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Abstract

INTRODUCTION: As knowledge about neurological examination findings in autosomal 

dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and 

significance of neurological examination findings in ADAD.
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METHODS: Frequencies of neurological examination findings were compared between 

symptomatic mutation carriers and non mutation carriers from the DIAN to define Alzheimer 

disease neurological examination findings. Alzheimer disease neurological examination findings 

were analyzed regarding frequency, association with and predictive value regarding cognitive 

decline, and association with brain atrophy in symptomatic mutation carriers.

RESULTS: Alzheimer disease neurological examination findings included abnormal deep tendon 

reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger 

to nose and heel to shin testing, and compromised motor strength. Frequency of Alzheimer disease 

neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with Alzheimer 

disease neurological examination findings showed a more than two-fold faster cognitive decline 

and had greater parieto-temporal including hippocampal atrophy. Longitudinally, Alzheimer 

disease neurological examination findings predicted a significantly greater decline over time.

DISCUSSION: ADAD features a distinct pattern of neurological examination findings that is 

useful to estimate prognosis and may inform clinical care and therapeutic trial designs.

Keywords

Alzheimer disease; Autosomal dominant Alzheimer disease; neurological examination; 
neurological examination findings; predictive value; prognosis; differential diagnosis

1. Introduction

The neurological examination has formed the base for evaluation of neurological patients 

for over a century.1 It is highly standardized and the attribution of pathological findings to 

distinct brain regions is well established.2 The neurological examination guides the process 

of diagnostic investigations and informs treatment decisions in a noninvasive as well as 

time and cost effective manner.3 Physical examination, in combination with medical history, 

determined the correct diagnosis in approximately 40% of patients without any further 

diagnostic procedures in outpatient cohorts.4,5

Autosomal dominant Alzheimer disease (ADAD) is a rare monogenic form of Alzheimer 

disease.6 ADAD shows comprehensive overlap with sporadic AD. With respect to clinical 

manifestation both ADAD and sporadic AD exhibit typical amnestic and atypical non-

amnestic cognitive presentations7–10 and non-cognitive clinical symptoms such as motor 

symptoms, seizures and myoclonus8,9,11–14. Neuropsychological characteristics include 

memory disturbance, visuospatial deficits, executive dysfunction and in later stages 

generalized cognitive decline in both AD variants7,10. ADAD and sporadic AD share 

biomarker changes proposed by the amyloid hypothesis6,15,16. Neuropathological findings in 

both AD forms comprise amyloid-β plaques and tau tangles with higher burden including 

higher Braak scores in ADAD. Lewy body disease was reported in about 30–50% in 

ADAD and sporadic AD. Cerebral amyloid angiopathy is common in both disorders with 

a higher severity in some ADAD mutations17–19. Non AD co-pathologies such as TDP-43 

pathology, argyrophilic grain disease, hippocampal sclerosis and infarcts are much more 

common in sporadic AD18. ADAD and sporadic AD differ in the mean age at clinical 

onset, since ADAD starts on average in the mid 40s and sporadic AD in the 70s.20 As a 
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result, individuals with ADAD usually lack the age-related comorbidities commonly seen in 

sporadic AD, for example peripheral neuropathy, orthopedic problems, falls and consecutive 

traumatic brain injury, and the aforementioned neuropathological non AD co-pathologies 

including infarcts18,21–23. Since neurological examination can be substantially influenced 

by age and age-related comorbidities,24 ADAD provides an opportunity to determine an 

AD-specific pattern of neurological examination findings.

We hypothesized that ADAD holds a distinct pattern of neurological examination findings 

that may inform cognitive prognosis and clinical decision making. Therefore, the aims 

of this study were to 1) determine the frequency of neurological examination findings 

in ADAD, 2) reveal a potential change in frequency over the disease course, 3) test the 

capacity of neurological examination findings to distinguish between mutation carriers 

(MC) and mutation non carriers (non MC) among mildly cognitive impaired individuals 

at risk, 4) analyze associations between neurological examinations findings in ADAD and 

both cognitive performance and brain atrophy as assessed by MRI, and 5) investigate 

the possibility to predict cognitive decline over time based on neurological examination 

findings.

