Table 2.
Audio_format | Gender | ML model | Accuracy | Ov.precision | Precision_0 | Precision_1 | Ov.recall | Recall_0 | Recall_1 | Ov.f1score | f1-score_0 | f1-score_1 | Weighted AUC |
3gp (Android) | Female | LR | 0.77 | 0.77 | 0.81 | 0.73 | 0.77 | 0.76 | 0.77 | 0.77 | 0.78 | 0.75 | 0.85 |
KNN | 0.72 | 0.73 | 0.7 | 0.77 | 0.72 | 0.87 | 0.55 | 0.72 | 0.78 | 0.64 | 0.76 | ||
SVM | 0.8 | 0.8 | 0.8 | 0.79 | 0.8 | 0.84 | 0.74 | 0.8 | 0.82 | 0.77 | 0.86 | ||
VC | 0.78 | 0.78 | 0.81 | 0.75 | 0.78 | 0.79 | 0.77 | 0.78 | 0.8 | 0.76 | 0.86 | ||
Male | LR | 0.78 | 0.79 | 0.87 | 0.5 | 0.78 | 0.85 | 0.53 | 0.79 | 0.86 | 0.52 | 0.81 | |
KNN | 0.83 | 0.83 | 0.83 | 0.8 | 0.83 | 0.98 | 0.27 | 0.79 | 0.9 | 0.4 | 0.84 | ||
SVM | 0.84 | 0.83 | 0.88 | 0.67 | 0.84 | 0.93 | 0.53 | 0.83 | 0.9 | 0.59 | 0.82 | ||
VC | 0.84 | 0.84 | 0.89 | 0.64 | 0.84 | 0.91 | 0.6 | 0.84 | 0.9 | 0.62 | 0.82 | ||
m4a (iOS) | Female | LR | 0.72 | 0.72 | 0.8 | 0.56 | 0.72 | 0.77 | 0.61 | 0.72 | 0.79 | 0.58 | 0.75 |
KNN | 0.68 | 0.65 | 0.72 | 0.5 | 0.68 | 0.86 | 0.29 | 0.65 | 0.78 | 0.37 | 0.67 | ||
SVM | 0.79 | 0.79 | 0.81 | 0.75 | 0.79 | 0.91 | 0.55 | 0.79 | 0.86 | 0.64 | 0.79 | ||
VC | 0.77 | 0.76 | 0.8 | 0.69 | 0.77 | 0.89 | 0.53 | 0.76 | 0.84 | 0.6 | 0.78 | ||
Male | LR | 0.73 | 0.74 | 0.83 | 0.48 | 0.73 | 0.8 | 0.54 | 0.73 | 0.81 | 0.51 | 0.8 | |
KNN | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.97 | 0.65 | 0.88 | 0.93 | 0.76 | 0.81 | ||
SVM | 0.85 | 0.84 | 0.86 | 0.76 | 0.85 | 0.95 | 0.58 | 0.84 | 0.9 | 0.67 | 0.85 | ||
VC | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.97 | 0.65 | 0.88 | 0.93 | 0.76 | 0.85 |
The selected models were selected using Recall_1 and weighted AUC and are highlighted in bold. Class 0: no fatigue, class 1: fatigue.
AUC, area under the curve; KNN, K-Nearest Neighbuors; LR, logistic regression; Ov, Overall; SVM, support vector machine; VC, voting classifier.