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A B S T R A C T

COVID-19 had caused the whole world to come to a standstill. The current detection meth-

ods are time consuming as well as costly. Using Chest X-rays (CXRs) is a solution to this

problem, however, manual examination of CXRs is a cumbersome and difficult process

needing specialization in the domain. Most of existing methods used for this application

involve the usage of pretrained models such as VGG19, ResNet, DenseNet, Xception, and

EfficeintNet which were trained on RGB image datasets. X-rays are fundamentally single

channel images, hence using RGB trained model is not appropriate since it increases the

operations by involving three channels instead of one. A way of using pretrained model

for grayscale images is by replicating the one channel image data to three channel which

introduces redundancy and another way is by altering the input layer of pretrained model

to take in one channel image data, which comprises the weights in the forward layers that

were trained on three channel images which weakens the use of pre-trained weights in a

transfer learning approach. A novel approach for identification of COVID-19 using CXRs,

Contrast Limited Adaptive Histogram Equalization (CLAHE) along with Homomorphic

Transformation Filter which is used to process the pixel data in images and extract features

from the CXRs is suggested in this paper. These processed images are then provided as

input to a VGG inspired deep Convolutional Neural Network (CNN) model which takes

one channel image data as input (grayscale images) to categorize CXRs into three class

labels, namely, No-Findings, COVID-19, and Pneumonia. Evaluation of the suggested model

is done with the help of two publicly available datasets; one to obtain COVID-19 and No-

Finding images and the other to obtain Pneumonia CXRs. The dataset comprises 6750

images in total; 2250 images for each class. Results obtained show that the model has

achieved 96.56% for multi-class classification and 98.06% accuracy for binary classification
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Table 1 – Hyperparameter table of the su
model.

Hyperparameters Values

COVID-19 instances 2250
Pneumonia instances 2250
No-findings instances 2250
Image resolution 64 � 64 � 1
Learning rate 10-3

Minimum LR 10-6

Batch size 64
Epochs 100
Optimizer Adaptive M

(Adam)
Loss function Categorical
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using 5-fold stratified cross validation (CV) method. This result is competitive and up to the

mark when compared with the performance shown by existing approaches for COVID-19

classification.
� 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

The first case of Severe Acute Respiratory Syndrome Coron-

avirus 2, abbreviated as SARS-CoV-2, was identified and

reported in December 2019, in the city of Wuhan, China [1].

The World Health Organization (WHO) named this infection

caused by SARS-CoV-2 as coronavirus disease 2019, abbrevi-

ated as COVID-19. COVID-19 is a highly contagious disease

with various symptoms ranging from cough, fever, fatigue,

etc. The general population is highly vulnerable to infection

caused by this virus. Since the pandemic’s outbreak and rapid

spread, it has become clear that disease prognosis is heavily

influenced by multi-organ involvement [2]. Death was caused

by acute respiratory distress syndrome, heart failure [3], renal

failure [4], liver damage [5], hyper-inflammatory shock [6],

and multi-organ failure [7]. Due to the limited number of test-

ing facilities available and the disease’s early stages’ low

prevalence of positive symptoms, the currently available RT-

PCR method used for detection and identification of COVID-

19, which stands for Reverse Transcription Polymerase Chain

Reaction, poses some drawbacks hence creating the need for

other alternatives and options. Some other methods of detec-

tion include Computer Tomography (CT) scans and Chest X-

rays (CXRs). These are important since a confirmed COVID-

19 patient may or may not have a normal chest scan during

the initial stages of contracting the infection [8].

CXR is a common, more affordable alternative to CT scans.

It also takes lesser time for generation which serves as an

added advantage to its utility. Recent technologies, particu-

larly artificial intelligence (AI) tools, have been investigated

for tracking the transmission of the coronavirus, identifying

individuals at high risk of mortality, and diagnosing patients

with the condition (see Table 1).
ggested GrayVIC

oment Estimation

cross-entropy
Artificial Intelligence has huge underlying potential in

curbing the COVID-19 pandemic with the help of successful

practical implementations using CXRs and CT scans [9]. The

usage of pre-trained architectures like Deep Convolutional

Neural Network (DCNN), viz. GoogleNet, NASNet, VGGNet,

and DenseNet are used for the implementation of this appli-

cation. In addition, the model achieves higher accuracy as

image processing techniques improve.

Sometimes, a trained expert in this field might miss some

attributes which confirm the infection, either due to higher

traffic of patients or fatigue, and might need quick detection

and identification. This is where a deep learning model can

be employed for better and faster interpretation for detection

of the infection. Almost all the related works have used a pre-

trained CNN model that was trained on three channel (RGB)

images to obtain the weights which is not appropriate when

it comes to X-ray images as they are single channel (grays-

cale) images. This paper’s goal is to propose a novel architec-

tural model inspired from VGG16 architecture to classify X-

ray (grayscale) images according to the disease classes based

on both binary and multi-class classification. In order to train

the model more efficiently, pre-processing combination tech-

niques have been employed, specifically, CLAHE and Homo-

morphic Transformation. The classifier model is built from

scratch hence it is entirely trained on the image dataset. To

avoid the erratic fluctuation noticed in the validation accu-

racy during the training phase, ReduceLRonPlateau method

has been used. The authors have ensured the robustness of

model on the public dataset by following the stratified 5-

fold cross-validation methodology. All necessary perfor-

mance metrics have been estimated for the comparison pur-

poses and tabulated properly in the results section.

The motivations and contributions of the proposed work

are discussed in Section 2. In Section 3, we discuss the exist-

ing methods and related works employed for identifying the

infection caused by the SARS-CoV-2 virus using Chest X-

rays. The dataset used for the proposed work is elaborated

upon in Section 4. Section 5 describes the approach used by

us for COVID-19 detection using a deep learning Convolu-

tional Neural Network model in detail. Section 6 and 7 explain

and discuss the results obtained and conclude the paper

respectively.