2. Methods

2.1 Participants

We analyzed data from the observational study of the Dominantly Inherited Alzheimer 

Network (DIAN) that aims to investigate the clinical and biomarker course in individuals at 

risk for or with ADAD over time. That is, the DIAN observational study includes data from 

asymptomatic and symptomatic mutation carriers (MC) for ADAD and mutation negative 

family members of ADAD mutation carriers (non MC). For this study, all patients with 

early-onset Alzheimer disease from the DIAN observational study at the time of data freeze 

14 (n=118) were evaluated. As it is a prerequisite for entering the DIAN study to be member 

of a family with a known ADAD mutation, no individuals with early-onset Alzheimer 

disease without ADAD mutations were included. Hence, all of the early-onset Alzheimer 

disease patients studied here carried a mutation in either PSEN1, APP or PSEN2. Data 

were gathered at 17 study sites around the world (USA, UK, Australia, Japan, South Korea, 

Argentina, Spain, and Germany) between January 2008 and February 2020. Clinical data of 

the DIAN study participants were collected using the Uniform Data Set version 2 from the 

National Alzheimer’s Coordinating Center (NACC-UDS2).25 Clinical raters were blinded to 

the mutation status of the participants. The protocol of the DIAN observational study was 

approved by the respective institutional review boards of the study sites. The DIAN study is 

conducted in accordance with the declaration of Helsinki. Each study participant provided 

written informed consent.

2.2 Genetic analyses

For identification of mutations in PSEN1, PSEN2, and APP the respective exons were 

amplified using polymerase chain reaction, followed by Sanger sequencing.6
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2.3 Neurological Examination

The DIAN observational study includes a comprehensive, structured neurological 

examination that is completed by a trained clinical rater at each visit. The neurological 

examination is subdivided into 12 domains including visual impairment, auditory 

impairment, tremor, consciousness, cranial nerve examination findings, motor strength, 

finger to nose testing, heel to shin testing, sensory testing, deep tendon reflexes, plantar 

reflexes, gait, and other findings. Each item is rated either as absent vs. present or normal 

vs. abnormal depending on whether the respective domain label represents a pathological 

condition. For each rating as abnormal or present in the case of pathological conditions the 

study clinician may provide further details.

2.4 Definition and classification of symptomatic ADAD

In accordance with previous studies from the DIAN,6,9,16 the CDR global score26 was used 

to classify an individual as symptomatic (CDR global>0) or asymptomatic (CDR global=0). 

For investigating the pattern of neurological examination findings across the course of 

ADAD, we stratified symptomatic MC by CDR global scores (groups for CDR global 0.5, 1, 

and 2 or 3). As numbers in the groups with CDR 2 (n=7) and CDR 3 (n=5) were small, these 

groups were taken together to form a group of MC with CDR scores of >1.

2.5 Determination of Alzheimer disease neurological examination findings and group 
stratification procedures

The frequency of findings in the single subscale components of the neurological 

examination was compared between symptomatic MC and non MC. As both groups were 

relatively young (46.1 and 38.2 years, respectively) and difference in age was only 7.9 

years, we did not perform a statistical age matching that can cause bias itself.27 For those 

neurological examination subscale findings that occurred more frequently in symptomatic 

MC than in non MC we introduced the term Alzheimer disease neurological examination 

findings (AD-NEF). Then, symptomatic MC were stratified by the presence of at least one 

AD-NEF into symptomatic MC with AD-NEF and symptomatic MC without AD-NEF. The 

latter stratification was done to form a cross-sectional population, i.e. by the use of data from 

baseline visits, and a longitudinal population that included only symptomatic MC with at 

least the baseline visit and one follow-up visit (Figure 1).

2.6 Calculation of disease duration

If a participant is rated as symptomatic in the DIAN observational study, the rating clinician 

determines the age at symptom onset by exploring the earliest progressive symptom from a 

predefined list of symptoms. Disease duration was calculated as the difference between the 

age of a participant at the time of evaluation minus her/his age at symptom onset.

2.7 Relevant comorbidities

The data set was screened for relevant comorbidities that can influence neurological 

examination findings. Two participants had a history of stroke, one in the symptomatic MC 

group and one in the non MC group (0.8 vs. 0.5 %, p=1). Three participants had a history 

of traumatic brain injury, one in the symptomatic MC group and two in the non MC group 
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(0.8 vs. 0.9 %, p=1). The one symptomatic mutation carrier with a history of stroke was also 

part of the longitudinal dataset, in the symptomatic MC without AD-NEF group. The one 

symptomatic MC with traumatic brain injury was not part of the longitudinal dataset. These 

participants were included in the analyses, as it was not determinable if these comorbidities 

actually affected neurological examination findings, were very rare, were equally distributed 

between groups and in case of stroke may be a consequence of AD-associated cerebral 

amyloid angiopathy.

