard deviation of gene expression; MedPval, median P-value from forest of 
100 trees; MedLambda, median λ value from forest of 100 trees; NumRec, 
number of tumours in which gene has evidence of phylogenetic signal; Num 
Sig, number of tumours in which pathway has evidence of phylogenetic signal; 
d.f., degrees of freedom.
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Genomes (KEGG) pathway peroxisome proliferator-activated receptor 
(PPAR) signalling, involved in prostaglandin and fatty acid metabolism31 
was statistically over-represented in this recurrently phylogenetic 
set of genes (false discovery rate (FDR) = 0.0075, STRINGdb analysis; 
Fig. 1i). Links between PPAR metabolism and CRC have previously been 
reported32,33.

Analogous assessment of phylogenetic signal at the level of gene 
expression pathways (Fig. 1j and Extended Data Fig. 4; at P < 0.05, only 
cancer C559 showed associations after correction for multiple test-
ing) showed two pathways with recurrent evidence of phylogenetic 
signal in at least three tumours: (1) fatty acid metabolism, related to 
the PPAR signalling pathway, which was identified in the gene-level 
analysis, and (2) MYC_TARGETS_V2 that contains genes regulated by 
MYC signalling (Fig. 1k). Phylogenetic signal at pathway level was not 
related to pathway class (as used in Extended Data Fig. 1a,d). Thus, in 
our dataset, the expression of most pathways was not strongly related 
to genetic ancestry.

We defined phenotypic plasticity as gene expression changes that 
occurred independently of evolutionary history, possibly as a conse-
quence of external stimulus from the tumour microenvironment. To 
examine this, phylogenetic trees and expression-based dendrograms 
were compared, showing few instances in which genetic history mir-
rored current levels of gene expression (Extended Data Fig. 5 and Sup-
plementary Fig. 8). Across the cohort, the level of genetic intermixing 
of clones across tumour spatial regions was uncorrelated with the level 
of gene expression heterogeneity between regions (Supplementary 
Fig. 9). To specifically examine the influence of tumour microenviron-
ment, we tested whether gene expression of tumour glands was clus-
tered by tumour region (Supplementary Fig. 10), observing significant 
clustering in 4 of 11 tumours (FDR < 0.05; Methods and Supplementary 
Fig. 11). We used CIBERSORTx34 to quantify immune cell infiltration in 
our samples and tested for association between the degree of infiltra-
tion and overall difference in gene expression, finding a significant but 
weak association (R2 = 0.21; Methods and Supplementary Fig. 12), with 
the caveat that there is inherent uncertainty in RNA-seq deconvolution 
in general. Together, in support of previous research studying how the 
microenvironment can determine gene expression35,36, these analyses 
provided evidence that the tumour microenvironment could influence 
plastic gene expression programmes in tumour cells irrespective of 
accrued genetic changes in those cells.

Genetic determinants of gene expression
Somatic mutations altering gene expression are a potential mechanistic 
explanation of phylogenetic signal. We used a simple linear regression 
framework (Methods), inspired by the expression quantitative trait loci 
(eQTL) used in human population genetics37, to detect cis associations 
between inter- and intratumour somatic genetic heterogeneity and 
gene expression.

In total, 5,927 genes had cis somatic genetic variation in at least two 
samples (n = 167 samples with matched RNA-seq and WGS data and at 
least two samples per tumour), comprising n = 2,422 non-synonymous 
genic mutations (mutations were single nucleotide variation (SNVs) 
or indels), n = 20,790 non-genic (enhancer) mutations and extensive 
somatic copy number alterations (SCNAs). Of these genes, 1,529 (25.8%) 
had expression significantly correlated with inter- or intratumour 
somatic genetic variation (including both mutations and copy number 
alterations; FDR < 0.01, Storey’s π = 0.1007; Fig. 2a and Supplementary 
Table 2), which we termed eQTL genes. A higher FDR cut-off of 10% was 
assessed, but this had only a negligible impact on results.

Somatic copy number alterations contributed to expression changes 
of 1,163 out 1,529 (76.1%) eQTL genes (Fig. 2b,c and Supplementary 
Table 2), but the magnitude of the effect on expression was generally 
small (Fig. 2b; median effect size 0.30 s.d. in expression change per 
allele copy). A positive correlation between copy number and expres-
sion was observed for 1,082 genes but, interestingly, a negative correla-
tion was observed for 81. Positive correlations were enriched at loci with 
total copy number one and four (Supplementary Fig. 13a,d) whereas 
negative correlations were disproportionately more common at genes 
with total copy number two or three (copy number two includes cases 
with copy-neutral loss of heterozygosity, copy number three includes 
unbalanced gains; Supplementary Fig. 13b,c). Consequently, we specu-
late that negative correlations between copy number and expression 
are due to dominant-negative activity of the amplified allele. We note 
that this idea is consistent with cell line research which found that 
single-chromosomal gains can function as tumour suppressors38.

Mutations, both coding and non-coding, were associated with gene 
expression variation in 508 eQTL genes (Fig. 2b,d) and, typically, the 
magnitude of the association was much greater than for SCNAs (mean 
effect size 1.92 versus 0.30 s.d. for mutation versus single-copy number 
change; Fig. 2b). For coding somatic mutations, approximately equal 
numbers of mutations associated with an increase versus decrease 
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in expression were observed (33 coding mutations with increasing 
expression versus 27 with decreasing expression, P = 0.4). Non-coding 
enhancer somatic mutations were associated with the greatest changes 
in gene expression observed in our cohort, and were more likely to 

be associated with increases in expression (486 increases versus 258 
decreases, P = 6.3 × 10–17; Fig. 2e). The expression of 175 genes was 
significantly associated with both SCNAs and mutations, indicating 
how the combination of somatic mutation and copy number altera-
tions can potentially determine the gene expression phenotype of 
cancer cells. We used the Hartwig metastatic CRC cohort39 to validate 
eQTL results: 22 eQTL mutations had sufficient variation present in 
the Hartwig cohort to detect associations of the magnitude observed 
in our cohort and, of these, 9 (41%) were validated (Supplementary 
Fig. 14). The unexplained gene expression variation for the remaining 
13 variants could be due to germline, trans or other epigenetic effects. 
A post hoc power analysis found that we were powered to detect (that 
is, at least 80% power) effect sizes greater than 0.94 (s.d. in expres-
sion change; Supplementary Fig. 15). Assessment of germline SNPs 
showed some outliers that may have had a small impact on our eQTL 
analysis, and this could possibly be due to variations in patient genetic 
ancestry (Methods and Supplementary Fig. 16). With this in mind, and 
because we did not examine trans effects, we emphasize that eQTLs 
are only associations and not proof of a mechanistic link. In a separate 
subgroup analysis of mutations in microsatellite stability (MSS) versus 
microsatellite instability (MSI) cases, mutations in MSS tumours were 
more frequently associated with large effects on gene expression (Sup-
plementary Fig. 17) whereas the addition of MSI status as a cofactor had 
minimal impact on tumour eQTL associations (correlation of R2 values 
between original and MSI-added analysis, P < 1.1 × 10−16, R2 = 0.855; Sup-
plementary Figs. 18 and 19).

