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ABSTRACT
Objective  To develop a vocal biomarker for fatigue 
monitoring in people with COVID-19.
Design  Prospective cohort study.
Setting  Predi-COVID data between May 2020 and May 
2021.
Participants  A total of 1772 voice recordings were used 
to train an AI-based algorithm to predict fatigue, stratified 
by gender and smartphone’s operating system (Android/
iOS). The recordings were collected from 296 participants 
tracked for 2 weeks following SARS-CoV-2 infection.
Primary and secondary outcome measures  Four 
machine learning algorithms (logistic regression, k-nearest 
neighbours, support vector machine and soft voting 
classifier) were used to train and derive the fatigue vocal 
biomarker. The models were evaluated based on the 
following metrics: area under the curve (AUC), accuracy, 
F1-score, precision and recall. The Brier score was also 
used to evaluate the models’ calibrations.
Results  The final study population included 56% of 
women and had a mean (±SD) age of 40 (±13) years. 
Women were more likely to report fatigue (p<0.001). We 
developed four models for Android female, Android male, 
iOS female and iOS male users with a weighted AUC of 
86%, 82%, 79%, 85% and a mean Brier Score of 0.15, 
0.12, 0.17, 0.12, respectively. The vocal biomarker derived 
from the prediction models successfully discriminated 
COVID-19 participants with and without fatigue.
Conclusions  This study demonstrates the feasibility 
of identifying and remotely monitoring fatigue thanks 
to voice. Vocal biomarkers, digitally integrated into 
telemedicine technologies, are expected to improve the 
monitoring of people with COVID-19 or Long-COVID.
Trial registration number  NCT04380987.

INTRODUCTION
COVID-19 is a global outbreak. More than 
199 million confirmed cases of COVID-19 
have been detected worldwide as of 4 August 
2021, with more than 4 million deaths 
reported by the WHO.1 The worldwide popu-
lation and healthcare systems have been 
greatly impacted by the COVID-19 pandemic. 
The pandemic has essentially put whole 
healthcare systems under pressure, requiring 
national or regional lockdowns.2 Finding 
solutions that allow healthcare providers to 

focus on the more important and urgent 
patients, was, and still is, critical.

This outbreak continues to impact people, 
with many patients suffering from a range of 
acute symptoms, such as fatigue. Fatigue is a 
common symptom in patients with COVID-19 
that can impact their quality of life, treat-
ment adherence and can be associated with 
numerous complications.3 Recent findings 
showed that fatigue is a major symptom of the 
frequently reported Long-COVID syndrome. 
After recovering from the acute disease 
caused by the SARS outbreak, up to 60% of 
patients reported chronic fatigue 12 months 
later.4 This supports the need for long-term 
monitoring solutions for these patients.

In general, fatigue can be of two types: 
physical and mental5 experiencing lack of 
energy, inability to start and perform everyday 
activities and lack of desire to do things. In 
the context of COVID-19, determinants of 
fatigue were categorised as both central and 
psychological factors, the latest might also be 
indirectly caused by pandemic-related fear 
and anxiety.6 7

Fatigue affects men and women differ-
ently and has previously been shown to be 
reported differently in the two genders. 
Men and women have different anatomy 
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and physiology, resulting in significant sex differences in 
fatigability.8

Telemedicine, artificial intelligence (AI) and big data 
predictive analytics are examples of digital health technol-
ogies that have the potential to minimise the damaging 
effects of COVID-19 by improving responses to public 
health problems at a population level.9

Using telemonitoring technologies to enable self-
surveillance and remote monitoring of symptoms might 
therefore help to improve and personalise COVID-19 
care delivery.10