2.8 Magnetic resonance imaging

Structural MRI included a 3D-MPRAGE sequence on 3T scanners with 1.1×1.1×1.2mm 

voxel resolution. For the current analysis, we used FreeSurfer-processed (Version 6) region 

of interest (ROI) data (i.e. cortical thickness and subcortical volumes) in Desikan-Killiany 

Atlas space,28 provided by the DIAN neuroimaging core.

2.9 Statistical analysis

2.9.1 Baseline comparisons—Baseline parameters were compared using Student’s 

t-test for continuous variables and chi-squared test or Fisher’s exact test for categorical 

variables, where appropriate.

2.9.2 Frequencies of neurological examination findings—We used chi-squared 

test or Fisher’s exact test, as appropriate, for comparison of frequencies of neurological 

examination findings between groups. False discovery rate correction (via Benjamini-

Hochberg method) was used to account for multiple comparisons.

2.9.3 Cross-sectional analyses—To analyze the association between the presence of 

AD-NEF and cognition over time, we fitted a linear mixed effects model including random 

intercepts with the main effects disease duration and presence/absence of AD-NEF and 

a disease duration*presence/absence of AD-NEF interaction term using CDR – Sum of 

Boxes (CDR-SB) as the outcome measure. The CDR-SB score ranges from 0 to 18 with 

higher values indicating worse cognitive performance. CDR-SB was chosen based on its 

advantages as an outcome parameter including a comprehensive assessment of cognitive 

performance and an almost linear decline in AD.29

In symptomatic MC exploratory cross-sectional structural MRI analyses were performed to 

determine whether presence of AD-NEF was associated with increased grey matter atrophy 

determined via analyses of cortical thickness and subcortical volumes, using analyses of 

covariance (ANCOVA) controlling for disease duration and global Pittsburgh compound B 

– positron emission tomography standardized uptake value ratio (PiB-PET SUVR). Details 

with respect to the acquisition of PiB-PET in the DIAN observational study were described 

before.6

Additionally, exploratory analyses were performed to determine whether the single AD-

NEF, ataxia or saccadic smooth pursuit eye movement were associated with specific 

patterns of grey matter atrophy determined via analyses of cortical thickness and subcortical 

volumes, using analyses of covariance (ANCOVA) controlling for disease duration, PiB-PET 
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SUVR and for all other AD-NEF. As an indicator for ataxia a pathological finding in either 

finger to nose or heel to shin testing was used.

2.9.4 Longitudinal analyses—For investigation of a longitudinal association between 

AD-NEF and cognitive decline over time, that is the rate of change in CDR-SB, a linear 

mixed effects model that included disease duration and presence/absence of AD-NEF 

at each visit as the main effects and a disease duration*presence/absence of AD-NEF 

interaction term with CDR-SB as the outcome parameter was used. To investigate the 

predictive capacity of AD-NEF regarding a future cognitive decline over time, a linear 

mixed effects model that included disease duration and presence/absence of AD-NEF at 

baseline as the main effects and a disease duration*presence/absence of AD-NEF at baseline 

interaction term with CDR-SB as the outcome parameter was used. The models included 

random slopes for each individual with variance components as the covariance matrix 

across random effects. For selection of the best fitting model the goodness-of-fit Akaike 

information criterion was used for the linear mixed effects models in this study. Linear 

mixed effects models were chosen for analyses because of several benefits including the 

ability to increase statistical power and to deal with unequal numbers of measurements or 

intervals.30

Missing data were considered missing at random. All tests were performed two-sided. P 

values less than 0.05 were considered statistically significant. IBM SPSS Statistics Version 

25 and R statistical software (Version 3.6.1) were used for statistical analyses.

2.10 Role of the funding source

The funding source had no role in study design, in the collection, analysis, and interpretation 

of data, in the writing of the report, and in the decision to submit the paper for publication.

3 Results

3.1 AD-NEF

Baseline data regarding AD-NEF were available for 118 symptomatic MC and 211 non MC. 

Clinical and genetic parameters at baseline are listed and compared between groups in Table 

1.

An abnormal neurological examination result, defined by the presence of at least one NEF, 

occurred more frequently in symptomatic MC compared to non MC (65.1 vs. 25.3 %, 

p<0.001). Symptomatic MC exhibited more frequently abnormal findings in 9 subdomains 

of the neurological examination. The highest frequency of abnormal findings showed the 

subdomain deep tendon reflexes (35.9% in symptomatic MC vs. 3.3% in non MC, p<0.001), 

followed by other findings (22.4 vs. 2.7%, p<0.001), gait (17.8 vs. 2.8%, p<0.001), cranial 

nerve examination findings (14.4 vs. 4.7%, p=0.002), tremor (12.7 vs. 4.7%, p=0.009), 

finger to nose testing (11.0 vs. 0%, p<0.001), heel to shin testing (7.7 vs. 0.5%, p=0.001), 

plantar reflexes (6.8 vs. 1.4%, p=0.02), and motor strength (5.1 vs. 0.9%, p=0.027). 