Overall, only 2.4% (89 out of 3,705) of subclonal mutations in 
which eQTL status could be investigated were associated with detect-
able changes in cis gene expression, compared with 3.6% (688 out of 
19,256)—many more in absolute numbers—of clonal eQTL variants 
(P = 3.7 × 10−4; Fig. 2f). Genes associated with subclonal eQTL mutations 
were enriched for phylogenetic signal (odds ratio (OR) = 3.5, P = 0.02; 
Fig. 2g), and this significant enrichment was absent for genes associated 
with clonal mutations (OR = 1.7, P = 0.11; Fig. 2g). Thus, whereas most 
somatic mutations did not result in a detectably large direct change 
in cis gene expression, each tumour contained a small number of sub-
clonal genetic variants (median 1) significantly associated with altered 
gene expression. We emphasize that finding variants associated with 
gene expression changes does not necessarily imply that those variants 
underwent selection within the tumour.

Selection on cancer driver mutations
Cancer genomics studies have established that only a few genes actually 
contribute directly to cancer evolution, and these genes are termed 
drivers40. We therefore focused on understanding the evolutionary 
consequences of putative CRC driver mutations on tumour expansion.

We used our extensive single-gland, multi-region WGS data (deep 
WGS, median depth 35×, between 3 and 15 samples per patient 
(median, 8) and low-pass WGS (median depth 1.2×, between 1 and 
22 samples per patient, median 8) for accurate identification of 
clonal and subclonal somatic variants (https://doi.org/10.6084/
m9.figshare.19849138 from ref. 23) and to call somatic copy number 
alterations in each tumour (note that this included additional tumours 
lacking RNA-seq data). We specifically examined the clonality of 
69 genes (excluding PARP4, LRP1B and KMT2C, which we excluded 
due to a high number of false-positive low-frequency variants in these 
genes) on the IntOGen list41 of putative CRC driver genes (Methods  
and Fig. 3a). The most frequently mutated drivers in colorectal cancer, 
such as APC, KRAS, TP53 and SOX9, as well as other known drivers includ-
ing PTEN, EGFR, CCDC6, PCBP1, ATM and CTNNB1, were invariably clonal 
in cancers, except for one tumour with a subclonal KRAS mutation and 
another with a subclonal TP53 mutation. These findings are consistent 
with previous multi-region sequencing studies42 but contradict claims 
of frequent subclonality of these genes in single-sample bulk data43, 
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highlighting the need for methods to identify functional intratumour 
heterogeneity44.

We used analysis of the ratio of non-synonymous to synonymous 
substitutions (dN/dS)45, which quantifies the excess of non-synonymous 
mutations in a gene, to detect selection across the complete set of can-
cer drivers (Methods). We found clear evidence of positive selection 
(dN/dS greater than 1) for clonal missense and truncating mutations 
in IntOGen driver genes in MSS cancers (Fig. 3b), and dN/dS values 
were higher for the IntOGen list than for a second, pan-cancer driver 
list45, confirming that the IntOGen list was enriched for true CRC driv-
ers. For subclonal variants, we found evidence of subclonal selection 
of truncating variants and missense mutations with dN/dS higher 
than 1 for CRC-specific IntOGen variants but not for the pan-cancer 
driver list45, suggesting that a subset of putative subclonal CRC driver 
mutations were under positive selection in growing tumours. For MSI 
tumours, subclonal selection was less evident from dN/dS, probably 
due to the higher mutation rate generating a much larger number of 
neutral mutations in cancer driver genes and thus diluting the dN/dS 
signal but, nevertheless, selection for clonal missense and truncating 
mutations was significant in MSI cancers (Fig. 3c). We then examined 
dN/dS values for each of the IntOGen driver genes in a larger dataset, 
combining our data with The Cancer Genome Atlas (TCGA) colon and 
rectal cancer cohorts and additional data46,47 (n = 1,253 CRCs). Most 
genes in the list showed no evidence of selection, with the majority 
of the top significant genes being the ‘usual suspects’ in CRC drivers42 
(Extended Data Fig. 6).

For an orthogonal assessment of driver gene function we turned 
to the DepMap dataset48 that assesses the functional consequence of 
gene knockouts across a large panel of cell lines (Methods). Most CRC 
candidate drivers showed no evidence of essentiality (a measure of 
cell viability following gene perturbation) across the CRC cell lines of 
the DepMap dataset, whereas the two most likely under strong selec-
tion in our cohort, KRAS and PIK3CA, were significantly essential in 
many CRC cell lines and were found to be significantly differentially 
essential when contrasting mutant versus wild-type (WT) CRC cell lines 
(Student’s t-test P < 10−6; Supplementary Fig. 20).

Thus, surprisingly, these analyses indicated that even putative driver 
mutations in CRCs sometimes have limited phenotypic consequence 
when measured in terms of subclonal selection. The lack of detectable 
selection on CRC driver mutations is consistent with previous reports 
of widespread neutral subclonal evolution within CRCs5,49,50.

Evolutionary dynamics within tumours
We assessed the evolutionary dynamics of individual driver mutations 
on a tumour-by-tumour basis through assessment of phylogenetic 
tree shape and the related clonal structure of the tumour (Fig. 4 and 
Extended Data Fig. 7; Methods). ‘Balanced’ trees, in which similar branch 
lengths are found across tumour samples and regions, are consistent 
with effectively neutral evolution and were observed for a large pro-
portion of tumours. A clear outlier was tumour C539, in which the tree 
contained a particularly large clade that spanned multiple geographical 
regions of the tumour (all A and part of B). This ‘unbalanced’ tree was 
suggestive of subclonal selection51, and indeed, the expanded clade 
contained a KRAS G12C mutation (Fig. 4h). We used BaseScope, a com-
mercial in situ RNA-based mutation detection technique52 (Methods), 
to visualize subclones containing a putative driver alteration. We tested 
the KRAS G12C subclonal variant in C539 (Fig. 4h and Supplementary 
Fig. 21) and the PIK3CA E545K subclonal variant in C537 (Fig. 4i and Sup-
plementary Fig. 22). This analysis confirmed the spatial segregation of 
subclones, showing heterogeneity in a subset of the blocks, whereas 
we also found complete absence of the clone in a large proportion of 
other areas of the tumour (Supplementary Table 3). Furthermore, and 
consistent with our previous reports4,49, tumours could be split into 
two groups characterized by subclonal intermixing between spatially 

distinct regions (16 out of 28, 57% of tumours) versus strict segregation 
by geography (Supplementary Fig. 23).

We assessed the functional consequence of 38 subclonal putative 
driver mutations from the IntOGen list that were detected in MSS can-
cers. PolyPhen53 scores showed that 8 out of 38 (21%) mutations were 
putatively benign mutations (marked in grey in Fig. 4 and Extended 
Data Fig. 7). Paired RNA-seq showed only wild-type reads for 5 out of 
38 (13%) putative driver mutations (also marked in grey). We could 
not assess mutant transcript expression for 25 out of 38 mutations 
(66%) because of missing RNA-seq data or lack of reads covering the 
variant location. Of those, 13 out of 25 (52%) were in genes with dN/dS 
approximately 1 in the TCGA cohorts; COAD and READ. Six out of 38 
(16%) variants were identified as deleterious by PolyPhen and were also 
found to be expressed in matched RNA-seq (marked in bold).