Voice is a promising source of digital data since it is rich, 
user-friendly, inexpensive to collect and non-invasive, and 
can be used to develop vocal biomarkers that characterise 
disease states. Previous research was mostly conducted in 
the field of neurodegenerative diseases, such as Parkin-
son’s disease11 and Alzheimer’s disease.12 There are also 
studies that confirm the relation of voice disorders to 
fatigue, for example, in chronic fatigue syndrome (CFS). 
Neuromuscular, neuropsychological and hormonal 
dysfunction associated with CFS can influence the phona-
tion and articulation, and alter tension, viscosity and thick-
ness of the tissue of the larynx, tongue and lips, leading to 
decreased voice quality.13 Increased fatigue affects voice 
characteristics, such as pitch, word duration14 and timing 
of articulated sounds.15 Vocal changes related to fatigue 
are more observed in consonant sounds that require a 
high average airflow.16

In the context of the COVID-19 pandemic, respiratory 
sounds (eg, coughs, breathing and voice) are also used as 
sources of information to develop COVID-19 screening 

tools.17–19 However, no previous work has been devoted 
to investigating the association of voice with COVID-19 
symptoms.

We hypothesised that there is an association between 
fatigue and voice in patients with COVID-19 and that it 
is possible to train an AI-based model to identify fatigue 
and subsequently generate a digital vocal biomarker for 
fatigue monitoring. We used data from the large hybrid 
prospective Predi-COVID cohort study to investigate this 
hypothesis.

METHODS
Study design
This project uses data from the Predi-COVID study.20 
Predi-COVID is a hybrid cohort study that started in 
May 2020 in Luxembourg and involved participants 
who should meet all of the following requirements: (1) 
a signed informed consent form; (2) participants with 
confirmed SARS-CoV-2 infection as determined by PCR 
at one of Luxembourg’s certified laboratories and (3) 18 
years and older.

This study combines data from the national surveillance 
system, which is used for virtually all COVID-19 positive 
patients. Biological sampling, electronic patient-reported 
outcomes and smartphone voice recording were collected 
to identify vocal biomarkers of respiratory syndromes and 
fatigue in this study. More details about the Predi-COVID 
study can be found elsewhere.20

Health Inspection collaborators made the initial phone 
contact with potential participants. Those who consented 

Figure 1  General pipeline.



3Elbéji A, et al. BMJ Open 2022;12:e062463. doi:10.1136/bmjopen-2022-062463

Open access

to participate were contacted by a qualified nurse from 
the Clinical and Epidemiological Investigation Centre 
(Luxembourg Institute of Health), who outlined the 
study and arranged home or hospital visits.

Patient and public involvement
The Predi-COVID initiative was an emergency response 
from national research institutions grouped under 
‘Research Luxembourg’ to fight the COVID-19 pandemic 
in Luxembourg and contribute to the general effort in the 
crisis. Therefore, for timing and safety reasons, patients 
with COVID-19 were not directly included to partici-
pate in the study design. However, the first participants 
included in Predi-COVID provided feedback on general 
workflow, data collection, questionnaires and sampling, 
which was taken into account in an amendment to the 
protocol.20

Data collection
Participants were followed for up to a year using a smart-
phone app to collect voice data. To ensure a minimum 
quality level, participants were asked to record it in a 
quiet environment while maintaining a certain distance 
from the microphone, and an audio example of what was 
required was also provided.

All the participants of this study were invited to record 
two audio types. The first, type 1 audio, required partici-
pants to read paragraph 1 of article 25 of the Declaration 
of Human Rights,21 in their preferred language: French, 
German, English or Portuguese; and the second, type 2 
audio, required them to hold the (a) vowel phonation 
without breathing for as long as they could (see online 
supplemental material 1 for more details).

Predi-COVID collects data in conformity with the 
German Society of Epidemiology’s best practices guide-
lines.22 To draft the manuscript, we followed the TRIPOD 
criteria (the Transparent Reporting of a multivariable 

prediction model of Individual Prognosis Or Diagnosis) 
for reporting AI-based model development and valida-
tion, as well as the corresponding checklist.