Abnormal findings in these 9 subdomains of the neurological examination are referred 

to as AD-NEF in this article. All of these differences remained statistically significant 

after correction for multiple comparisons. There were no subdomains in which abnormal 
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neurological examination findings occurred more frequently in non MC than in symptomatic 

MC (Figure 2). No statistically significant differences in frequencies of AD-NEF were 

observed between MC with a global CDR score of 0 or in non MC (11.1% vs. 14.6%; 

p=0.33).

For the five most frequent AD-NEF pathological deep tendon reflexes, gait disturbance, 

abnormal cranial nerve examination findings, tremor, and other findings, specifications 

provided by the respective clinical raters were available. The most frequent findings within 

the respective AD-NEF were asymmetrical brisk deep tendon reflexes, reduced arm swing 

while walking, saccadic smooth pursuit eye movement, postural tremor, and increased 

muscle tone. Further specifications are depicted in Figure 3.

The ADAD mutation carriers in this study had 46 different mutations (49 PSEN1, 1 

PSEN2 and 6 APP mutations). The single AD-NEF were compared regarding their 

respective frequency between single mutations using chi-squared test and false discovery 

rate correction (via Benjamini-Hochberg method) to account for multiple comparisons. 

There was no difference in frequency of any AD-NEF between the single ADAD mutations.

3.2 AD-NEF in symptomatic MC stratified by disease stage

The frequencies of AD-NEF in symptomatic MC were analyzed by disease stage determined 

by CDR global scores (Figure 4). Frequency of all AD-NEF increased over the whole 

disease course. In all disease stages abnormal deep tendon reflexes were the most frequent 

finding among AD-NEF. Frequency was 33.3% at CDR 0.5, remained stable at CDR 1 

and rose to 58.3% at CDR>1. Gait disturbance was present in 9.0% at CDR 0.5 and rose 

steadily to 28.6% at CDR 1 and to 50.0% at CDR>1. Frequency of abnormal cranial nerve 

examination findings was in the medium range of frequencies across disease stages: 11.5% 

at CDR 0.5, stayed roughly stable at CDR 1 (10.7%) and increased to 41.7% at CDR>1. 

Tremor occurred in 9.0% at CDR 0.5, its frequency rose slightly to 14.3% at CDR 1 and 

then more steeply to 33.3% at CDR>1. Abnormal finger to nose testing was found in a 

relatively small percentage of 2.6% at CDR 0.5, its frequency increased steeply to 28.6% 

at CDR 1, and then decreased slightly to 25.0% at CDR>1. Abnormalities in heel to shin 

testing exhibited the lowest frequency at CDR 0.5 (1.3%), and rose relatively steadily to 

17.9% at CDR 1, and to 27.3% at CDR>1, in the medium range of frequencies of AD-NEF 

in the CDR 1 and CDR>1 groups. Frequencies of abnormal plantar reflexes were in the 

lower range of frequencies through all disease stages. They were present in 6.4% at CDR 

0.5, slightly declined in frequency to 3.6% at CDR 1 and rose relatively steeply to 16.7% at 

CDR>1. Also in the lower frequency range through all disease stages were abnormalities in 

motor strength. They occurred in 3.8% at CDR 0.5 and increased slightly to 7.1% at CDR 1 

and to 8.3% at CDR>1.

3.3 Association between AD-NEF and cognition

To analyze associations between AD-NEF and cognitive performance, symptomatic MC 

were stratified in groups by the presence (n=64) or absence (n=42) of AD-NEF. Baseline 

clinical and genetic parameters are shown in Table 2. Symptomatic MC with AD-NEF 

exhibited a worse cognitive performance as assessed by CDR-SB than symptomatic MC 
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without AD-NEF (mean CDR-SB scores: 4.32 vs. 2.59, p=0.007) while being at the 

same disease phase as determined by disease duration (mean disease duration: 3.9 vs. 

3.6 years, p=0.53). A linear mixed effects model revealed a significant effect of the 

presence of AD-NEF on cognitive performance as measured by CDR-SB towards abnormal 

over disease duration (disease duration: estimate=0.406, standard error=0.186, p=0.031; 

disease duration*presence of AD-NEF interaction: estimate=0.572, standard error=0.221, 

p=0.011). In this cross-sectional model, the decline in CDR-SB per year was 0.41 points in 

symptomatic MC without AD-NEF and 0.98 points in MC with AD-NEF. Symptomatic MC 

with AD-NEF declined significantly more, by 0.57 points on CDR-SB per year (Figure 5A).