At the individual tumour and mutation level these analyses showed 
that, of the large number of putative driver events identified in our 
cohort (Fig. 3a), many showed no evidence of being under selection: 
14 out of 38 (37%) variants were either benign or not expressed in the 
cancer (although we note that expression could not be assessed for 
two-thirds of variants), and a further 10 out of 38 (26%) variants were in 
genes with dN/dS of approximately 1 in the external cohorts. However, 
positive dN/dS values for pooled cases suggested that some of these 
subclonal variants were under selection. To identify these, we designed 
a spatial inference framework able to detect and measure subclonal 
selection in our dataset.

Spatial inference of growth dynamics
We decided to further probe for evidence of evolutionary consequence 
of heritable alterations in individual tumours. Computational mod-
els allow the simulation of different types of spatial growth dynam-
ics and have provided insights into tumour evolution and the effect 
of spatial constraints8–14. Here we used computational modelling in 
combination with approximate Bayesian computation (ABC) to infer 
subclonal selection and the impact of spatial effects from our spatially 
resolved WGS data. For this, we extended our previous model based 
on cell replication, death and mutation51 to incorporate more realistic 
spatial growth conditions and branch overdispersion (Extended Data 
Fig. 8a and Methods). We note that we did not specifically model inter-
actions between subclones. We simulated the genome-wide accrual of 
somatic mutations in each lineage, including both neutral mutations 
(Extended Data Fig. 8b–d, bottom) and selected (driver) mutations 
(Extended Data Fig. 8b–d, top), showing characteristic patterns caused 
by subclonal selection. Furthermore, distinct clonal patterning was 
observed for peripheral versus exponential growth (governed by the 
width of the growing outer rim of cells (dpush); Extended Data Fig. 8e 
and Supplementary Fig. 24), in which clonal intermixing was greater 
in the exponential case.

To compare the model with data, we simulated our empirical spa-
tial sampling scheme (Fig. 4a,c,e, ref. 23 and Supplementary Fig. 1) on 
our virtual tumours (Extended Data Fig. 8f). This generated realistic 
whole-genome sequencing synthetic data that we used to reconstruct a 
(synthetic) phylogenetic tree, thus comparing real data (Fig. 5a) and the 
corresponding matched simulation (Fig. 5b and Extended Data Fig. 8g). 
The corresponding spatial patterns of subclonal heterogeneity could 
be visualized from the simulation (Fig. 5c). Bayesian inference (sequen-
tial Monte Carlo, or ABC–SMC54) of model parameters was performed 
on a patient-by-patient basis by matching synthetic and empirically 
observed trees, making use of regularization with the Akaike information 
criterion (AIC) for model selection55 (Fig. 5d and Extended Data Fig. 8h; 
see Methods and Supplementary Note with https://doi.org/10.6084/
m9.figshare.20394369 for details). Specifically, the number of param-
eters (k) is used to regularize the negative log-likelihood (NLL) of the 
models, calculate AIC and, more importantly to estimate the confi-
dence in model selection, the ΔAIC value (difference in AIC between 

https://doi.org/10.6084/m9.figshare.20394369
https://doi.org/10.6084/m9.figshare.20394369
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compared models). ΔAIC greater than 4 is considered to represent strong 
support for one model over another55, this was the threshold used to 
identify strongly preferred models. The relationship between AIC and 
critical distance of summary statistics between real and simulated trees 
is reported in Fig. 5e. Generally good agreement between simulated and 
observed phylogenetic tree structures was observed despite the relative 

simplicity of our model, with quantitative assessment of the goodness of 
fit confirmed by likelihood and posterior predictive P value distribution 
(Fig. 5f). For example, C539 was predicted to contain a selected subclone 
(Fig. 5a–f) and carried a KRAS G12C mutation that presumably drove the 
clonal expansion (Fig. 5a). Tumour C548 was inferred to be neutrally 
evolving (Fig. 5g–l) and thus predicted to carry no strongly selected 
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subclonal driver mutations, despite there being subclonal mutations 
in putative driver genes in this case.

Across the whole cohort (see https://doi.org/10.6084/m9.figshare. 
20394360 for a supplementary inference result booklet), we found strong 

evidence of subclonal selection in 7 out of 27 tumours (ΔAIC greater  
than 4; Fig. 5m). In four of these seven tumours, a putative subclonal 
driver mutation was present in the selected clade and the variant was 
expressed in the RNA (subclone drivers are listed in Supplementary 
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Table 4 and reported in Figs. 3a and 4 and Extended Data Fig. 7). 
These included (1) C518, with subclonal selection in A and B driven by 
PTEN missense mutation C136R; (2) C531, with subclonal selection in 
B driven by SMAD4 missense mutation A118V; (3) C538, with subclonal 
selection in D driven by RNF43 nonsense mutation Q153*; and (4) C539, 
with subclonal selection in A and part of B driven by KRAS missense 
mutation G12C. In five additional tumours we detected a weak prefer-
ence for the subclonal selection model. These included (1) C524, in 
which subclonal selection in B appeared to be driven by a PIK3CA C378R 
mutation, and (2) C525, in which subclonal selection in C appeared 
to be driven by a PIK3CA Q546P mutation. The selective advantage 
of PIK3CA and KRAS mutations agrees with our orthogonal assess-
ment of CRC driver genes using the DepMap database (Supplementary 
Fig. 20). Evidence of selection in the phylogenetic trees included a 
significantly longer branch containing the selected event (for example, 
Fig. 5a, selection event 1), or two distinct regions having a more recent 
common ancestor with respect to the others (for example, Fig. 5a, 
selection event 2).

In the remaining 15 out of 27 tumours the preferred subclonal 
growth model was neutral (Fig. 5m). The number of samples per tumour 
(that is, more extensive tumour sampling) did not confound model 
selection (Fig. 5n). Notably, orthogonal dN/dS analysis on the IntOGen 
driver gene list confirmed the computational modelling results. Specifi-
cally, putative subclonal driver gene mutations in tumours predicted 
to be neutrally evolving showed a dN/dS value of 1 whereas the point 
estimate was appreciably higher than 1 for driver genes in tumours pre-
dicted to experience subclonal selection (Fig. 5o). This also supported 
the absence of subclonal selection, even in small clades that may not 
have undergone sufficient expansion to be detectable by our infer-
ence method. Aside, these results illustrate that our spatial inference 
framework could be used for accurate assessment of the evolutionary 
consequence of putative driver mutations.

Full parameter estimation is reported in Fig. 5p: overdispersion of 
edge length (D), mutation rate per division (m), width of the growing 
outer rim of cells (dpush), growth rate of the first and second subclones 
(λ2 and λ3, respectively) and population size at their introduction  
(t2 and t3, respectively). The increased growth rate of selected subclones 
was inferred to be as much as 20 times higher than that of the back-
ground clone, and most selected clones originated relatively early dur-
ing tumour expansion (tumour size fewer than 50,000 cells). Inferred 
mutation rates were 9.8 × 10−9 and 46.6 × 10−9 mutations per base pair 
per division in MSS and MSI tumours, respectively, consistent with 
previous measurements56. Tumours were delineated by either expo-
nentially growing (high dpush) or growing more slowly at the periphery 
only (low dpush). Notably, exponential growth was over-represented in 
neutrally evolving tumours (Fisher’s exact test, P = 0.022).