All Predi-COVID participants recruited between May 
2020 and May 2021 who reported their fatigue status (“I 
feel well” as “No Fatigue” and “I am fatigued”/“I don’t 
feel well” as “Fatigue”) on the same day as the audio 
recordings during the 14 days of follow-up were included 
in this study.23 As a result, several audio recordings for a 
single participant were available for both audio types.24

Audio characteristics and vocal biomarker training
The audio recordings were collected in two formats, 3gp 
format (Android devices) and m4a format (iOS devices). 
Based on the smartphone’s operating system and the 
user’s gender (male/female), we trained one model for 
each category. This stratification was performed to mini-
mise data heterogeneity and deal with sex as a potential 
confounding bias.

Audio preprocessing
All of the raw audio recordings were preprocessed 
(figure  1). They were initially converted to .wav files, 
with audios lasting less than 2 s being excluded. Then, an 
audio clustering (DBSCAN) on basic features (duration, 
average, sum and SD of signal power, and fundamental 
frequency) was performed to detect outliers that were 
manually checked while excluding poor quality audios 
with (1) too noisy, (2) incorrect text reading, (3) type 1 
and type 2 audios mixed or (4) extended silence in the 
middle. Finally, peak normalisation was used to boost the 
volume of quiet audio segments, and leading and trailing 
silences longer than 350 ms were trimmed.

Feature extraction
We used transfer learning for the feature extraction process 
since it is adapted for small training databases.25 Transfer 

Figure 2  VGG19 feature extraction.
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learning is a technique where a model is constructed and 
trained with a set containing a large amount of data and 
then transfer and apply this learning to our dataset on top 
of it. It has the advantage of reducing the amount of data 
required while shortening training time and improving 
performance when compared with models built from 
scratch.26

Convolutional neural networks require a fixed input 
size, whereas audio instances in our dataset were of vari-
able length. To deal with this issue, Zero-padding was 
used to set the duration of each audio file to 50 s (the 
maximum length in our database). To raise the amount 
of information fed to the classifiers, type 1 (text reading) 
and type 2 ((a) phonation) audios were concatenated 
and used as a single input to the learning models.

All the audio recordings were first resampled to 8 kHz 
and then converted to Mel-spectrograms using the Librosa 
library in Python. The hop-length was 2048 samples, 
and the number of Mel coefficients was set to 196. The 
Mel spectrograms were passed through VGG19 convo-
lutional neural network architecture provided by Keras, 
which was pretrained on the ImageNet database.27 This 
approach, presented in figure 2, may be considered as a 
feature extraction step, as it converts audio recordings to 

512 feature maps, each of a size 6×6, leading to a total of 
18 432 features.

This large number of features is computationally 
expensive. Principal component analysis (PCA)28 is there-
fore used for dimensionality reduction and to select the 
number of relevant components explaining the maximum 
of the variance in the data.

Statistical analysis
We divided our data into ‘fatigue’ and ‘no fatigue’ groups 
based on the participant’s reported answers for the inclu-
sion and daily fatigue assessment of Predi-COVID. To 
characterise participants, descriptive statistics were used, 
which included means, SD for quantitative variables, and 
counts and percentages for qualitative variables. The two 
population groups (3gp (Android users) and m4a (iOS 
users)) were compared using a student test for contin-
uous variables, and a χ2 test for categorical variables.

A 10-fold cross-validation procedure was conducted on 
the training cohort participants to evaluate four classifi-
cation models (logistic regression, k-nearest neighbours, 
support vector machine (SVM) and soft voting classifier 
(VC), scikit-learn implementation in Python) at different 
regularisation levels via a grid search, with the following 

Table 1  Study population characteristics the clinical data in the table above describe the overall population of the study

All

m4a 3gp

P value (m4a, 3gp)Female Male Female Male

Participants (N)

 � Total 296 107 80 51 58 –

Age (years)

 � Mean (SD) 40.3 (12.6) 38.8 (13.4) 42.9 (12.7) 37.8 (11.6) 41.5 (11.3) 0.28

Body mass index (kg/m²)

 � Mean (SD) 24.1 (4.7) 24.6 (5.5) 26.5 (4.1) 24.1 (3.8) 26.6 (4.17) 0.95

Antibiotic (%)