2. Motivation and contributions

The developed deep CNN model is inspired by VGG architec-

ture. Customized CNNmodels with the help of transfer learn-

ing architectures shows promising results when comes to

efficiency [10]. The customized CNN models have seen to

have better time complexity, faster learning rate [11]. The
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model employs no pre-trained models’ weights and provides

promising output with very little training time compared to

other existing models. The proposed model takes CXRs as

input, making it cost effective since CT scans are unreason-

able and may not be accessible at an individual level. Then

a random selection of these images is provided to the model

which works on a single channel. The testing is done in two

ways; first, which comprises binary classification where only

twomodes, COVID-19 and No-Findings, are taken into consid-

eration. The second method involves the classification of

CXRs across three classes, namely, No-Findings, COVID-19,

and Pneumonia. The image processing techniques used, viz.

CLAHE and Homomorphic Transformation filter help in

improvising its contrast and plummeting its dynamic range.

These image processing techniques incorporated into the

proposed model produce a more robust diagnosis for

COVID-19. The novel aspect of this work is the application

of Homomorphic Transformation Filter as an image process-

ing approach on CXRs as well as the designing a VGG inspired

Deep CNNmodel from scratch that requires less training time

thanmodels using the same range of datasets. The significant

contributions made by this paper include the following:

1. CLAHE + Homomorphic Transformation Filter as image

processing technique on CXRs.

2. A novel VGG inspired deep CNNmodel consisting of 22 lay-

ers and the inputs fed to the model have the shape of

64 � 64 � 1.

3. Different hyper parameter tuning methodologies are used

to examine the potential of the proposed model for the

task of multi as well as binary-class classification of CXRs.

4. Assessment of model’s robustness with the help of 6750

images.

3. Related works

Currently, Deep Learning is adopted in the field of medical

imaging. This includes analysis of medical images, radiomics,

etc. Deep Learning is mainly used because of its prominent

and reliable results [12]. Since there is no restriction to the

kind of data that can be used, deep learning is appropriate

to cater to diverse information and data, in order to make pre-

dictions [13]. Due to the prolonged pandemic caused by

COVID-19, it has become a necessity to come up with a tech-

nology that uses deep learning concepts and techniques in

order to detect COVID-19 faster and with a higher degree of

accuracy since current testing methods are expensive and

time consuming. CXRs and CT scans can be helpful in achiev-

ing this. Since CXRs are more affordable as compared to CT

scans, they are a better alternative.

Aslan, M. F. et al. worked on binary classification tech-

niques and observed the DenseNet-SVM structure [14] to be

the best one with an accuracy of about 96.29 %. They achieved

an average accuracy of 95.21 % by using a total of eight differ-

ent SVM based CNN models. Alakus, T. B. et al. validated their

LSTM deep learning model using a 10-fold cross-validation

strategy [15]. An accuracy greater than 84 % was shown by

all the models involved in the study. The obtained results
included a recall of 99.42 %, an accuracy of 86.66 %, and an

AUC score of 0.625. The CNN-LSTM model provided the best

results with an accuracy of 92.3 %, a recall of 93.68 %, and

an AUC score of 0.90 using Holdout Validation.

A total of 4 architectures were studied by Ibrahim et al. For

detecting and diagnosing disorders affecting the human lungs

[16]. Detection was among three classes, namely, Pneumonia,

Lung Cancer, and COVID-19. Out of all the models used for the

study, the CNN + VGG19 model performed best yielding an

accuracy of 98.05 %. An accuracy of 96.09 % was obtained

using GRU + ResNet152V2.

A study to detect abnormalities from chest CT scan images

of Pneumonia and COVID-19 patients [17] performed by Ni, Q.,

et al. aimed at comparing various deep learning models for

the task. Results show that our results are superior compared

to people who have the expertise in the identification and

detection of lesions. According to Xu’s study, the results

achieved by their model had a specificity of 67 %, a sensitivity

of 74 %, and a total accuracy of 73 %. This study revolved

around observing inception-migration-learning models and

their performance for the task of differentiating COVID-19

from other infections caused by pathogens such as bacteria,

protozoa, viruses, etc.

In another study, Ibrahim, et al. analyzed deep neural net-

work models and their performance using transfer learning

for classification between three classes, viz., COVID-19 Pneu-

monia, Non-COVID-19 Viral Pneumonia, and Bacterial Pneu-

monia [18]. For multi-class classification, the model obtained

98.19 % sensitivity, 95.78 % specificity, and 94.43 % accuracy.

For binary classificationamongHealthyandBacterial Pneumo-

nia classes, themodelobtained91.49 %sensitivity, 100 %speci-

ficity, and 91.43 % accuracy. For binary classification between

COVID-19 Pneumonia and Non-COVID-19 Viral Pneumonia, a

testing accuracy of 99.62 %was achieved. Similarly, for classifi-

cationbetweenCOVID-19PneumoniaandHealthyCXRs,a test-

ing accuracy of 99.16 % was achieved. Classification across

Bacterial pneumonia, COVID-19 and Healthy yielded a testing

accuracy of 94.00 % and 93.42 % for classification among four

classes; Healthy, Bacterial Pneumonia, COVID-19, and non-

COVID-19 Viral Pneumonia.

A new transfer learning pipeline consisting of DenseNet-

121 and the ResNet-50 networks, called DenResCov-19 [19]

was created by Mamalakis, M. et al. This was primarily cre-

ated for the classification and detection of Pneumonia,

COVID-19, Tuberculosis, or Normal using CXRs. The results

achieved by the model for classification of Pneumonia,

COVID-19, and Normal included an AUC score of 96.51 %, F1

score of 87.29 %, precision of 85.28 %, and an overall recall

of 89.38 %.

Gouda et al. considered Deep Learning strategies to predict

COVID-19. The study proposed two DL approaches based on

ResNet-50 neural network using chest X-ray (CXR) images.