Epigenome and transcriptome of subclones
Subclone evolution within a cancer is a natural ‘competition experi-
ment’ between human cells with similar genetic background in the 
same microenvironment that facilitates delineation of phenotypic 
differences between subclones and the consequences of driver  
alterations.

We examined matched ATAC-seq and RNA-seq data from selected 
subclones versus background clones in six and five, respectively, out 
of seven tumours with strong selection for which we had sufficient 
matched ‘omics’ data. Enrichment analysis of differentially expressed 
genes between the subclone and background clone highlighted consist-
ent dysregulation of focal adhesion pathways for C531, C542 and C559. 
The epithelial–mesenchymal transition programme was upregulated 
in C542 whereas MYC + E2F targets were upregulated in C531 (see Sup-
plementary Fig. 25a for gene-level analysis and Supplementary Fig. 26 
for pathway analysis). Analogous analysis of somatic chromatin acces-
sibility alterations showed promoter loss of accessibility of PPP2R5C,  

a regulator of TP53 and ERK in C542, which had no known genetic driver 
mutation in the selected clade (Supplementary Fig. 25b).

Finally, we assessed whether heritable changes in gene expression 
were indicative of subclonal selection. There were eight tumours in 
which both adequate phylogenetic signal analysis and assessment of 
subclone selection were possible. There was no association between 
the number genes with some evidence of phylogenetic signal and the 
presence of subclone selection (Wilcoxon P = 0.686; Supplementary 
Fig. 27a), nor for spatial segregation versus intermixing of subclones 
(P = 0.393; Supplementary Fig. 27b). Furthermore, the percentage of 
tested eQTL genes that were significant in each tumour was not associ-
ated with neutral evolutionary dynamics (P = 0.968; Supplementary 
Fig. 27c), nor was the magnitude of heritable gene expression changes 
(P = 0.195; Supplementary Fig. 27d). Together this suggests transcrip-
tional variation even within a selected clone. A visual schematic illus-
trating the main results is shown in Extended Data Fig. 9.

Discussion
Heterogeneity in gene expression is common, both between and 
within patients. Leveraging the fact that clone ancestry is encoded 
by somatic mutations in the genome, here we determined that only a 
small proportion of the observed subclonal transcriptomic variation 
shows strong evidence of heritability through tumour evolution (under 
1% of expressed genes and under 5% of hallmark pathways). This points 
towards phenotypic plasticity—the ability of a cancer cell to change 
phenotype without underlying heritable (epi)genetic change—as a 
common phenomenon in CRC. We previously considered that the 
observation of infrequent stringent selection for subclones within 
CRCs is consistent with the notion that phenotypic plasticity is estab-
lished within cancer cells at the outset of cancer growth50. Here our 
explicit analysis of transcriptomic variation supports this hypothesis.

Nevertheless, we do find a evidence of heritable changes in gene 
expression in all CRCs examined. Of 29,949 associations between 
somatic mutations and gene expression, only 796 (702 clonal) were 
associated with significant changes in cis gene expression and so can 
be thought of as potentially functional mutations. In any individual 
tumour we detected a median of 1 (maximum, 34) subclonal mutation 
that putatively affected gene expression and, notably, the presence 
of heritable changes in gene expression was not necessarily related 
to whether the cell lineage with the variant was undergoing subclonal 
selection. This emphasizes that phenotypic changes do not necessar-
ily correlate with changes in fitness—the newly induced expression of 
a particular gene may have no relevance to the ability of that cell to 
survive or grow in its current microenvironment, and indeed across 
species most genetic ‘tinkering’ is near neutral or even deleterious57. 
Thus, at least some of the observed tITH is part of the standing phe-
notypic variation in the tumour but is not selected at the time of the 
expansion of the primary tumour, even if it is the consequence of the 
accumulation of mutations during tumour growth. Care should be 
taken not to conflate transcriptional variation with evidence of impor-
tant variation in tumour cell biology. We suggest that this variation 
could partially be a consequence of tumour evolution being ‘out of 
equilibrium’, in which an expanding population with high genomic and 
phenotypic instability generates widespread variation that stabilizing 
selection has not yet had time to prune. Nevertheless, such variation 
may be important for future tumour evolution, such as in response to 
treatment. We emphasize that the limited size of our cohort reduced 
the power to detect the many small associations between genetics and 
expression that may occur within tumours, and also means that we 
were unlikely to observe recurrent events across cancers. Future single 
cell analyses, rather than the tumour glands used here, are likely to be 
better powered to reveal DNA–RNA associations58. However, we argue 
that the large effects, which we were generally powered to see, are those 
most likely to be relevant for tumour biology. We emphasize that our 
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analysis reports only correlations and is not proof of a mechanistic 
link, and that there are other potential confounders including patient 
genetic background, epigenetic effects and unexplored trans effects.

Aside from the foregoing, we show that assessment of intratumour 
heterogeneity can serve as a ‘controlled experiment’, enabling quan-
titative measurement of ongoing evolutionary competition within 
the human body between different lineages with distinct subclonal 
mutations, providing a platform for function assessment of the ‘driv-
erness’ of putative driver mutations in vivo in human malignancies. 
Ongoing collection of associated relapses and metastatic deposits 
will allow assessment of those subclones and drivers responsible for 
disease progression.

Our study makes progress in elucidating the role of genetic control 
and clonal evolution within primary untreated CRC, suggesting that 
phenotypic plasticity is widespread and underlies pervasive transcrip-
tional heterogeneity.
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Methods

Sample preparation and sequencing
The method of sample collection and processing is described in a com-
panion article (ref. 23). Sequencing and basic bioinformatic processing 
of DNA-, RNA- and ATAC-seq data are included there as well.

Gene expression normalization and filtering
The number of non-ribosomal protein-coding genes on the 23 canonical 
chromosome pairs used for quality control was 19,671. Raw read counts 
uniquely assigned to these genes were converted into both transcripts 
per million (TPM) and variance stabilization transformed (VST) counts 
via DESeq2 v.1.24.0 (ref. 59).

A list of expressed genes (n = 11,667) was determined by filtering 
out those for which less than 5% of tumour samples had at least ten 
TPM. To concentrate on tumour epithelial cell gene expression, genes 
were further filtered out if they negatively correlated with purity as 
estimated from matched DNA-seq data (see associated ref. 23 for meth-
odology of purity estimation). Specifically, for the 157 tumour samples 
that had matched DNA-seq and therefore accurate purity estimates, a 
linear mixed-effects model of ‘expression (VST) ~ purity + (1 | patient)’ 
(where ‘~’ represents ‘is distributed as’) was compared via a chi-squared 
test to ‘expression ~ (1 | patient)’. The linear mixed-effects models were 
built with lmer from the lme4 R package v.1.1-28 (ref. 60). Genes with 
a negative coefficient for purity in the first model and FDR-adjusted 
P < 0.05—suggesting that purity had significantly affected expression—
were filtered out; this led to a filtered list of 11,401 expressed genes.

