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Spatially aware dimension reduction for
spatial transcriptomics

Lulu Shang 1,2 & Xiang Zhou 1,2

Spatial transcriptomics are a collection of genomic technologies that have
enabled transcriptomic profiling on tissues with spatial localization informa-
tion. Analyzing spatial transcriptomic data is computationally challenging, as
the data collected from various spatial transcriptomic technologies are often
noisy and display substantial spatial correlation across tissue locations. Here,
we develop a spatially-aware dimension reduction method, SpatialPCA, that
can extract a low dimensional representation of the spatial transcriptomics
data with biological signal and preserved spatial correlation structure, thus
unlocking many existing computational tools previously developed in single-
cell RNAseq studies for tailored analysis of spatial transcriptomics. We illus-
trate the benefits of SpatialPCA for spatial domain detection and explores its
utility for trajectory inference on the tissue and for high-resolution spatialmap
construction. In the real data applications, SpatialPCA identifies keymolecular
and immunological signatures in a detected tumor surrounding micro-
environment, including a tertiary lymphoid structure that shapes the gradual
transcriptomic transition during tumorigenesis and metastasis. In addition,
SpatialPCA detects the past neuronal developmental history that underlies the
current transcriptomic landscape across tissue locations in the cortex.

Spatial transcriptomics is a collection of groundbreaking new geno-
mics technologies that enable the measurement of gene expression
with spatial localization information on tissues. Specifically, the next-
generation DNA sequencing-based technologies represented by Slide-
seq1,2, hybridization-based technologies represented by STARmap3,
and spatial transcriptomics through spatial barcoding from 10x
genomics4, can measure tens of thousands of genes on thousands of
tissue locations, eachof which consisting of a few to a fewdozen single
cells. In situ RNA sequencing-based technologies, such as targeted
in situ sequencing (ISS)5 and FISSEQ6, can measure the entire tran-
scriptome at a single-cell resolution. The single-molecular fluores-
cence in situ hybridization (smFISH)-based technologies, represented
by MERFISH7–9, seqFISH10,11, and seqFISH plus12, can measure hundreds
to tens of thousands of genes on subcellular organelles inside single
cells across the tissue. These technologies altogether have enabled the
study of the spatial transcriptomic landscape of tissues, catalyzing new
discoveries in many areas of biology13,14.

Regardless of which technology one uses, the expression mea-
surements obtained from spatial transcriptomics, just like any other
genomic data types, are often noisy15. A common data processing step
for extracting informative signals from noisy data in other genomic
data types is dimension reduction. Dimension reduction aims to enrich
biological signals through inferring a low-dimensional representation
of the original genomic data. Dimension reduction is commonly
applied tomanygenomics studies, including the recent single-cell RNA
sequencing (scRNA-seq) studies16. In scRNA-seq, dimension reduction
has become an indispensable data processing step for noise removal,
facilitating data visualization and multiple downstream analyses that
include cell-type clustering17 and lineage inference18,19. Many dimen-
sion reduction methods have been previously developed for scRNA-
seq20–22 and some of these approaches have been directly applied to
spatial transcriptomics. For example, Seurat23 recommends the use of
principal component analysis (PCA) to preprocess spatial tran-
scriptomics data. STUtility24 performs dimension reduction in spatial
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transcriptomics using non-negative matrix factorization (NMF), where
the NMF factors are further interpreted through association analysis
with distinct gene pathways. Despite these initial applications, how-
ever, scRNA-seq dimension reduction methods are not tailored for
spatial transcriptomics and are not fully effective there. In particular,
scRNA-seq-based dimension reduction methods do not make use of
the rich localization information contained in spatial transcriptomics
and are not able to take advantage of the spatial correlation structure
across tissue locations. Intuitively, in spatial transcriptomics, the
neighboring locations on a tissue often share similar composition of
cell types anddisplay similar gene expression levels. Consequently, the
low-dimensional components of neighboring locations are likely to be
similar to eachother,more so than thoseon locations that are far away.
Accounting for the similarity in the low-dimensional components on
neighboring locations could facilitate effective dimension reduction in
spatial transcriptomics and enable tailored downstream analyses.