COVID-19 Image Data Collection (IDC) and CXR Images (Pneu-

monia) were used as dataset for the following. The pre-

processing was done using augmentation, normalization,

enhancement and resizing of the images. To carry out the task,

multiple runs ofmodified version of Resnet-50wasmade done

to classify the images. TheResNet-50 featureextraction isdone

by several convolutional and pooling layers. A fully connected

and soft-max layer does the classification. Theweight and bias
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values of convolutional and fully commenced layers are tuned

using the training algorithm. This training algorithm includes

many hyperparameters, which helps to improve the perfor-

mance of the ResNet-50 model [20]. In terms of performance,

the values exceed 99.63 % in many metrics including, F1-

score, accuracy, recall, precision and AUC [21]. Mahesh Gour

et al. designed a new stacked CNN model for COVID-19 detec-

tion. The dataset includes CT images and combination of three

publiclyavailableX-ray images.Theyfirstlyuseddifferent sub -

models obtained fromVGG-19 andXceptionmodels during the

training. Then these were together stacked as softmax classi-

fier. TodetectCOVID-19 fromradiological imagedata, a stacked

CNN model is proposed, combining the differences between

CNN sub-models. The sensitivity for Binary classification and

Multiclass classification was 98.31 % and 97.62 % respectively

[22].

Mahesh Gour et al. developed an automated COVID19

detection model andwas named Uncertainty-Aware Convolu-

tional Neural Network Model (UA-CovNet). The model works

on the principles of EfficientNet-B3 to fine tune the X-ray

images and Monte Carlo dropouts for M passes to obtain the

posterior predictive distribution. The sensitivity of the Binary

Classification and Multiclass Classification was 99.30 % and

98.15 % respectively. The G-mean of 99.16 % and 98.02 % was

seen for both respectively. [23] Yiting Xie et al. believed work-

ing on large medical image dataset is really difficult so they

carried out their work using ImageNet, a pre-trained model.

The pre-trained model can bring in inefficiencies while work-

ing on a single channel image. To counter this, they intro-

duced Inception V3 model on ImageNet after the images

were transformed into grayscales. The performance was not

found waning, hence concluding that colors do not have crit-

ical role to play. It was also seen that that grayscale ImageNet

pre-trained models had better performance than the color

one while classifying diseases from CXRs. [24].

In the 1960 s, a technique for image and signal processing

was devised by Thomas Stockham, Ronald W. Schafer, and

Alan V. Oppenheim. This technique involved a non-linear

mapping to a different domain where linear filters are applied

and then mapped back to the original domain [25]. The tech-

nique, called Homomorphic Transformation Filter can be

employed to enhance the images. It also increases contrast

and homogenizes the brightness throughout the image. It

can also be used to remove noise from the image. If we take

logarithm of the image intensity, we can separate the compo-

nents of the image linearly in the frequency domain, which

are combined multiplicatively. Multiplicative noise includes

variations in illumination within the images and can be

reduced by applying filtering techniques in the logarithm

domain. We can also equalize the low-frequency and high-

frequency components of the image to make the illumination

more even. This implies that in order to repress low frequen-

cies and intensify high frequencies, high-pass filtering is used

in the log-intensity domain [26].

4. X-ray image dataset

The dataset that we used comprises 2250 images for each of

the three classes—COVID-19, Pneumonia, and No-Findings.
We use an equal number of images for each class to avoid

the problem of class imbalance. Two chest X-ray image data-

sets are used to achieve our proposed work. The first public

dataset is used to extract COVID-19 and No-Findings images

and the other public database is used to obtain Pneumonia

images. The former database was created in conjunction with

medical doctors by researchers from the University of Dhaka,

Bangladesh, Qatar University in Doha, Qatar, and colleagues

from Malaysia and Pakistan. It makes use of images from 43

different publications as well as the COVID-19 Database of

the Italian Society of Medical and Interventional Radiology

(SIRM), the Novel Corona Virus 2019 Dataset created by Joseph

Paul Cohen, Lan Dao’ and Paul Morrison’s repository in

GitHub [27,28]. Kang Zhang, Daniel Kermany, and Michael

Goldbaum’s ‘‘Labeled Optical Coherence Tomography (OCT)

and Chest X-ray Images for Classification dataset” used

CXR images (anterior-posterior) chosen from retrospective

cohorts of paediatric patients from Guangzhou Women and

Children’s Medical Center, Guangzhou, ranging from the age

one to five [29]. This dataset was used to obtain CXR images

for the class of Pneumonia. To maintain consistency through-

out the data used by us, we have resized all of the images to

64 � 64 pixels for further processing. An image of each class

obtained from these datasets is shown in Fig. 1.

5. Proposed approach

The proposed approach comprises applying pre-processing

augmenting methods [30] to our CXR images, including resiz-

ing our images to a standard size and applying CLAHE. For a

given input image, the algorithm of CLAHE creates non-

overlapping contextual regions (also called sub-images, tiles

or blocks) and then applies the histogram equalization to

each contextual region, clips the original histogram to a

specific value and then redistributes the clipped pixels to

each gray level [31]. Then Homomorphic Transformation Fil-

ter is applied to these processed images. These images are

randomly provided to the deep CNN model as input. Deep

convolutional neural networks have proven to yield better

accuracy when dealing with large volumes of dataset, and

many researchers tend to use them as de-facto standards

[32]. A typical architecture of CNN consists of multiple blocks

with three kinds of layers: convolution, pooling, and fully con-

nected layers [33].The architecture of our deep CNN model is

inspired by VGG model’s architecture. Two schemes are

employed in order to test the model’s performance. The first

scheme comprises binary classification consisting of two

classes, COVID-19 and No-Findings. The second scheme

involves the classification of CXR images across three classes,

namely, COVID-19, No Findings, and Pneumonia. 2250 images

have been considered for each class which means scheme 1

involves a total of 4500 images and scheme 2 consists of a

total of 6750 images. The block diagram for the suggested

model is shown in Fig. 2.

