Skip to main content
. 2022 Nov 22;12(11):e062463. doi: 10.1136/bmjopen-2022-062463

Table 2.

Results of the prediction models

Audio_format Gender ML model Accuracy Ov.precision Precision_0 Precision_1 Ov.recall Recall_0 Recall_1 Ov.f1score f1-score_0 f1-score_1 Weighted AUC
3gp (Android) Female LR 0.77 0.77 0.81 0.73 0.77 0.76 0.77 0.77 0.78 0.75 0.85
KNN 0.72 0.73 0.7 0.77 0.72 0.87 0.55 0.72 0.78 0.64 0.76
SVM 0.8 0.8 0.8 0.79 0.8 0.84 0.74 0.8 0.82 0.77 0.86
VC 0.78 0.78 0.81 0.75 0.78 0.79 0.77 0.78 0.8 0.76 0.86
Male LR 0.78 0.79 0.87 0.5 0.78 0.85 0.53 0.79 0.86 0.52 0.81
KNN 0.83 0.83 0.83 0.8 0.83 0.98 0.27 0.79 0.9 0.4 0.84
SVM 0.84 0.83 0.88 0.67 0.84 0.93 0.53 0.83 0.9 0.59 0.82
VC 0.84 0.84 0.89 0.64 0.84 0.91 0.6 0.84 0.9 0.62 0.82
m4a (iOS) Female LR 0.72 0.72 0.8 0.56 0.72 0.77 0.61 0.72 0.79 0.58 0.75
KNN 0.68 0.65 0.72 0.5 0.68 0.86 0.29 0.65 0.78 0.37 0.67
SVM 0.79 0.79 0.81 0.75 0.79 0.91 0.55 0.79 0.86 0.64 0.79
VC 0.77 0.76 0.8 0.69 0.77 0.89 0.53 0.76 0.84 0.6 0.78
Male LR 0.73 0.74 0.83 0.48 0.73 0.8 0.54 0.73 0.81 0.51 0.8
KNN 0.89 0.89 0.89 0.89 0.89 0.97 0.65 0.88 0.93 0.76 0.81
SVM 0.85 0.84 0.86 0.76 0.85 0.95 0.58 0.84 0.9 0.67 0.85
VC 0.89 0.89 0.89 0.89 0.89 0.97 0.65 0.88 0.93 0.76 0.85

The selected models were selected using Recall_1 and weighted AUC and are highlighted in bold. Class 0: no fatigue, class 1: fatigue.

AUC, area under the curve; KNN, K-Nearest Neighbuors; LR, logistic regression; Ov, Overall; SVM, support vector machine; VC, voting classifier.