Gene expression clustering
For each tumour with at least five tumour samples (n = 17 tumours; note 
that, except for the large advanced C516 adenoma, adenomas used in 
ref. 23 did not undergo RNA-seq), mean expression and s.d. of expres-
sion were calculated for every filtered expressed gene (n = 11,401) using 
DESeq2 VST normalized counts (inspired by ref. 61). Euclidean distance 
matrices of mean expression and s.d. of expression were calculated 
based on non-MSI tumours. Distance matrices were combined with 
‘fuse’ from the analogue R package v.0.17-6 (ref. 62) with equal (50/50) 
weighting, and complete linkage hierarchical clustering was performed. 
Four gene groups were determined using ‘cutree’ (k = 4) from the den-
dextend R package v.1.15.2 (ref. 63). For plotting of Fig. 1a,b, tumours 
were clustered with the approach described above and both mean 
expression and s.d. of expression matrices were scaled by columns.

Conversion to entrez gene IDs and gene symbols was carried out in 
biomaRt v.2.50.3 (ref. 64) using Ensembl v.90. Where IDs were missing, 
newer Ensembl versions and manual curation were used (the complete 
list of gene information is available in Supplementary Table 2).

For the KEGG meta-pathway analysis, pathways and pathway cat-
egories were downloaded from https://www.kegg.jp/kegg-bin/show_
brite?hsa00001_drug.keg. Enrichment of KEGG pathways for each gene 
group was determined with enrichKEGG from ClusterProfiler v.4.2.2 
(ref. 65), and pathways enriched at FDR < 0.1 were input into ‘enricher’ 
to determine pathway category enrichment (FDR < 0.1). Pathway cat-
egories ‘Neurodegenerative disease’ and ‘Infectious disease: bacterial’ 
were removed due to their irrelevance to CRC cell biology.

Analysis of normal colon scRNA-seq
A scRNA-seq dataset derived from healthy intestine was accessed 
from Elmentaite et al.66. scRNA-seq data for colon gut epithelium were 
downloaded from https://www.gutcellatlas.org and filtered for cells 
from the colon in ‘Healthy adults’. This left seven donors with a mean 
of 5,516 cells per donor (range, 1,410–16,828). Expression data were 
normalized with Seurat v.4.1.0 (ref. 67) and mean expression within 
each donor was calculated.

The mean and s.d. of each gene’s expression within each donor was 
calculated. Genes were then filtered and grouped according to the 

groups identified in Fig. 1a, and plots were produced analogously to 
Fig. 1b,c.

Pathway enrichment clustering
Hallmark pathways were downloaded from MSigDB (msigdbr R pack-
age v.7.2.1)24 with unrelated pathways (SPERMATOGENSIS, MYO-
GENESIS and PANCREAS_BETA_CELLS) removed from analysis, and 
the COMPLEMENT pathway was renamed COMPLEMENT_INNATE_
IMMUNE_SYSTEM. Pathways INTESTINAL_STEM_CELL68 and WNT_
SIGNALING (http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.
jsp?geneSetName=WNT_SIGNALING) were added.

For each multi-region tumour (n = 17), the TPM expression of 
protein-coding genes converted to entrez gene IDs (n = 18,950) was 
used as input for single-sample gene set enrichment analysis using 
the GSVA R package v.1.42.0 (ref. 69). The mean and s.d. of enrichment 
were then recorded for each tumour. Because KRAS_SIGNALING_DN 
had average enrichment below zero it was removed from downstream 
analysis, leading to a final list of 48 pathways.

Analogously to the genic analysis, mean and s.d. of pathway enrich-
ment were jointly used to determine four groups of pathways whereas 
tumours were clustered and matrices normalized by column as before. 
Fisher’s exact tests were subsequently performed to determine whether 
pathway classes25 were significantly enriched/depleted in particular 
pathway groups.

CMS and CRIS classifications were determined using the CMScaller 
R package v.2.0.1 (ref. 70). As recommended, raw gene counts were 
used as input with ‘RNA-seq=TRUE’, meaning that these counts 
underwent log2 transformation and quantile normalization. CMS 
and CRIS were predicted using templates provided in the CMScaller 
package, and samples were assigned to the subtype with the shortest 
distance. High-accuracy classifications were determined by running 
1,000 permutations, where a classification was considered significant 
if the FDR-adjusted P-value was under 0.05.

Construction of phylogenetic trees
Reconstruction of maximum-parsimony trees. From deep WGS 
(dWGS) samples, maximum-parsimony trees were reconstructed 
with the Parsimony Ratchet method71 implemented in the phangorn 
R package v.2.8.1 (ref. 72). Mutations with an estimated cancer cell frac-
tion above 0.25 were considered to be mutated (state 1) and others to 
be non-mutated (state 0) in a given sample. The ratchet was run for a 
minimum of 100 and a maximum of 106 iterations, and terminated after 
100 rounds without improvement.

The acctran algorithm72–75 was used to estimate ancestral character 
states. From these a set of mutations (Me) that were uniquely mutated 
(that is, state 0 to greater than 1) on each edge e of the phylogeny were 
obtained.

Addition of shallow WGS samples to the tree. For anymutation i the 
number of reads supporting the variant yi and the total number of reads 
covering the locus ni in a shallow WGS (sWGS) sample were obtained 
from the bam files.

The mutation data were assumed to follow a binomial (Bin) distri-
bution:

y n pBin( , ),i i i

where the success probability pi is a function of the sample’s purity ρ, 
the number of mutated alleles mi in tumour cells, the total copy num-
ber ci in tumour cells and the copy number in contaminating normal 
cells, cn = 2, given by

p
ρm

ρc ρ c

ρm

ρ ρc
=

+ (1 − )
=

2 − 2 +
.i

i

i s n

i

i

https://www.kegg.jp/kegg-bin/show_brite?hsa00001_drug.keg
https://www.kegg.jp/kegg-bin/show_brite?hsa00001_drug.keg
https://www.gutcellatlas.org
http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?geneSetName=WNT_SIGNALING
http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?geneSetName=WNT_SIGNALING


For a set of mutations Me from a given edge e of a tree T , all, none or 
a fraction πm of mutations might be present in a sample. The marginal 
likelihood of the observed data (De) of the set of mutations is 
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where p0 is the background noise of the WGS at a unmutated site.
Assuming that mutated sites are not lost at any point in time, for a 

mutation from the edge e = (s,t) to be mutated in a sample, all variants 
on the path from the germline node r  to the node s  of this edge (r ⇝ s) 
also have to be mutated (that is, πm = 1). All remaining mutations—that 
is, those that occur in the descendants of t  or in different lineages of 
the tree—must be absent (that is, πm = 0). The likelihood of the data D 
for all mutations that are part of the tree is
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where Anc(s) is the set of all ancestral edges on the path from r to s. 
Maximum-likelihood estimates of sample parameters e Eˆ∈ , πm∈[0,1], 
p̂0 ∈[0,1] and p̂ ∈[0,1] were obtained for each sWGS sample by minimiz-
ing −log(L), and samples were added to location x e πˆ = ( ,̂ ˆ )m  of the tree.