5.1. Pre-processing:

Original images taken from both datasets had varied sizes. All

of the images were converted into a standard size of 64 � 64



Fig. 1 – CXR images from each class, i.e, No Findings, COVID-19, and Pneumonia.
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[34] and CLAHE was applied to them. By resizing the images,

we can decrease the training time of our model and reduces

the memory required for the training purpose. Good thing

about having a small size image data is that lot of images

can be fed into the model for training without exhausting

the memory or increasing the training time. It is a good

trade-off between the amount of pixel data in one image

and count of images that can be used for training in a limited

computational environment. CLAHE helps reduce the noise

issue by applying a contrast amplification limiting technique
Fig. 2 – Block Diagram of
to each neighbouring pixel, which produces a transformation

function. To resize the image the resampling using pixel area

relation known as INTER_AREA function in OpenCVwas used.

Most of recent research studies have used transformation

as a key technique for pre-processing of the image data. The

idea behind this is to use artifacts derived from a different

domain to ease the training process of the model. Typically,

the domain is related to either frequency or time. Many differ-

ent transformation techniques have been used to create the

state-of-the-art pre-processing method. Homomorphic
the suggested model.
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Transformation Filter is one such filter belonging to frequency

domain that uses Fourier Transformation. This transforma-

tion filter has not been explored for image pre-processing in

combination with custom CNN for one channel image data

(grayscale image) with respect to detection of COVID19. In this

research, the combination of CLAHE and Homomorphic

Transformation is studied to understand its efficacy as pre-

processing techniques. The pre-processing of the image data

happens in two stages after the preliminary processing like

resizing. First, CLAHE is applied and then Homomorphic

Transformation.

5.2. Homomorphic Transformation Filter:

In Homomorphic Transformation Filter, the original domain

is nonlinearly mapped to a different domain where linear fil-

tering methods are applied, and then the original domain is

mapped back to. A grayscale image can be enhanced via

Homomorphic Transformation Filter by simultaneously

reducing the intensity range (illumination) and enhancing

the contrast (reflection) [35].

i x; yð Þ ¼ l x; yð Þ:rðx; yÞ ð1Þ
Here, i = image, l = illumination, r = reflectance.

The equation needs to be converted into the frequency

domain in order to be used as a high pass filter. Calculations

get more complex because this equation is not anymore, a

product equation after the Fourier transformation. In order

to help with this problem, natural logarithm is used.

lnðiðx; yÞÞ ¼ lnðlðx; yÞÞ þ lnðrðx; yÞÞ ð2Þ
Then, applying Fourier transformation

Fðlnðiðx; yÞÞÞ ¼ Fðlnðlðx; yÞÞÞ þ Fðlnðrðx; yÞÞÞ ð3Þ
Or

Iðu;vÞ ¼ Lðu;vÞ þ Rðu;vÞ ð4Þ
After that, a high-pass filter on the image is applied which

increases the evenness of an image’s illumination; the high

frequency objects are augmented and the low frequency parts

are suppressed.

FIðu;vÞ ¼ HP u;vð Þ:Iðu;vÞ ð5Þ
Fig. 3 – Chest X-rays after passing through
here, HP = high-pass filter, FI = filtered image in frequency

domain.

Then, by using the inverse Fourier transform, frequency

domain is returned to spatial domain.

nðx; yÞ ¼ invFðFIðu; vÞÞ ð6Þ
Lastly, to obtain the improved image, we apply the expo-

nential function [35] to remove the log we used earlier.

newImageðx; yÞ ¼ expðnðx; yÞÞ ð7Þ
Fig. 3 shows an image from each class after Homomorphic

Transformation Filter is applied to the dataset.

5.3. Grayscale + VGG inspired deep CNN architecture
(GrayVIC):

The Convolution Neural Network (CNN) adopted in the pro-

posed work is inspired by VGG models. VGG refers to a typical

deep Convolutional Neural Network (CNN) design with

numerous layers, and it stands for Visual Geometry Group.

The ‘depth’ of a model refers to the number of layers used,

with VGG-16 or VGG-19 having 16 or 19 convolutional layers,

respectively[36]. In the research domain VGG models are

experimented a lot and have mainly been used for transfer

learning application, even for Covid-19 detection[37]. In data

science, VGG-16 is considered to be one of the most effective

classification network whereas VGG-19 is focused more clas-

sifying samples effectively [38]. The architecture of a standard

VGG-16 model is shown in Fig. 4, which was used as a refer-

ence to build the custommodel architecture for this research.

Since the proposed model works particularly for grayscale

images and is based on VGG style architecture, our model is

termed as GrayVIC.

The proposed model consists of 22 layers (including hid-

den and dropout layers) and the inputs fed to the model have

the shape of 64 � 64 � 1. A sequential model is used where a

pattern of one convolutional layer goes after another convolu-

tional layer and then finally a max a max pooling layer is

adopted. This same setup is implemented another three

times. We then have another convolutional layer followed

by batch normalization and dropout. Convolution layers per-

form feature extraction by convolving the input image with
Homomorphic Transformation Filter.



Fig. 4 – Standard VGG-16 architecture.
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a set of learned kernels. The layer typically consists of a com-

bination of convolution operation and activation function

[39]. 2D Global Average Pooling is utilized to flatten the output

of previous layers. The mean value of all values over the

whole (input width) � (input height) matrix for each of the

input channels using a tensor of size (input width) � (input

height) � (input channels) is calculated by using the 2D Global

Average Pooling block.

This is followed by a dense layer and dropout layer. This is

repeated once more successively. A dense layer with softmax

as the activation function serves as the final output layer.