In this study, we explore the benefits of dimension reduction for a
particular analytic task in spatial transcriptomics that is commonly
referred to as spatial domain detection. Spatial domains represent
spatially organized and functionally distinct anatomical structures on
the tissue that are each characterized by unique local features with
varying cell-type composition, transcriptome heterogeneity, and cell-
cell interactions25–27. Detecting spatial domains on the tissue is a critical
first step towards understanding how these domains are coordinated
with each other in carrying out the tissue functions and how they are
generated through the complex developmental process. Several
methods have been recently developed for detecting spatial domains
in spatial transcriptomics, each with its own advantages and
drawbacks28–32. For example, BayesSpace31 detects spatial domains in
spatial transcriptomics (ST) or 10x Visium data through explicit mod-
eling of the specific spatial arrangement of the measured locations on
the tissue. In the process of domain detection, BayesSpace can also
enhance the spatial transcriptomics data with a fixed resolution,
though it comes with a relatively heavy computational burden. As
another example, SpaGCN28 detects spatial domains using a graph
convolutional network, which relies on an adjacency matrix to incor-
porate spatial and histological information in the graph convolution
layer. Despite its computational efficiency, as we will show here,
SpaGCN is effective primarily in the setting where each spatial domain
is dominated by one or two cell types. As a third example, stLearn29

extracts morphological features from an H&E image that accompanies
certain spatial transcriptomics technologies to perform spatial
smoothing on the expression data, with which it performs spatial
domain detection and further trajectory inference on pairs of
spatial domains. However, the applications of stLearn are limited to
spatial transcriptomics that collect H&E images. In the absence of H&E
image, stLearn software directly uses PCA and Louvain clustering for
spatial domain detection. As a fourth example, HMRFbuilds a graph to
represent the spatial relationship among cells and detects spatial
domains by comparing the gene expression of each cell with its sur-
roundings to search for coherent spatial patterns.

In this work, we develop a spatially aware dimension reduction
method, which we refer to as the spatial probabilistic PCA, or Spa-
tialPCA. SpatialPCA enables tailored dimension reduction in spatial
transcriptomics and facilitates effective downstream analyses that
include spatial domain detection. A key feature of SpatialPCA is its
ability to explicitlymodel the spatial correlation structure across tissue
locations, thus preserving the neighboring similarity of the original
data in the low-dimensional manifold. The low-dimensional compo-
nents obtained from SpatialPCA contain valuable spatial correlation
information and can be directly paired with existing computational
tools developed in scRNA-seq for effective and improved downstream
analyses in spatial transcriptomics. In particular, the low-dimensional
components from SpatialPCA can be paired with scRNA-seq clustering
methods to enable effective de novo tissue domain detection and can

be paired with scRNA-seq trajectory inference methods to enable
effective developmental trajectory inference on the tissue. Because of
the data-generative nature of SpatialPCA and its explicit modeling of
spatial correlation, it can also be used to impute the low-dimensional
components on new and unmeasured arbitrary spatial locations,
facilitating the construction of a refined spatial map with a resolution
muchhigher than thatmeasured in the original study.We illustrate the
benefits of SpatialPCA through comprehensive simulations and
applied it on four spatial transcriptomics datasets obtained with dis-
tinct technologies and tissue structures.