Estimation of copy number multiplicities. The above analysis was 
restricted to mutations in regions in which no subclonal SCNA occurred. 
The multiplicity of mutations ms i,  was estimated across the set of all 
samples S as
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with ps i,
 as defined above and where Is i,  indicates whether the mutation 

i  was detected in sample s. Due to potential issues with the accuracy 
of estimates for large copy numbers, only sites with copy number 
0 < c < 4 were used.

The tool for assignment of sWGS samples to a dWGS tree is available 
as R package MLLPT at https://github.com/T-Heide/MLLPT.

Intermixing scores. To calculate intermixing within tree T , each tip 
v V∈ 1 was labelled with the region of the tumour from which the cor-
responding sample was obtained. Intermixing within the tree was then 
measured as
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where Im m≠v s
 is an indicator function that indicates whether v and s  

had different labels, spa( ) is the parent of s and sdesc( ) is the set of all 
descendants of s.

Phylogenetic signal analysis
Tumours with fewer than six paired DNA–RNA samples were excluded 
from this analysis, leaving 114 samples from eight tumours (median 
11 samples per tumour, range 6 to 31).

Additional sWGS samples, however, had zero branch length because 
mutations unique to a sample could not be called with sWGS meth-
odology. To account for these ‘missing’ unique variants, we inferred 
the probable number of unique variants from the matched dWGS 
samples. For each sWGS sample from a particular tumour region, a 
new tip branch length (‘leaf length’) was drawn from a Poisson distri-
bution based on the mean number of unique mutations observed in 
each dWGS sample from the same spatial tumour region. DNA sam-
ples that did not have matched RNA-seq samples were then removed 
from the trees (with drop.tip from ape R package v.5.6-1, ref. 76). This 

process was repeated 100 times for each tumour, leading to a forest 
of 100 phylogenetic trees with slightly varying branch length for 
each sWGS sample.

In the genic phylogenetic signal analysis, Pagel’s λ was calculated for 
group 1–3 genes (n = 8,368) using ‘phylosig’ from the phytools R pack-
age v.1.0-1 (ref. 77). This returns the maximum-likelihood Pagel’s λ esti-
mate and a P value for the likelihood ratio test with the null hypothesis 
of λ = 0. This analysis was performed for all 100 trees and the median λ 
and P value determined for each tumour, with median P < 0.05 indicat-
ing evidence of phylogenetic signal for that gene. Genes with recurrent 
phylogenetic signal were defined as those with evidence of phyloge-
netic signal in at least three tumours. The STRINGdb R package v.2.6.1 
(ref. 78) was used to determine pathway enrichment of these recurrent 
phylogenetic genes, and ‘string-db.org’ was used for plotting of PPAR 
signalling genes.

To assess how phylogenetic signal is affected by purity, the analysis 
was rerun with purity-corrected expression. The coefficients of how 
purity determines gene expression had already been calculated during 
gene filtering (that is, the coefficient of purity in ‘expression ~ purity’ 
regression for all DNA matched samples (Methods) and samples used 
for phylogenetic analysis had matched DNA samples, allowing the use 
of accurate purity values. The expression of each gene (first normalized 
by DESeq2 variance-stabilizing transformation) was then normalized 
with the following equation:

Exp = Exp + (Purity coefficient/Sample purity)pur vst

Phylogenetic signal analysis was then undertaken with purity- 
corrected expression (Supplementary Fig. 6).

In pathway phylogenetic signal analysis, pathway enrichment values 
were used as input for ‘phylosig’ for the 48 pathways. Evidence of phy-
logenetic signal was then determined as above. Recurrent phylogenetic 
pathways were defined as those with evidence of phylogenetic signal in 
at least two tumours, and Fisher’s exact tests were used to determine 
enrichment/depletion in pathway groups and classes.

To determine the power for each tumour used in phylogenetic signal 
analysis, gene expression was simulated and λ P values estimated. Gene 
expression was Poisson distributed across nodes and was increased by 
a factor of 5–100% across every clade of the tree. This was performed 
over the forest of 100 trees of differing branch length, and this pro-
cess was then repeated 1,000 times. The power to detect evidence of 
phylogenetic signal for a particular expression percentage change at 
a particular clade was therefore inferred by the percentage of simula-
tions that had a median (that is, over the 100 branch-length-variant 
trees) P < 0.05.

Assessment of phenotypic plasticity
For expression-based sample clustering, we calculated Euclidean dis-
tance matrices on genes from groups 1–3 (n = 8,368) and performed 
complete hierarchical clustering for each tumour with at least five 
RNA-seq samples (n = 17). The resulting dendrograms are plotted in 
Supplementary Fig. 10.

To quantify space–gene expression correlations we constructed 
a permutation test. For tumours with at least ten samples (n = 11), 
cophenetic distance matrices were extracted from the dendrograms 
plotted in Supplementary Fig. 10. The sum of all cophenetic distances 
between samples from the same tumour region was then calculated 
to acquire a metric of expression correlation with region for each 
tumour. To determine the significance of this metric, sample names 
for cophenetic distance matrix were randomly relabelled and the 
mixing statistic recalculated 10,000 times, followed by evaluation 
of whether the observed data were more extremely clustered than 
the random permutations (Supplementary Fig. 11). The intermixing 
scores used in Supplementary Fig. 9 were calculated as in Intermix-
ing scores.

https://github.com/T-Heide/MLLPT
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To assess the impact of tumour microenvironment we used CIB-

ERSORTx34, specifically with the LM22 signature file comprising 
22 immune cell types79 via the online portal (http://cibersortx.stanford.
edu). First, Euclidean distances between the vector of gene expression 
from pairs of samples in the same tumour were calculated based on 
the expression of the 8,368 genes used in phylogenetic signal analysis. 
Euclidean distances were also calculated based on absolute scores 
from CIBERSORTx (note that CIBERSORTx was run using all genes). 
These two metrics were then plotted together for sample pairs from 
the same tumour and the correlation assessed (Supplementary Fig. 12).

Genetic determinants of gene expression heterogeneity
Tumours with at least two tumour samples were included in this 
analysis (153 tumour samples from 19 tumours, median four sam-
ples per tumour) and only loci mutated in at least two samples and 
connected to an expressed gene (groups 1–3 from Fig. 1) were ana-
lysed (22,961 mutated loci connected to 5,927 expressed genes—
29,949 unique gene–mutation combinations).

The following data were used as input for the linear model:
•	Exp: a gene × sample matrix of variance-stabilized normalised gene 

expression of group 1–3 genes, converted to a z-score by subtract-
ing the mean expression of all samples and dividing by the s.d. of 
all samples.

•	CNA: a gene × sample matrix of the total copy number of the gene 
locus. If multiple copy number states were detected for the same gene, 
the segment overlapping most with the gene’s locus was selected.

•	Mut: a binary mutation × sample matrix in which mutations (SNVs 
and indels) were either within the enhancer region of the gene or a 
non-synonymous mutation within the coding region of the gene itself. 
Enhancer links to genes were defined using ‘double-elite’ annotations 
from GeneHancer tracks80. Some enhancer regions overlapped with 
the gene coding region, and non-synonymous mutations in these 
regions were annotated as both enhancer and non-synonymous.