Except the output layer, all convolutional and dense layers

use ReLU as the activation function. ReLU, which stands for

rectified linear activation function, is a non-linear or piece-

wise linear function that, if the input is positive, outputs

the input directly; if not, outputs zero. Following the convolu-

tion layers is the 2D Max pooling layer. The maximum value

for each input channel over an input window of the size spec-

ified by pool size is used to down sample the input along its

spatial dimensions (height and width). Steps are taken along

each dimension to move the window. Max pooling layer esti-

mates the max value of pixel according to filter dimension

mentioned in the layer definition. Pooling layer carries out

dimensionality reduction by down sampling the values of

neurons into a solitary value. Max pooling operation is per-

formed here to combine the output of previous layer into a

single value [40].

Before applying Global Average Pooling, we use a batch

normalization layer. The model is trained more quickly and

steadily using batch normalization. This provides some regu-

larization and helps reduce generalization errors. The drop-

out layer is applied to the suggested model after the batch

normalization layer and dense layers. The regularization is

done by the dropout layers which speedup the execution by

expelling the neurons whose contribution to the yield is not

so high [41]. It also helps us to avoid overfitting the model

by ignoring output of some neurons for the upcoming layer

[42]. The sum of all inputs is maintained by scaling up non-

zero inputs by 1
ð1�rateÞ.
Depending upon the classification type, the number of

nodes used in the final output layer is decided. Each of the

neurons represents a different class. A softmax function is

then used to evaluate this output using the following formula

[42],

JðtÞ ¼ ewtv

PT
t¼1e

wtv
ð8Þ

Here wt represents the weight vector of the final layer’s tth

neuron which represents the output, and v is the fully con-

nected layers’ feature vector before it.

The architecture of the proposed GrayVIC model is shown

in Fig. 5. The suggested model is trained in four scenarios

where we use 50 epochs and 100 epochs with and without

ReduceLRonPlateau each. When a statistic stops improving,

ReduceLRonPlateau lowers the learning rate. Once learning

reaches a plateau, models frequently gain by decreasing the

learning rate by a factor of 2–10. This scheduler reads a met-

rics quantity, and the learning rate is decreased if no progress

is made after a specified number of ‘‘patience” epochs. We

have used 0.000001 as our minimum learning rate. This serves

as the threshold for our learning rate, implying that our learn-

ing rate would not reduce further after the minimum learning

rate is encountered.

5.4. Performance analysis

The metrics used in this study are recall, precision, F1-score

and accuracy to compare and analyze the performance of

our GrayVIC model with other existing models [43]. All of

these metrics are obtained from the confusion matrix. We

also use AUC score which is obtained from the ROC curve to

analyse our model. The likelihood that a random positive

example will be placed in front of a random negative example

is represented by AUC score. In order to determine the robust-

ness of the model, we employ 5-fold stratified cross validation

(CV), which biases the large variations on the test data and

averages it on each fold [44] andwith CV we also used holdout

validation [42] where the training and testing data is split



Fig. 5 – Proposed GrayVIC model architecture.
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from the total data in a ratio of 4:1, maximizing the data to

shape the model [45]. This implies the training data consists

of 1800 images for each class and testing data consists of

450 images per class. For the validation set, 10 % of the train-

ing data was used to monitor the performance of the model

while training. Stratified 5-fold cross validation will ensure

the same class ratio throughout the 5 folds as the ratio in

the original dataset that is equal counts of each class labels,

this removes the tension of class imbalance problem during

the training.

We perform multi-class as well as binary classification

techniques on our dataset. For binary classification, we clas-

sify images between COVID19 and No Findings. For multi-

class classification, three classes i.e. No Findings, COVID-19,

and Pneumonia are used.

6. Results and discussions

The results of the proposed model are showcased in the fol-

lowing section, with the CXR images transformed using

Homomorphic Transformation Filter. The model was com-

piled based on two classification schemes – binary and
Fig. 6 – Training Accuracy and Tra
multi-class, and two validation schemes – holdout and 5-

fold cross validation. 4 different combination pairs of the

number of epochs and ReduceLRonPlateau were been tested

as part of hyper parameter tuning, apart from tweaking the

entire model architecture which has been built from scratch.

The public dataset used in this research contains an equal

count of images for each class which removes the class imbal-

ance problem. The metrics considered for performance eval-

uation for the proposed model is Accuracy (ACC), Recall or

sensitivity (REC), Precision (PRE), F1 score and lastly AUC

value.

6.1. Model performance

The training and validation accuracy and loss versus epoch

plots of the proposed deep CNN model are shown in Fig. 6.

In all the scenarios in which the model was trained, the nat-

ure of training accuracy and loss curve were the same. It can

be noticed that the model is able to achieve 90 % accuracy

within the first 20–25 epochs of the training phase. The Redu-

ceLRonPlateau technique helped in training which can been

seen evidently in the graph, it is observed that the validation
ining Loss of Proposed Model.
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accuracy/loss fluctuations reduced in the later stages of the

training due to lowering of the learning rate by the algorithm

which helped in its convergence. The training loss went down

to 0.07 in the best fold of cross validation. The training was

done in a GPU environment. Total trainable parameter for

the proposed model is 2,684,650.

Table 2 portrays the performance of our proposed model

when used on multi-class classification on the basis of differ-

ent combinations of number of epochs and usage of ReduceL-

RonPlateau technique during the training phase. It is

observed that increasing the count of epochs from 50 to 100

is beneficial and the highest accuracy of 0.97 is achieved in

the holdout validation. To highlight the robustness of our

model and to check that the model is not overfitted, 5-fold

stratified cross validation results are used. It shows that the

best result is given when the model is trained for 100 epochs

with ReduceLRonPlateau. The highest accuracy achieved in 5-

fold stratified cross validation is 0.97 and recall is 0.95 along

with an AUC value of 0.96. The standard deviation between

the fold’s testing accuracies was 0.0121 with an average accu-

racy of 0.95. The average time taken by the model to train on

the dataset consisting of 5400 images for 100 epochs is 8 min

20 s.