Results
Method overview
SpatialPCA is described in “Methods”, with its technical details pro-
vided in Supplementary Text and its method schematic displayed in
Fig. 1a. Briefly, SpatialPCA is a spatially aware dimension reduction
method that aims to infer a low-dimensional representation of the
gene expression data for spatial transcriptomics. SpatialPCA builds
upon the probabilistic version of PCA, incorporates localization
information as additional input, and uses a kernel matrix to explicitly
model the spatial correlation structure across tissue locations. Because
the inferred low-dimensional components from SpatialPCA contain
valuable spatial correlation information, we refer to these inferred
components as spatial principal components, or spatial PCs. The spa-
tial PCs can be paired with various analytic tools already developed in
scRNA-seq studies to enable effective and improved downstream
analyses for spatial transcriptomics. We illustrate the benefits of Spa-
tialPCA through four different downstream analyses: spatial tran-
scriptomics visualization, spatial domain detection, spatial trajectory
inference on the tissue, and high-resolution spatial map reconstruc-
tion. SpatialPCA is implemented as an R package, freely available at
www.xzlab.org/software.html.

Simulations
Weperformed comprehensive and realistic simulations to evaluate the
performance of SpatialPCA and compare it with several othermethods
(Fig. 1b). The compared methods in simulations include three spatial
domain detectionmethods (BayesSpace31, SpaGCN28, andHMRF33) and
two dimension reduction methods previously used for spatial tran-
scriptomics (PCA23,34 and non-negative matrix factorization, NMF24).
The simulation details are provided in “Methods”. Briefly, we obtained
the cortex tissue from the DLPFC data, segmented it into four cortical
layers, specified a distinct cell-type composition of four cell types on
each layer, and obtained 10,000 single-cell locations on the tissue. In
parallel, we simulated expression counts for 5000 genes and
10,000 single cells from four cell types based on a separate scRNA-seq
data. We then assigned the simulated cells onto the single-cell loca-
tions of the cortex basedon the specified cell-type composition in each
cortical layer to create spatial transcriptomics data at single-cell
resolution. With the single-cell resolution spatial transcriptomics, we
created additional spot-level spatial transcriptomics data at different
regional resolutions by merging the expression measurements of sin-
gle cells into pre-defined spots on the tissue. The simulated spatial
transcriptomics resemble the real data and share similar
mean–variance relationships across genes (Supplementary Fig. 1a). For
each simulated spatial transcriptomics, we then applied SpatialPCA
and the other methods to perform spatial domain detection. We
evaluated accuracy of different methods by comparing the detected
spatial domains with the four underlying cortical layers that are served
as the ground truth. We considered four simulation scenarios that
cover a range of cell-type compositions, with three simulation settings
per scenario in the spot-level resolution spatial transcriptomics. We
performed ten simulation replicates for each setting.

In the simulated single-cell resolution spatial transcriptomics,
SpatialPCA outperforms the other methods for tissue domain
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detection. Specifically, the median adjusted Rand index (ARI) by Spa-
tialPCA across simulation replicates is 0.942, 0.877, 0.931, and 0.439
for the four scenarios, respectively (Fig. 1b and Supplementary
Table 1). HMRF and SpaGCN work well in scenario 1 when there is only
one dominant cell type in each spatial domain, but its performance

decays in other scenarios when multiple dominant cell types are pre-
sent in each spatial domain (HMRF median ARI = 0.773, 0.279, 0.617,
0.002; SpaGCN median ARI = 0.625, 0.277, 0.412, 0.138). BayesSpace
does not perform as well as SpatialPCA, HMRF or SpaGCN (median
ARI = 0.367, 0.225, 0.286, 0.075), presumably because BayesSpace is
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Fig. 1 |Method schematic of SpatialPCAand simulation results. a SpatialPCA is a
spatially aware dimension reductionmethod that takes both gene expressionY and
location information L as inputs. It models the gene expression matrix Y as a
function of latent factors Z through a factor analysis model. Importantly, Spa-
tialPCAbuilds a kernelmatrix Σ using the location information L to explicitlymodel
the spatial correlation structure in the latent factors Z across tissue locations.
Consequently, the inferred low-dimensional components Z from SpatialPCA con-
tain valuable spatial correlation information and can bepairedwith various analytic
tools already developed in scRNA-seq studies to enable effective and improved
downstream analyses for spatial transcriptomics. The examined downstream ana-
lyses of spatial transcriptomics include spatial transcriptomics visualization, spatial
domain detection, trajectory inference on the tissue, and high-resolution spatial