 � No 265 (90) 93 (87) 73 (91) 44 (86) 55 (95) 0.87

 � Yes 31 (10) 14 (13) 7 (9) 7 (14) 3 (5)

Asthma (%)

 � No 284 (96) 104 (97) 75 (94) 47 (92) 58 (100) 0.82

 � Yes 12 (4) 3 (3) 5 (6) 4 (8) 0 (0)

Smoking (%)

 � Never 199 (67) 77 (72) 51 (64) 36 (71) 35 (60) 0.41

 � Former smoker 53 (18) 19 (18) 20 (25) 9 (18) 13 (22)

 � Current smoker 44 (15) 11 (10) 9 (11) 6 (11) 10 (18)

Audio recordings

 � Total 1772 584 499 345 344 <0.001

 � No Fatigue 1222 (69) 394 (67) 370 (74) 190 (55) 268 (78)

 � Fatigue 550 (31) 190 (33) 129 (26) 155 (45) 76 (22)

Mean (SD) and maximum of audio recording per participant in the 14-day follow-up period

 � Mean (SD) 6 (5) 6 (5) 6 (5) 6 (5) 6 (5) –

 � Max 16 14 16 15 14

The total number and its percentage are used to represent all categorical data. The table summarises general information for describing audio data. 
All p values comparing iOS (m4a) and Android users (3gp) were calculated using χ2 test and Student’s t-test.
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evaluation metrics: area under the curve (AUC), accuracy, 
F1-score, precision and recall. The Brier score was also 
used to evaluate the calibration of the selected models.

The predicted probability of being classified as fatigued 
from the best model was considered as our final vocal 
biomarker, which may be used as a quantitative metric to 
monitor fatigue.

RESULTS
Study population characteristics
The final study population is composed of 296 participants 
of whom 165 were women (56%), with an average age of 
40 years (SD=13). To record both audio types, 109 (37%) 
participants used Android smartphones (3gp format), 
whereas 187 (63%) used iOS devices (m4a format). We 
found no difference in the distribution of age, gender, 
body mass index, smoking, antibiotic usage and asthma, 
between the two types of devices (p>0.05). The overall 
rate of comorbidities in this study was relatively low: there 
were 31 (10%) participants who used antibiotics and only 
12 (4%) participants with asthma. More details are shown 
in table 1.

Participants reported their fatigue status on average 
6 days during the first 14 days of follow-up, resulting in 
the analysis of 1772 audio recordings for each audio type 
(type 1 and type 2) when all inclusion criteria were met, 
including 550 audio recordings for participants with 
fatigue. In both audio sets, women reported experiencing 
fatigue at a higher rate than men (p<0.001). Women 
constituted 155 (60%) of all fatigued Android users and 
190 (67%) of all fatigued iOS users.

Prediction models
We reduced the extracted features from Mel-spectrograms 
to 250 top components with PCA, explaining 97% and 
99% of the variance in the data for iOS and Android 
audio sets, respectively. We then compared the perfor-
mances of the machine learning algorithms to select the 
best models for the derivation of the vocal biomarkers.

The VC was the best model selected for the develop-
ment of the vocal biomarker for male iOS users, with an 
AUC of 85% and overall accuracy, precision, recall and 
f1-score of 89%. The model selected for female iOS users 
was SVM with an overall precision of 79% and an AUC 
of 79%. For male Android users, the selected model is 
the VC with precision, recall an f1-score of 84%, and a 
weighted AUC of 82%. For female Android users, the 
SVM was selected with an overall precision of 80% and an 
AUC of 86%. More details are shown in table 2.

As shown in figure  3, the calibrations of the selected 
models were good (Mean Brier Scores=0.15, 0.12, 0.17 
and 0.12, respectively, for Android female users, Android 
male users, iOS female users and iOS male users).

Derivation of the digital fatigue vocal biomarker
Based on the model selected for each audio set, we 
derived the trained vocal biomarkers which quantitatively 
represent the probability of being labelled as fatigued.