Table 3 depicts the results obtained from binary classifica-

tion using our proposed model based on the same methods

used for multi-class. As it can be observed, the binary classi-

fication’s overall performance exceeds that of multi-class

classification task. However, this difference is not very large,

unlike in existing research literature. This tells us the pro-

posed model is effective enough for both kinds of classifica-

tion tasks. The highest accuracy achieved for this task by

the proposed model in holdout validation is 0.98. The 5-fold

stratified cross validation results shows that the model when

trained for 100 epochs and employed with ReduceLRonPla-
Table 2 – Classification performance of proposed GrayVIC mode

MODES MULTICLASS
CLASSIFICATION

(Hold-out cross-validation)

EPOCHS ReduceLROnPlateau ACC PRE REC

50 No 0.95 0.94 0.93
50 Yes 0.96 0.94 0.94
100 No 0.97 0.95 0.95
100 Yes 0.94 0.93 0.92

Table 3 – Classification performance of proposed GrayVIC mode

MODES: BINARY CLASS CLASSIFICAT

(Hold-out cross-validation)

EPOCHS ReduceLROnPlateau ACC PRE REC F

50 No 0.95 0.93 0.92 0
50 Yes 0.96 0.94 0.94 0
100 No 0.98 0.94 0.94 0
100 Yes 0.97 0.95 0.95 0
teau technique achieves the highest value across all metrics.

The highest cross validation accuracy reached is 0.98 and

recall is 0.97 along with the AUC value of 0.97. The standard

deviation between the fold’s testing accuracies was 0.014 with

an average accuracy of 0.96. The average training time taken

by the proposed model to learn from 3600 images for 100

epochs is 5 min and 6 s.

Fig. 7 displays the proposed model’s confusion matrix

plots trained with 4 different combinations of hyper parame-

ters. The results belong to the best fold of the 5-fold cross val-

idation of each combination. It has been observed that when

the model is trained using ReduceLRonPlateau technique the

number of false predictions reduces for the best cases. The

ReduceLRonPlateau also reduces the standard deviation to

an average value of 0.0049. This helps us ensure that our pre-

dictions are close to the average value and these predicted

values are spread in a very narrow range. 900 and 1350 images

have been used for testing for binary and multi-class classifi-

cation schemes respectively which ensure that enough

instances of each class were used to check the robustness

of the model towards each class label. In all the scenarios, it

can be observed that the accuracy is above 0.96.

Fig. 8 represents ROC curves from two scenarios. The first

ROC curve depicts the values for holdout validation using 100

epochs without ReduceLRonPlateau. The second ROC curve

plots the curves for cross-validation using 100 epochs with

ReduceLRonPlateau. A plot that shows how well a classifica-

tion model performs at every level of categorization is called

the Receiver Operating Characteristic curve (ROC curve). As

visible through the curves, we can see our model is capable

of differentiating COVID-19 and the rest of the classes. The

values obtained for COVID vs Rest for the first and second

curve are 0.96 and 0.97 respectively. Since these values are

very close to 1, we can confirm that our model is reliable
l for multiclass classification.

MULTICLASS
CLASSIFICATION

(5-fold cross-validation)

F1 AUC ACC PRE REC F1 AUC

0.93 0.95 0.86 0.90 0.85 0.84 0.89
0.94 0.95 0.94 0.93 0.92 0.92 0.94
0.95 0.96 0.95 0.94 0.93 0.93 0.94
0.92 0.94 0.97 0.95 0.95 0.95 0.96

l for binary classification.

ION BINARY CLASS CLASSIFICATION

(5-fold cross-validation)

1 AUC ACC PRE REC F1 AUC

.92 0.93 0.89 0.90 0.87 0.86 0.87

.94 0.94 0.96 0.96 0.96 0.96 0.96

.94 0.94 0.97 0.96 0.96 0.96 0.96

.95 0.95 0.98 0.97 0.97 0.97 0.97



Fig. 7 – The best fold of 5-fold Cross Validation’s confusion matrices for all the 4 cases of model training.
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Fig. 8 – ROC curve of the proposed GrayVIC model.
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and robust. The highest AUC score achieved by our model is

0.98 for multi-class classification scheme.

The proposed model’s computational complexity is esti-

mated as follows. When it comes to Deep Learning models,

computational complexity plays a critical role. Computa-

tional Complexity increases exponentially with the number

if network level grown [46]. Computational complexity is

often determined with the help of trainable parameters

[47] from the model’s architecture. As compared to common

transfer learning models, our model projected a better com-

putational result. An approximate total of 2.7 M trainable

parameters were required for the proposed model. This is

significantly less when compared to 62 M for AlexNet, 25 M

for DenseNet, 23.6 M for InceptionV3, 8 M for CapsNet and

4 M for GoogleNet, since only one channel image data is

considered.

The model described in the study (as shown in Fig. 5) con-

sists of Conv2D-Conv2D-MaxPool pattern layers which are

stacked four times. Batch Normalization layer was used to

ease the training of the model and Global Average Pooling

layer was used to condense the output of the convolution pro-

cess to reduce the number of trainable parameters in the final

layers of the model. In the proposed architecture, Rectified

Linear Activation Unit (RELU) [48] was utilised as an activation

function after each convolution layer. The introduction of

max-pooling layers reduced computational complexity.

6.2. Model comparison with related works

The proposed work aims to create a VGG inspired CNN model

that takes one channel image data as input for detecting and

identifying COVID-19 using chest X-rays. All the datasets uti-

lized are treated in accordance with Section 40s discussion.

Hence, the datasets considered for comparative analysis

would be different from the dataset considered for the model

being proposed.