map construction. b In simulation, we obtained cortex tissue from the DLPFC data
andmanually segmented it into four cortical layers.We specified adistinct cell-type
composition for each cortical layer and simulate four scenarios. Then we assigned
the simulated cells to the locations of the cortex based on the specified cell-type
composition in each layer to create the spatial transcriptomics data. We simulated
spatial transcriptomics data both at single-cell resolution (sample size n = 10,000
cells) and spot-level (n = 5077 spots) data. We use adjusted Rand index (ARI) to
measure the spatial clustering accuracy at single-cell resolution and spot level (spot
diameter is 90 µm). The higher ARI indicates better spatial clustering performance.
SpatialPCAoutperforms the othermethods for detecting the spatial domains in the
simulations. In the boxplot, the center line, box limits and whiskers denote the
median, upper, and lower quartiles, and 1.5× interquartile range, respectively.
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specifically designed for 10X ST and Visium data, it detects neighbor-
ing spots based on array coordinates and thus may not be well suited
for analyzing single-cell resolution spatial transcriptomics. PCA and
NMF perform similarly as BayesSpace, which is not surprising as
BayesSpace does not make use of spatial information in single-cell
resolution data and effectively becomes PCA there. The ability of
SpatialPCA in clustering cells into tissue domains is in direct contrast
to PCA and NMF (Supplementary Fig. 1b), which are effective in clus-
tering cells into cell types (Supplementary Fig. 1c). Indeed, methods
that accurately cluster cells into spatial domains (e.g., SpatialPCA,
HMRF, and SpaGCN) generally do not cluster cells into cell types well,
and vice versa, highlighting the distinct goals of cell-type clustering
and spatial domain detection. Besides accurately detecting spatial
domains, the detected spatial domains from SpatialPCA are spatially
continuous and smooth, indicated by low local inverse Simpson index
(LISI) score, percentage of abnormal spots (PAS) score, and spatial
chaos score (CHAOS), more so than the other methods in all scenarios
(Supplementary Fig. 2). Finally, we note that while each domain
detection method by default uses a different set of genes as input, all
methods work almost equally well when a different set of genes are
used as input (Supplementary Fig. 1b).

In the simulated spot-level spatial transcriptomics, SpatialPCA
also outperforms the other methods in the majority of simulation
settings (Fig. 1b, Supplementary Fig. 3, and Supplementary Tables 2
and 3). For example, in the simulation settingwith spot diameter being
90 µm, themedianARI for SpatialPCA is 0.955, 0.953, 0.969, and 0.962
for the four scenarios, respectively (Fig. 1b). HMRF performs well in
scenario 3 with two dominant cell types and a small proportion of
minor cell types (medianARI = 0.82, 0.806, 0.898, and0.843). SpaGCN
performswell in scenario 2 and 3 with a small proportion of minor cell
types in each spatial domain but does not fare well in scenarios 1 and 4
where a larger proportion of minor cell types is present (median
ARI = 0.719, 0.925, 0.966, and 0.874). BayesSpace performs slightly
better than SpaGCN in scenario 1 but worse in scenarios 2–4 (median
ARI = 0.759, 0.759, 0.864, 0.763). PCA and NMF, on the other hand, do
not perform well in all scenarios. Besides accurately detecting spatial
domains, the detected spatial domains from both SpatialPCA and
BayesSpace are continuous and smooth, indicated by low CHAOS
(Supplementary Table 4) and PAS (Supplementary Table 5) scores,
more so than the other methods in all settings.

Besides the above main simulations, we examined three addi-
tional simulation scenarios where we introduced a stripe pattern on
the tissue to examine the performance of SpatialPCA and the other
methods in detecting spatially non-contiguous and non-smoothly
varying domains (details in Method). The results are largely consistent
with the main simulations with SpatialPCA outperforming the other
methods in all three scenarios (Supplementary Fig. 4). We also
explored an alternative simulation strategy where we introduced
additional spatial correlationbetween spotsby splitting the expression
of a proportion of cells to be randomly added to the expression of its
neighboring cells (details in “Methods”). The results are also largely
consistent with the main simulations with SpatialPCA outperforming
the others (Supplementary Fig. 5).