3.4 Association between AD-NEF and grey matter atrophy in MC

In symptomatic MC, we found that the presence of AD-NEF was associated with greater 

grey matter atrophy in the temporo-parietal cortex (left precuneus, left posterior cingulate, 

left entorhinal cortex, right superior temporal gyrus) and bilateral hippocampus at an 

exploratory ROI-wise alpha threshold of 0.05, controlling for disease duration and global 

PiB-PET SUVR (Figure 5B). At a Bonferroni-corrected alpha threshold accounting for 82 

ROIs (p<0.0006), only the left hippocampus remained significant.

The results of the exploratory analyses to determine whether the single AD-NEF, ataxia 

or saccadic smooth pursuit eye movement were associated with specific patterns of grey 

matter atrophy are summarized in the supplementary figure. In summary, most of the single 

AD-NEF, ataxia and saccadic smooth pursuit eye movement were associated with a fronto-

temporo-parietal pattern of atrophy. There were no significant associations between any 

AD-NEF, ataxia or saccadic smooth pursuit eye movement and atrophy in any subcortical 

region. At a Bonferroni-corrected alpha threshold accounting for 82 ROIs (p<0.0006), no 

brain region remained significant.

3.5 Longitudinal analysis and predictive value of AD-NEF regarding individual rate of 
cognitive decline

Longitudinal data, i.e. data from the baseline visit and at least one follow-up visit of the 

same individual, were present for 73 symptomatic MC with a total of 222 visits (≥2 visits: 

n=73; ≥3 visits: n=39; ≥4 visits: n=21; ≥5 visits: n=12; ≥6 visits: n=3; 7 visits: n=1). 

Mean number of visits was 3.04 (standard deviation=1.25) and mean follow-up time 2.49 

years (standard deviation=1.63; range=0.96–7.03 years). There was a significant difference 

in slopes as a function of the presence of AD-NEF at each visit and disease duration with 

CDR-SB as the outcome parameter (disease duration: estimate=0.981, standard error=0.099, 

p<0.001; disease duration*presence of AD-NEF at each visit interaction: estimate=0.343, 

standard error=0.136, p=0.012). The rate of yearly decline estimated by the model was 

0.98 points on the CDR-SB score in symptomatic MC without AD-NEF compared to 1.32 

points in symptomatic MC with AD-NEF. That is, symptomatic mutation carriers with 

AD-NEF declined significantly more, by 0.34 points per year, than symptomatic mutation 

carriers without AD-NEF (Figure 6). There was also a significant difference in slopes as 

a function of the presence of AD-NEF at baseline and disease duration with CDR-SB as 

the outcome parameter (disease duration: estimate=1.020, standard error=0.120, p<0.001; 

disease duration*presence of AD-NEF at baseline interaction: estimate=0.494, standard 
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error=0.211, p=0.022). The rate of yearly decline estimated by the model was 1.02 points 

on the CDR-SB score in symptomatic MC without AD-NEF at baseline compared to 1.51 

points in symptomatic MC with AD-NEF at baseline. That is, symptomatic mutation carriers 

with AD-NEF at baseline showed a significantly increased future cognitive decline, by 

0.49 points on CDR-SB per year, than symptomatic mutation carriers without AD-NEF at 

baseline.

3.6 Differential diagnostic significance of AD-NEF

Among individuals at risk for ADAD with a CDR global score of 0.5, i.e. very mild 

cognitive impairment, AD-NEF were significantly more frequent in MC than in non MC 

(55.6 vs. 26.7%; p=0.042). The positive predictive value of AD-NEF to predict a MC status 

was 91%. Sensitivity was 56% and specificity 73%.

4. Discussion

Two recently published studies, one using a European case series and the other comparing 

DIAN and literature data, recently provided insights about non-amnestic manifestations of 

ADAD on a symptom and diagnosis level.8,9 Relatively frequent symptoms were seizures, 

myoclonus, and behavioural or personality changes. Compared to symptoms and diagnoses, 

findings are less based on inductive generalization and provide the least abstract level of 

categorization, and therefore may provide more objective information and a high degree 

of cue validity.31,32 In the current study, a systematic investigation of single neurological 

findings as subscale components of a structured clinical neurological examination was 

performed, an approach that has not previously been pursued. Neurological examination 

findings in ADAD encompass pathological deep tendon reflexes, gait disturbance, cranial 

nerve examination findings, tremor, abnormal finger to nose and heel to shin test 

findings, pathological plantar reflexes, as well as compromised motor strength. Neurological 

examination findings in ADAD were associated with a two-fold faster cognitive decline and 

ADAD patients with neurological examination findings exhibited a greater parieto-temporal 

atrophy independent from disease duration. The presence of AD-NEF at baseline predicted 

an increased rate of future cognitive decline.