Most of the papers have used 5-fold cross validation or 10-

fold cross validation, and some of them have only done a

hold-out validation, this needs to be considered while com-

paring the results. A precis for the comparative analysis is

provided in Table 4. The comparison is done based on accu-

racy and recall along with the classification type.
In the first two studies the models described are the

COVID-Caps [49] which is capable of handling small datasets

and COVIDX-Net [50] which uses seven different architec-

tures. They achieved accuracies of 95.70 % and 90 % respec-

tively for the binary classification scheme. When worked on

multi-class classification, with a model ResNet50 combined

with SVM [51] attained an accuracy of 95.33 %. This paper

advocated that support vector machine, abbreviated as SVM,

is quite reliable when compared to other transfer learning

models. In [52], the authors compare multiple models for

multi-class classification and among the suggested models,

COVID-Net performs best with an accuracy of 93.34 % which

were trained using hold-out validation. The authors of [53]

use transfer learning to extract important information from

X-ray images and studied its performance for multi-class

classification. They were able to obtain accuracies of 94.72 %

and 85 % respectively. A good accuracy of 96.87 % was noticed

in [54] using 2D curvelet transform-EfficientNet-B0. This

model implemented a blend comprising of chaotic swarm

algorithm and two dimensional curvelet transformation.

In [19], the authors have compared DenResCov-19 and

DenseNet-121 for X-ray images. Although the accuracies of

these models have not been mentioned, the recall of

DenResCov-19 is 96.51 % for multi-class classification. The

authors of [55] have compared various models for binary clas-

sification out of which InceptionV3 produces an accuracy of

96.20 %. The authors of [56] have developed a FractalCovNet

architecture for segmentation of chest CT-scan images to

localize the lesion region and have trained it using transfer

learning for binary classification achieving an accuracy of

98 %. The CNN that was proposed in [57] was a VGG16 which

was optimized with five inception modules, 128 neurons in

the two fully connected layers, and a learning rate of 0.0027.

The proposed method achieved a sensitivity of 97 % for mul-

ticlass classification and accuracy it achieved was 88 %.

Multi-task ViT [58] was used for the multiclass which had

an accuracy and recall of 85.8 % and 87.43 %. In [22], the

authors stacked CNN to create a model which gave the sensi-

tivity score as 97.42 % and accuracy of 97.18. Uncertainty-

aware convolution networks were developed in [23] paper

which performed well for binary class with an accuracy of

99.36 % and for multiclass it was 97.67 %. Other studies took



Table 4 – Comparison of existing models to identify and detect COVID-19.

Ref. No. Model Classification Type Accuracy Sensitivity/ Recall CV Type

Suggested Model Binary 98.06 % 95.12 % Hold out
Binary 97.68 % 96.72 % 5-fold
Multi-class 97.41 % 94.52 % Hold out
Multi-class 96.56 % 95.14 % 5-fold

[49] COVID-Caps Binary 95.70 % 90.00 % Hold out
[50] COVIDX-Net Binary 90.00 % 90.00 % Hold out
[51] ResNet50 plus SVM Multi-class 95.33 % 95.33 % Hold out
[52] ResNet-50 Multi-class 90.67 % 96.60 % Hold out

COVID-Net Multi-class 93.34 % 93.30 % Hold out
[53] CNN models trained using Transfer Learning Multi-class 94.72 % 98.66 % 10-Fold
[54] EfficientNet-B0 Multi-class 95.24 % 93.61 % Hold out

EfficientNet-B0
2D curvelet transform

Multi-class 96.87 % 95.68 % Hold out

[19] DenResCov-19 Multi-class – 96.51 % 5-fold
DenseNet-121 Multi-class – 93.20 % 5-fold

[55] InceptionV3 Binary 96.20 % 97.10 % 5-fold
ResNet 50 Binary 96.10 % 91.80 % 5-fold
Inception-ResNetV2 Binary 94.20 % 83.50 % 5-fold

[56] FractalCovNet Binary 98.0 % 94.0 % –
[57] Hyperparameter Optimization Based Diagnosis Multi-class 88 % 97 % –
[58] Multi-task ViT Multi-class 85.8 % 87.43 % –
[22] Stacked CNN Model Binary 97.18 % 97.42 % 5-fold
[23] UA-ConvNet Binary 99.36 % 99.30 % 5-fold

UA-ConvNet Multi-class 97.67 % 98.15 % 5-fold

[59] BRISK VGG-19 Multi-class 96.5 % 97.6 % –
[60] 2D- Flexible analytical wavelet transform

model (FAWT)
Binary 93.47 % 93.6 % 10-fold

[61] Deep Features and Correlation Features Binary 97.87 % 97.87 % 5-fold
[62] TL-med Model Binary 93.24 % 91.14 % –
[63] Cascade VGGCOV19-NET Binary 99.84 % 97.47 % 5-fold

Cascade VGGCOV19-NET Multi-class 97.16 % – 5-fold
[64] Inception_ResNet_V2 Binary 94.00 % – Hold out
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for comparison shows new variation in deep learning models

like the BRISK VGG-19 [59] with 96.5 % accuracy for multiclass

whereas for binary type classification there were FAWTmodel

[60], deep and correlation feature model [61]. TL-med model

[62] with an accuracy of 93.47 %, 97.8,93.24 % respectively.

The Cascade VGGCOV19-Net [63] gave a performance score

in terms of accuracy of 97.16 % for multiclass and 99.84 %

for binary classification task.

The Analysis of Variance (ANOVA) test was done to evalu-

ate the statistical significance of the results attained from the

proposed model. This test was used to infer whether there is

a significant difference in the performance of the proposed

model along with other related works. The null hypothesis

in ANOVA is that there is no difference in means of samples

considered for the test. For this test, metric of the top five per-

forming models from the Table 4 is used to analyse the statis-

tical significance of the proposed model, for both binary and

multiclass classification task. Tukey’s honestly significant dif-

ference test (Tukey’s HSD) was used to test differences among

sample means of proposed models with other related models

to estimate the significances. Fig. 9 shows the ANOVA test

result graph and Fig. 10 shows the Tukey HSD test result graph

for the comparison between the proposed model and the

other models. ‘Group 60 in both graphs denotes the proposed

GrayVIC model and other groups denote the models used for

comparison purpose.
Table 5 shows the ANOVA results of binary classification

task. From the table it is observed that the p value (0.2541)

is more than 0.05 which implies that there is no significant

difference in the classification results of the models used

for comparison with the proposed model. This means that

null hypothesis (H0) is accepted. Tukey HSD test was carried

out which showed that the proposed model’s classification

result showed a no significant difference in means from the

top five performing model used for the statistical analysis

test. On a quantitative basis, the proposed model gave better

accuracy score than the three of the top five best performing

model from the comparison table.