DISCUSSION
In this study, we built an AI-based pipeline to develop a 
vocal biomarker for both genders and both types of smart-
phones (male/female, Android/iOS) that effectively 

Figure 3  Derivation of the digital fatigue vocal biomarker for android and iOS users.
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recognise fatigued and non-fatigued participants with 
COVID-19.

We stratified the data to prevent data heterogeneity, 
which is considered contamination and makes it difficult 
to build a reliable and consistent classification model(s), 
resulting in poorer prediction performance. This 
contamination is caused by two factors: first, significant 
gender differences in fatigability, since it has previously 
been shown that men and women experience and report 
fatigue differently, and second, different microphone 
types incorporated in both smartphone devices used by 
the participants (iOS and Android), which have a direct 
impact on the quality of the recorded audios (machine 
learning algorithms separate the audio formats rather 
than the fatigue status if there is no constant microphone 
(see online supplemental material 2 for more details).

With the increased interest in remote voice analysis as 
a noninvasive and powerful telemedicine tool, various 
studies have been carried out, mostly in neurological 
disorders (eg, Parkinson’s disease11 and Alzheimer’s 
disease29 and mental health (eg, stress and depression)).30 
Recently, a significant research effort has evolved to 
employ respiratory sounds for COVID-19 and the main 
focus was on the use of cough17 31 and breathing32 to 
develop a COVID-19 screening tool. However, no previous 
work has been devoted to investigating the association of 
voice with COVID-19 symptoms, precisely fatigue.

Fatigue is one of the commonly reported symptoms of 
COVID-19 and Long-COVID syndrome,33 which can persist 
regardless of how severe COVID-19’s acute stage is.34

A variety of cerebral, peripheral and psychosocial 
factors7 35 play a role in the development of fatigue. It may 
also occur from chronic inflammation in the brain and 
at neuromuscular junctions. New evidence shows that 
patients with Long-COVID syndrome continue to have 
higher measures of blood clotting, thrombosis,36 which 
may also explain the persistence of fatigue. COVID-19 
is associated with variations in airway resistance.37 This 
narrowing of the airway is manifested in the increase in 
audible turbulence in both sighing and yawning, which is 
frequently associated with fatigue.38

Human voice is produced by the flow of air from the 
lungs through the larynx, which causes the vocal fold 
vibrations, generating a pulsating airstream.39 The 
process is controlled by the laryngeal muscle activation40 
but involves the entire respiratory system to provide the 
air pressure necessary for phonation. Decreased pulmo-
nary function in COVID-19 patients can cause reduced 
glottal airflow that is essential for normal voice produc-
tion.41 Furthermore, in case of increased fatigue, the voice 
production process may be additionally disturbed due to 
reduced laryngeal muscle tension, resulting in dysphonia 
that appears in up to 49% of COVID-19 patients.41

Study limitations
This study has several limitations. First, although our data 
were stratified based on gender and smartphone devices, 
the mix of languages might also result in different voice 

features subsequently, in different model performances. 
There is presently no comparable dataset with similar 
audio recordings for further external validation of our 
findings. Thus, more data should be collected to improve 
the transferability of our vocal biomarker to other popu-
lations. Second, our data labelling was only based on a 
qualitative self-reported fatigue status. A fatigue severity 
scale would allow a quantitative assessment of fatigue 
severity in a uniform and unbiased way throughout all 
participants. Finally, time series voice analysis for each 
participant was not included in the study. More investi-
gation, including time series analysis, would establish a 
personalised baseline for each participant, potentially 
enhancing the performance of our vocal biomarkers.

CONCLUSION
In this study, we demonstrated the association between 
fatigue and voice in people with COVID-19 and devel-
oped a fatigue vocal biomarker that can accurately 
predict the presence of fatigue. These findings suggest 
that vocal biomarkers, digitally incorporated into tele-
monitoring technologies, might be used to identify and 
remotely monitor this symptom in patients suffering from 
COVID-19 as well as other chronic diseases.
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