Knowledge about these examination findings may help clinicians to corroborate a suspected 

ADAD diagnosis and to distinguish from differential diagnoses of ADAD. Taking 

illustratively the five most frequent AD-NEF and their respective most frequent subitem 

(Figure 3) as the basis, a typical ADAD patient may present with asymmetrical brisk deep 

tendon reflexes, increased muscle tone, reduced arm swing while walking, saccadic smooth 

pursuit eye movements, and postural tremor.

A profile of motor symptoms measured by the Unified Parkinson Disease Rating Scale 

Part III was recently described in ADAD. This profile indicates that bradykinetic symptoms 

are the primary motor manifestation in ADAD.13 The insights about clinical neurological 

examination findings of this study may add further to a sharper and more comprehensive 

clinical picture of ADAD.
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The term Alzheimer disease neurological examination findings (AD-NEF) was introduced 

for those findings that were more frequent in symptomatic mutation carriers than in non 

mutation carriers. The frequency of AD-NEF increased with disease stage of ADAD. This 

finding is in accordance with disease phase dependent build-up of non-cognitive symptoms 

in AD such as for example seizures and motor symptoms.9,13,14

In at risk individuals with mild cognitive symptoms in this study, the presence of AD-NEF 

was highly indicative for ADAD mutation carrier status. Since the presence of AD-NEF 

predicts a worse outcome in symptomatic ADAD, identifying this group early might 

facilitate earlier intervention and perhaps help to provide haste in confirming genetic 

results. The integration of knowledge of the predictive value of seizures and impaired 

rapid alternating hand movements regarding mutation carrier status in the cognitively 

presymptomatic phase of ADAD12,13 and of AD-NEF in cognitively symptomatic at risk 

persons may help to aid patient evaluation and care throughout disease phases.

In the current study, an association between the presence of AD-NEF and poorer cognitive 

performance independent from the disease stage was found in ADAD patients. The 

exploratory MRI-analysis revealed an increased temporo-parietal including hippocampal 

atrophy in MC with AD-NEF compared to MC without AD-NEF. A similar pattern was 

seen in a recent study of the spatial distribution of atrophy in ADAD patients.30 Therefore, 

a potential pathophysiological explanation for the worse cognitive performance associated 

with AD-NEF may be a greater burden of AD-related atrophy in ADAD patients with 

AD-NEF independent from the disease stage.

Beyond the cross-sectional association of AD-NEF with poorer cognitive performance in 

ADAD patients, our intraindividual longitudinal analyses showed an association between 

the presence of AD-NEF and a significantly higher rate of cognitive decline over time, by 

approximately 35% per year on CDR-SB. Moreover, the longitudinal analysis showed that 

the presence of AD-NEF at baseline predicted a significantly higher rate of future decline in 

CDR-SB, by approximately 50% per year. The predictive capability of AD-NEF offers the 

opportunity to estimate prognosis and thus may add substance to patient counselling as well 

as to diagnostic and therapeutic strategies. Taking the stage of very mild dementia (CDR-SB 

3.0–4.0) as an assumptive starting point, after 5 years patients without AD-NEF would 

arrive at the stage of mild dementia (CDR-SB 4.5–9.0), whereas patients with AD-NEF 

would be at the stage of moderate dementia (CDR-SB 9.5–15.5). After 10 years, ADAD 

patients without AD-NEF would exhibit moderate dementia and those with AD-NEF would 

suffer from severe dementia (CDR-SB 16.0–18.0).33 The predictive nature of AD-NEF 

regarding cognitive decline over time could be explained through a potential capability of 

the neurological examination to detect subtle and localized AD-associated brain changes that 

did not yet extend to brain regions that cause cognitive decline when damaged.

Since a population with ADAD formed the basis for the analyses in this study, it is a crucial 

question how our findings may translate to sporadic AD. In literature, spastic paraparesis is 

more frequently described in ADAD than in sporadic AD. Nine of the 97 PSEN1 mutation 

carriers in this study had mutations that were reported to be possibly associated with spastic 

paraparesis (Val261Phe, Pro264Leu, Leu271Val).34 Only in one of these nine patients a 
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bilateral spastic increase in lower limb tone was reported. Importantly, the higher age 

and frequency of age related comorbidities in patients with sporadic AD that can cause 

abnormal neurological examination findings could challenge translatability.24 Exploring for 

those comorbidities by thorough medical history taking including third-party anamnesis and 

analyses of medical files may account for these challenges and warrant translatability of the 

study findings to sporadic AD. However, this requires further study.