•	Purity: the purity of each sample as determined from dWGS or sWGS.
In addition, 14 matched normal samples were added and these  

were assigned WT for all mutations, 2 for total copy number and 0 for 
purity. For each gene–mutation combination, the following linear 
model was implemented: Exp Mut + CNA + Purity + Tumour , where  
‘Tumour’ indicates whether the sample was a normal or tumour sample.

A gene–mutation combination was said to be explained if the 
FDR-adjusted P value of the F-statistic for overall significance was less 
than 0.01. Storey’s π, the estimate of the overall proportion of true null 
hypotheses, was calculated using the qvalue R package v.2.26.0 (ref. 81). 
A gene–mutation combination was significantly affected by a variable 
(that is, Mut/CNA/Purity/Tumour) if the FDR-adjusted P value for the 
coefficient of that variable was under 0.05.

For analysis of clonality (Fig. 2f), a mutation was considered ‘sub-
clonal’ if at least one mutation associated with that gene was not found 
in all matched DNA–RNA samples for at least one tumour. For combina-
tion of eQTLs with phylogenetic analysis and clonality (Fig. 2g), a gene 
mutation combination was considered an ‘eQTL’ if it was significant for 
Mut, ‘subclonal’ if it was not found in all matched DNA/RNA samples 
for at least one tumour and considered ‘phylogenetic’ if the associated 
gene had significant phylogenetic signal in the tumour in which the 
mutation was present.

To look for recurrence of eQTL mutations in the Hartwig cohort, 
mutation loci were first converted to hg19 using liftOver from the 
rtracklayer R package v.1.54.0 (ref. 82) and ‘hg38Tohg19.over.chain’ 
from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver. Two 
out of 22,961 loci could not be converted and were therefore discarded 
for this analysis. Converted loci were searched for in the CRC Hartwig 
cohort using the ‘purple.somatic.vcf.gz’ files. For Hartwig gene expres-
sion, ‘adjTPM’ values were used and converted to a z-score whereas 
tumour purity was extracted from the metadata. For each locus with 
at least one mutated DNA–RNA Hartwig sample, the linear models of 

Exp ~ Mut + Purity and Exp ~ Purity were compared via a likelihood 
ratio test. An eQTL was said to validate in Hartwig if the P value of the 
test was under 0.05 and the coefficient of the Mut variable was the 
same sign as the coefficient in the original eQTL analysis (that is, the 
mutation increased expression in EPICC and Hartwig or vice versa).

A post hoc power analysis was carried out using the pwr.t2n.test 
from the pwr R package v.1.3-0 (ref. 83). For each eQTL, absolute muta-
tion effect size was used as the input effect size with ‘power’ set to 0.99 
and ‘n2’ set to the number of DNA–RNA Hartwig CRC samples (n = 394) 
minus the number of Hartwig samples with the mutation. The tool then 
returned the number of samples needed to determine the effect, and 
this number was multiplied by 1.15 given the non-parametric nature of 
the data. If absolute input effect size was greater than 3.04, this was set 
to 3.04 because higher values returned a ‘not available’ result.

MSI investigations for eQTL analysis
A PCA analysis of germline SNPs plotted with ggbiplot v.0.55 (ref. 84) 
found a lack of bias for germline SNPs, with the top two principal com-
ponents accounting for only 16.6% of explained variation (Supplemen-
tary Fig. 16). Labelling tumours by MSI status also showed that principal 
component 1 slightly separated MSS from MSI tumours.

To directly assess the effect of MSI on eQTL analysis the analysis 
was rerun twice, once with only MSS tumour samples (n = 149 across 
15 tumours) and again using only MSI tumour samples (n = 18 across 
three tumours). Given the large difference in sample size and therefore 
power, to make the two analyses comparable only mutations with very 
large (over 1.5) effect sizes were considered. The absolute mutation 
effect sizes of 73 eQTLs from the MSS analysis were therefore compared 
with 293 eQTLs from the MSI analysis. A QQ-plot comparing these two 
datasets showed there was a difference in the distribution of effect sizes 
of significant eQTLs between MSS and MSI analyses (Supplementary 
Fig. 17). Specifically, there was a higher proportion of MSS eQTLs at very 
large effect size in comparison with the MSI analysis. This is interesting 
because it suggests a difference in the genetic control of gene expres-
sion between MSS and MSI tumours.

The original eQTL analysis was also rerun with MSI as a cofactor 
(Supplementary Fig. 18), and this was found to have a minor impact on 
results. Notably, there was a small decrease in the number of signifi-
cant eQTL genes (Supplementary Fig. 18a,b), non-coding enhancers 
were no longer significantly associated with increases in expression 
(P = 0.08; Supplementary Fig. 18e) and subclonal mutations were no 
longer more likely to be eQTLs (P = 0.17; Supplementary Fig. 18f). 
However, it should be noted that the direction of these effects did not 
change. Finally, the distribution of R2 values was compared between 
the original analysis (without MSI as a covariate) and with MSI as a 
covariate. Supplementary Fig. 19 shows that, for models that were sig-
nificant in both analyses, R2 values were highly correlated (P < 1 × 10−16, 
R2 = 0.855). It is worth noting that R2 values tend to be higher for the 
analysis with MSI, and this was found to be significant (paired Wilcoxon 
signed rank test, P = 1.071 × 10−241). Therefore, inclusion of MSI as a 
covariate marginally increased the amount of variance explained by 
each model but R2 values were very highly correlated with the original 
analysis

dN/dS analysis
Per-patient variant calls were obtained from the VCF files and lifted to the 
hg19 reference genome using the rtracklayer R package v.1.54.0 (ref. 82).  
Variants were split into clonal (that is, present in all samples) and sub-
clonal mutations (that is, present in a subset of samples) in cancer,  
as well as a set of mutations present in any of the adenomas. Patients 
were further split into MSI and MSS tumours. The dndscv model (dndscv  
R package v.0.1.0)45 was fit separately for each of the four mutation 
sets. For this, default parameters apart from deactivated removal of 
tumours due to the number of variants were used. In addition to global 
dN/dS estimates of the fitted models, dN/dS estimates of CRC-specific 
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driver mutations from IntOGen41,85 were obtained with the ‘genesetdnds’ 
function of dndscv.

Gene essentiality analysis
Cancer dependency profiles were downloaded from https://depmap.
org/broad-sanger/ (version used: CRISPRcleanR_FC.txt) and scaled 
as previously described86, making the median essentiality scores of 
previously known essential and non-essential genes equal to −1 and 0, 
respectively. The mutational status of selected putative cancer driver 
genes used to produce the box plots in Supplementary Fig. 20, and to 
test differential gene essentiality across mutant versus WT cell lines, 
was obtained from Cell Model Passports87.

In situ mutation detection
BaseScope in situ mutation detection was performed as previously 
described52, using mutation-specific probes designed and provided 
by the manufacturer. Data were assessed manually: a tumour gland 
was denoted as ‘mutant’ if at least one cell in the gland had detected 
expression of the mutant transcript, otherwise it was classified as ‘wild 
type’ for that mutation.

Spatial computational inference
Inference of evolutionary dynamics using spatially resolved genomic 
data was performed by Bayesian fitting of a spatial agent-based model of 
clonal evolution to the observed molecular data. The model described 
growth, death, physical dispersion and mutation of individual tumour 
glands, and was a substantial modification of the framework previ-
ously described in ref. 51. Full details are provided in the Supplementary 
mathematical note.