Table 6 shows the ANOVA results of multiclass classifi-

cation task. From the table it is observed that the p value

(0.5335) is greater than 0.05 which implies the classification

results of the models used for comparison have no signif-

icant difference, thus proving that null hypothesis (H0) is

true. This means that the performance of the proposed

model is at par with the top five performing models used

for the comparison study. Tukey HSD test also pointed

towards the same inference and showed no significant dif-

ference of the proposed model’s classification result when

compared with other top performing models used for the

statistical test. The proposed model’s performance was

as good as other models with a better computational

efficacy.



Fig. 9 – ANOVA test result graph: (a) binary classification; (b) multiclass classification.

Fig. 10 – Tukey HSD test result graph: (a) binary classification; (b) multiclass classification.
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The suggested model has a shorter training time than the

other models included in the comparison table since it

includes fewer dense as well as convolutional layers. The

advantages of the suggested model are:

1) The number of parameters for the proposed model is

around 2.7 million which is less than VGG-16 and Mob-

NetV2 architecture.

2) The training time for the model for both classification

tasks is approximately 5 to 8 min.

3) The ReduceLRonPlateau technique restricts the fluctua-

tions of validation accuracy during the training of the

model.
This model can also be used for feature extraction since

fully connected layers can be removed at the end. The objec-

tive of this proposed model was to make it work on grayscale

images, since it is specifically trained on them, it can be used

as feature extraction model that can obtain useful artefacts

from grayscale images like X-rays in a more effective manner.

The main focus of the suggested model is to help the health

care sector in reducing the burden on the medical staff by

providing a quick screening system to identify the critical

CXR images. The proposed model can also be used for CT

scans but it will not be as feasible as CXR images due to its

expensive nature and its availability only in large multina-

tional hospitals. In addition to that, it is pointless to conduct



Table 5 – Summary of ANOVA test for binary classification
task.

ANOVA Table

Source SS DF MS F Prob > F

Columns 25.194 5 5.03875 1.42 0.2541
Error 85.383 24 3.55761
Total 110.576 29

Table 6 – Summary of ANOVA test for multiclass classifica-
tion task.

ANOVA Table

Source SS DF MS F Prob > F

Columns 17.556 5 3.51113 0.84 0.5335
Error 100.121 24 4.1717
Total 117.676 29
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expensive CT scans for patients with mild symptoms of

asymptomatic nature [34]. In such cases, screening of

patients using CXR images will be a much more essential

and beneficial method of diagnosis. Additional medical atten-

tion can be provided to the patients who are identified by the

proposed model as COVID-19 positive. On the other hand,

negative cases can be restricted from RTPCR tests to avoid

wastage of medical kits. The proposed model can be coupled

with IoT and cloud applications to develop a patient monitor-

ing system to curb the spread of the virus.

7. Conclusions

In this research work, a robust deep learning CNN model for

the medical image screening of Chest X-rays has been devel-

oped using the Homomorphic Transformation Filter along

with the 3D-CNN model inspired by VGG architecture for

grayscale images. The custom dataset, which was produced

from two separate publicly accessible benchmarked datasets,

was used to test the model. This custom dataset contains

2250 images for each class (No Finding – Covid – Pneumonia).

Two schemes have been used for classification purposes –

scheme 1 is a binary classification of COVID-19 from no find-

ings, with a dataset consisting of 4500 images and scheme 2 is

a multi-class classification of differentiating COVID-19 from

viral pneumonia and no findings, with a dataset consisting

of 6750 images. The model had a total of 2.7 M trainable

parameters and was trained in a GPU environment. The

model has been trained using holdout validation and 5-fold

stratified cross validation on the dataset for both classifica-

tion scheme. The CXRs has been first transformed using

Homomorphic Transformation and enhanced using CLAHE.

The deep CNN model is trained using this pre-processed out-

put to learn the trainable weights which will enable it to

detect the COVID cases. The proposed model successfully

classified the COVID-19 cases from Viral-Pneumonia and

No-Findings, with precision, recall, F1 score, accuracy, and

AUC values of 0.95, 0.95, 0.95, 0.97, 0.96 and 0.97, 0.97, 0.97,
0.98, 0.97 for multi-class classification and binary classifica-

tion, respectively. Additionally, ReduceLRonPleateau tech-

nique is used for curbing the fluctuations in validation

accuracy during the training of the model. This ensures that

weights are not updated drastically once it reaches near the

optimum in the final epochs. To understand the robustness

of the proposed model, confusion matrix and ROC curve has

been estimated which shows that the model is reliable for

the task at hand. Since there are a smaller number of CNN

models that takes one channel image data as input, it is diffi-

cult the estimate the full potential of this architecture. The

proposed model has been compared with the current best

approaches used in the research community. The compara-

tive study shows that the proposed works better in all cases

and is also efficient due to the model’s simple architecture

style. Furthermore, the model was tested using hypothesis

test to estimate its statistical significance for both binary

and multiclass classification task. The training time of our

model is around 8 min for multi-class classification scheme

which had a training data of approximately 5,000 images.

The model needs to be further tested for its generalization

power on new CXRs of COVID-19 cases since a lot of new vari-

ants are emerging which can be difficult to be identified by

the current model because it was trained on the current pub-

licly available dataset which does not contain CXRs of latest

cases.
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