In summary, the results of our study may leverage differential diagnostic considerations by 

revealing neurological examination findings in symptomatic autosomal dominant Alzheimer 

disease including their stage dependent frequencies. The presence of these findings indicates 

mutation status in mildly cognitive impaired at risk persons with accuracy. The association 

of neurological findings typical for ADAD with poor cognitive performance and their 

predictive value regarding increased cognitive deterioration over time may render the 

neurological examination suitable to contribute to estimation of prognosis, to improve 

patient consultation and to inform treatment decisions and future therapeutic trial designs.
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Research in Context

Systematic review

A comprehensive literature review in PubMed regarding neurological examination 

findings (NEF) in Alzheimer disease (AD) including a wide range of neurological 

manifestations in AD on a symptom and diagnosis level was performed 

(Pubmed terms: “Alzheimer disease”/“autosomal dominant Alzheimer disease”/“familial 

Alzheimer disease” AND “neurological examination findings”/“neurological findings”/

“neurological symptoms”/“neurological manifestations”).

Interpretation

Neurological examination findings in AD are frequent and indicative of a broader 

affection of brain areas to those involved not only in cognition but also in motor function. 

This is associated with a poorer prognosis.

Future directions

The knowledge about the association between the presence of non-cognitive neurological 

examination findings and a worse cognitive course may inform future therapeutic AD 

trial designs.
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Highlights

• Neurological examination findings in Alzheimer disease (AD-NEF) are 

frequent

• AD-NEF are associated with a two-fold faster cognitive decline

• Patients with AD-NEF exhibit greater parieto-temporal including 

hippocampal atrophy

• AD-NEF predict a greater cognitive decline
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Figure 1: 
Flow chart depicting the processes to determine Alzheimer disease neurological 

examinations findings (AD-NEF), of group stratifications, and of analyses performed in 

this study.
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Figure 2: 
Comparisons of frequencies of neurological examinations findings between symptomatic 

mutation carriers and mutations non carriers. Description: Tremor, abnormal cranial nerve 

examination findings, compromised motor strength, abnormal findings on finger to nose 

testing and heel to shin testing, pathological deep tendon reflexes, abnormal plantar reflexes, 

gait disturbance, and other findings were more frequent in symptomatic mutations carriers. * 

p<0.05; ** p<0.01; *** p<0.001. Error bars represent 95% confidence intervals.
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Figure 3: 
Particular signs and their frequencies within the group of the five most frequent 

Alzheimer disease neurological examination findings pathological deep tendon reflexes, 

gait disturbance, abnormal cranial nerve examination findings, tremor, and other findings. 

Description: The most frequent particular signs of each of the five Alzheimer disease 

neurological examination findings were asymmetrical brisk deep tendon reflexes, reduced 

arm swing while walking, saccadic smooth pursuit eye movement, postural tremor, and 

increased muscle tone.
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Figure 4: 
Frequencies of Alzheimer disease neurological examination findings stratified by global 

CDR scores. Description: All Alzheimer disease neurological examination findings 

increased in frequency with CDR global stages. Abnormal deep tendon reflexes were the 

most frequent finding in all disease phases. Gait disturbance exhibited the steepest increase 

in frequency with autosomal dominant Alzheimer disease progression. Abbreviations: 

CDR=Clinical Dementia Rating.
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Figure 5: 
Cross-sectional associations between AD-NEF and (A) cognitive performance and (B) brain 

atrophy. Description: (A) Grouped scatter plot depicting the cross-sectional relationship 

between CDR – Sum of Boxes scores and disease duration in symptomatic MC with 

and without Alzheimer disease neurological examination findings. Symptomatic MC with 

AD-NEF showed a significantly more pronounced decline in CDR – Sum of Boxes over 

the disease duration compared to symptomatic MC without AD-NEF. Dashed lines represent 

95 % confidence intervals. (B) Differences in brain atrophy between MC with and without 

AD-NEF. MC with AD-NEF showed a greater atrophy in temporo-parietal brain regions 

and greater bilateral hippocampal atrophy in an exploratory analysis with an alpha threshold 

of 0.05. After adjusting for 82 regions of interest using the Bonferroni method (resulting 

alpha threshold <0.0006), only the left hippocampal volume remained significantly different. 