Transcriptomic and epigenetic characterization of selected 
clones
Differential expression analysis was run using DESeq2 (ref. 59), compar-
ing RNA samples in inferred selected regions with all other samples 
from that tumour. Analysis was also rerun with random shuffling of 
sample labelling to filter for the signal of the selected subclone, and 
genes found to be differentially expressed in more than 5% of shuf-
fled analyses were excluded. Volcano plots of significant differentially 
expressed genes were plotted with EnhancedVolcano v.1.12.0 (ref. 88) 
(Supplementary Fig. 25a). To perform gene set enrichment analysis89 
all remaining genes were ordered by DESeq2’s test statistic, and enrich-
ment of Gene Ontology annotations, KEGG pathways and Hallmark 
pathways was tested for (FDR < 0.05) using gseGO, gseKEGG and GSEA, 
respectively, from ClusterProfiler65. Significant results are shown in 
Supplementary Fig. 26.

We also performed differential ATAC-seq peak analysis between 
selected subclones and background clones. To assess the subclonality 
of ATAC-seq peaks while controlling for purity, a log-ratio test from 
DESeq2 was used to compare a ‘full model’ of ‘~ purity + clone’ to a 
‘reduced model’ of ‘~ purity’. ATAC-seq peaks were considered to be 
significantly altered in selected clones when the adjusted P value was 
below 0.05 (Supplementary Fig. 25b).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Filtering and clustering of pathways based on mean 
tumour enrichment and intra-tumour heterogeneity of enrichment.  
a, Heatmaps showing clustering of pathways by enrichment level across 
tumours and enrichment variation within tumours. Hierarchical clustering 
revealed four distinct groups, named Group 1–4. Note units are scaled by 

column in both heatmaps b, Summary of mean enrichment level per Class.  
c, Summary of intra-tumour heterogeneity of enrichment per Class, measured 
by standard deviation. d, Fisher’s exact test (two-sided) results comparing 
pathway Groups to classes.
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Extended Data Fig. 2 | CMS and CRIS classification heterogeneity. a, Stacked 
bar charts showing per-sample classification of CMS in each tumour. b, Stacked 
bar charts showing classification of CRIS in samples from each tumour.  
c, Heatmap based on data in (a,b) where colour indicates proportion of samples 
of a particular CRIS/CMS class. Associations between CMS and CRIS classes are 
apparent. d, Examination of the enrichment of genes respectively included 
CMS and CRIS classifications in gene Groups as defined in Fig. 1. Both CRIS and 

CMS genes are depleted in gene Groups 1&2 but are enriched in Group 4.  
11,401 genes used in two-sided Fisher’s exact tests. Error bars represent  
95% confidence intervals. e, CMS assignments per tumour, only samples which 
could be confidently classified (FDR < 0.05) are shown. f, As in (e) but for CRIS. 
g, Heatmap of centroid distances of each sample from CMS classes for tumour 
C550, black squares indicate the minimum (most likely) class for each sample, 
and stars represent significance of classification. h, As in (g) but for CRIS.



Extended Data Fig. 3 | Phylogenetic trees (left) annotated with the 
expression of genes (heatmap, right) which had evidence of phylogenetic 
signal (P<0.05). MedPval = median p-value from forest of 100 trees, 

MedLambda = median lambda value from forest of 100 trees. Shown by 
tumour for: a, C538. b, C542. c, C544. d, C552. e, C559. f, C560.
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Extended Data Fig. 4 | Phylogenetic trees (left) annotated with pathway 
enrichment scores (heatmap, right). MedPval = median p-value from forest 
of 100 trees, MedLambda = median lambda value from forest of 100 trees. 

Shown by tumour: a, C538. b, C542. c, C544. d, C551. e, C552. f, C554. g, C560. 
Numbers on heatmap x-axis indicate hallmark pathways, refer to Pathway Key.



Extended Data Fig. 5 | Phylogenetic tree versus expression-based clustering. 
The dendrogram on the left of each panel is the mutation-based phylogenetic 
tree, while samples on the right are clustered according to gene expression. 

Dotted lines show matching samples and samples are coloured according  
to region-of-origin. a, C538. b, C542. c, C544. d, C551. e, C552. f, C554. g, C559.  
h, C560.
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Extended Data Fig. 6 | Per-gene dN/dS analysis of drivers (n = 1,253 CRCs). 
a, Per-gene dN/dS for the 69 IntOGen drivers in TCGA colon and rectal cohorts 
split into (a) missense mutations and (b) truncating mutations. Many genes 

have dN/dS value ≈1 indicating lack of evidence for positive selection.  
The points show the point estimates and the error bars the 95% CI intervals of 
the dN/dS.



Extended Data Fig. 7 | Phylogenetic reconstruction of more cancers and 
adenomas. Putative cancer driver genes from the IntOGen set are reported in 
each branch. For MSI tumours we report only a subset of the most relevant 
genes (see Fig. 3a for a full list). For subclonal drivers, we report whether the 

variant was expressed (bold), not expressed or benign (grey), and if the per- 
gene dN/dS value was ≈1. a, C519. b, C522. c, C527. d, C528. e, C530. f, C532.  
g, C536. h, C543. i, C544. j, C538. k, C542. l, C548. m, C554. n, C560. o, C547.  
p, C549. q, C550. r, C552. s, C555. t, C559. u, C562.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Bayesian inference framework for cancer dynamics in 
space and time. a, Schematic representation of the spatial cellular automaton 
model of tumour growth. b, Instance of simulation of a neutrally expanding 
cancer with a single ‘functional’ clone (blue, top), and corresponding  
neutral mutation lineages (bottom). c, Simulation of a tumour containing a 
differentially selected subclone (red, top) and corresponding neutral mutation 
lineages (bottom). d, Simulation with two branching subclonal selection 
events. e, In this neutral simulation we illustrate peripheral versus exponential 
growth and the effects on lineage mixing. f, Spatial sampling annotated during 

tissue collection for tumour C539 and corresponding simulated spatial sampling. 
g, Real data from patient C539 (top) versus simulated data from an instance 
selected by the inference framework (bottom). h–i, Inference framework based 
on Approximate Bayesian Computation - Sequential Monte Carlo (ABC-SMC) 
allows for (h) model selection and (i) posterior parameter estimation given  
the data. In this case birthrates.2 is the birth rate of the selected subclone, 
clone_start_times.2 is the time when the subclone arose during the growth of 
the tumour, push_power.1 is the coefficient of boundary driven growth and 
mutation_rate is the rate of accumulation of mutations per genome per division.
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Extended Data Fig. 9 | Visual schematic illustrating the main results. 
DNA-sequencing of multiple glands from up to four tumour regions allowed 
elucidation of tumour evolutionary history and selection inference (left; 
phylogenetic tree). Matched RNA-sequencing found few genes with heritable 
expression patterns (middle; bars represent expression level), with the 
expression of most genes not detectably related to tumour evolutionary 
history (right; bars represent expression level). Most putative subclonal driver 
mutations were found to not be under selection, while transcriptomic 
differences could be found between subclones that were under positive 
selection. Sample names and bars are coloured according to region-of-origin.
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