Abbreviations: CDR-SB=Clinical Dementia Rating–Sum of Boxes; MC=mutations carriers; 

AD-NEF=Alzheimer disease neurological examination findings.
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Figure 6: 
Individual linear estimates of change in Clinical Dementia Rating–Sum of Boxes over 

time in symptomatic mutation carriers with and without Alzheimer disease neurological 

examination findings. Description: Individual decline in Clinical Dementia Rating – 

Sum of Boxes over time was significantly more pronounced in symptomatic mutation 

carriers with Alzheimer disease neurological examination findings compared to those 

without. The individual linear changes in Clinical Dementia Rating–Sum of Boxes were 

predicted by a linear mixed effects model based on longitudinal data, i.e. data from 

symptomatic mutation carriers with at least the baseline visit and one follow-up visit. 

Abbreviations: MC=mutations carriers; CDR-SB=Clinical Dementia Rating–Sum of Boxes; 

AD-NEF=Alzheimer disease neurological examination findings.
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Table 1:

Comparison of baseline characteristics between symptomatic mutation carriers and non mutation carriers. 

Description: p values below 0.05 are italicized.

Symptomatic mutation carriers (n=118, 35.9%) Non mutation carriers (n=211, 
64.1%)

p value

Age (years), mean (SD) 46.1 (10.0) 38.2 (11.4) <0.001

Sex (female), n (%) 56 (47.5) 87 (41.2) 0.27

Education (years), mean (SD) 13.5 (3.4) 14.7 (2.9) 0.001

At least one NEF, n (%) 69 (65.1) 47 (25.3) <0.001

Age at onset (years), mean (SD) 42.6 (8.8) na na

Disease duration (years), mean (SD) 3.7 (2.9) na na

CDR global, n (%) 0.5, 78 (66.1) : 1, 28 (23.7) : 2, 7 (5.9) : 3, 5 (4.2) 0, 196 (92.9) : 0.5, 15 (7.1) <0.001

CDR-SB, mean (SD) 3.8 (4.0) 0.07 (0.27) <0.001

MMSE, mean (SD) 22.5 (7.0) 29.0 (1.3) <0.001

Mutated gene, n (%) PSEN1, 97 (82.2) : APP, 19 (16.1) : PSEN2, 2 (1.7) na na

APOE ε4 carrier, n (%) 34 (29.3) 59 (29.1) 0.96

Abbreviations: SD=standard deviation; NEF=neurological examination finding; CDR=Clinical Dementia Rating; SB=Sum of Boxes; MMSE=mini 
mental state examination; APOE=gene encoding Apolipoprotein.
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Table 2:

Comparison of baseline characteristics between symptomatic MC with and without Alzheimer disease 

neurological examination findings. Description: p values below 0.05 are italicized.

Symptomatic MC with AD-NEF (n = 64, 
60.4%)

Symptomatic MC without AD-NEF (n = 
42, 39.6%)

p value

Age (years), mean (SD) 45.9 (10.3) 46.2 (8.7) 0.90

Sex (female), n (%) 30 (46.9) 25 (59.5) 0.20

Education (years), mean (SD) 12.9 (3.8) 14.0 (2.6) 0.12

Age at onset (years), mean (SD) 42.0 (8.9) 43.1 (8.1) 0.54

Disease duration (years), mean (SD) 3.98 (3.18) 3.46 (2.58) 0.39

CDR global, n (%) 0.5, 40 (62.5) : 1, 15 (23.4) : 2, 5 (7.8) : 3, 4 
(6.3)

0.5, 32 (76.2) : 1, 9 (21.4) : 2, 1 (2.4) : 3, 0 
(0)

0.20

CDR-SB, mean (SD) 4.32 (4.60) 2.62 (2.10) 0.012

MMSE, mean (SD) 21.45 (7.36) 24.76 (5.22) 0.008

Mutated gene, n (%) PSEN1, 52 (81.3) : APP, 11 (17.2) : 

PSEN2*
PSEN1, 33 (78.6) : APP, 8 (19.0) : PSEN2* 0.92

APOE ε4 carrier, n (%) 20 (31.3) 9 (21.4) 0.27

*
As there were fewer than 3 PSEN2 mutation carriers in the study, no figures are shown.

Abbreviations: MC=mutation carriers; AD-NEF=Alzheimer disease neurological examination findings; SD=standard deviation; CDR=Clinical 
Dementia Rating; SB=Sum of Boxes; MMSE=mini mental state examination; APOE=gene encoding Apolipoprotein.
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