An important benefit of SpatialPCA is its ability to impute the low-
dimensional components on new, unmeasured tissue locations, thus
leading to a refined spatial map with a resolution much higher than
that of the original study (details in Method). We compared high-
resolution spatial map clustering results for spot-level simulation in
four scenarios at spot diameter being 145 µm. We compared Spa-
tialPCA with BayesSpace for the clustering results on the imputed
subspots, SpatialPCA (median ARI = 0.901, 0.851, 0.873, and 0.706)
outperforms BayesSpace (median ARI = 0.534, 0.435, 0.463, and 0.123)
in all four scenarios. Besides accurately reconstructing high-resolution
maps, the imputed spatial domains from SpatialPCA is more con-
tinuous and smoother than BayesSpace, indicated by low CHAOS and

PAS scores in all settings (Supplementary Fig. 6a). SpatialPCA also
accurately predicts gene expression on the unmeasured locations.
SpatialPCA has higher Pearson’s correlation (median correlation =
0.109, 0.11, 0.109, and 0.107) between the predicted gene expression
with true expression than BayesSpace (median correlation =0.085,
0.085, 0.085, and 0.082) on the imputed subspots in all four scenarios
(Supplementary Fig. 6b).

Human dorsolateral prefrontal cortex data by Visium
We applied SpatialPCA and the other methods to analyze four pub-
lished datasets obtained using different spatial transcriptomics tech-
nologies (“Methods”). The four datasets include a human dorsolateral
prefrontal cortex data generated by Visium from 10x Genomics, a
cerebellum data generated by Slide-seq, and hippocampus data gen-
erated from Slide-seq V2, HER2-positive breast tumor data generated
by spatial transcriptomics from 10x Genomics. Besides SpatialPCA, we
also examined the performance of BayesSpace, SpaGCN, HMRF,
stLearn, PCA, and NMF for spatial domain detection, and stLearn, PCA
and NMF for trajectory inference. Among these methods, we were
unable to apply BayesSpace and HMRF to the Slide-seq V2 data due to
the large data size and heavy computational burden. In addition, we
only applied stLearn to DLPFC due to a lack of H&E image in the Slide-
seq and Slide-seq V2 data, and a lack of JSON file in the HER2-positive
breast tumor data.

First, we analyzed the human dorsolateral prefrontal cortex data35

(Fig. 2), which contains twelve samples with an average of 3973 spots.
We used sample 151676 as a main example which contains expression
measurement of 33,538 genes on 3460 spots. We first performed
dimension reduction on the expression data using either SpatialPCA,
PCA or NMF. For each method in turn, we summarized the inferred
low-dimensional components into three UMAP or tSNE components
and visualized the three resulting components with red/green/blue
(RGB) colors in the RGB plot (Fig. 2b). The resulting RGB plots are not
sensitive to the scaling of the input data (Supplementary Fig. 7a–f). The
RGB plot from SpatialPCA displays the laminar organization of the
cortex and shows smooth color transition across neighboring spots
and neighboring spatial domains (Supplementary Fig. 7g, h). We
evaluated the predictive ability of the output from each method in
predicting the true spatial domains using the McFadden-adjusted
pseudo-R2 36 (details in “Methods”). We found that the spatial PCs are
highly predictive of the cortical structures annotated by experts based
on cytoarchitecture in the original study (pseudo R2 = 0.89). In con-
trast, the low-dimensional components from PCA (pseudo R2 = 0.751)
and NMF (pseudo R2 = 0.633) are less predictive of the known cortical
structures as compared to the spatial PCs (Fig. 2c). In addition, we
found that the spatial PC associated genes are enriched in synapse-
related, neuron projection, and synaptic signaling pathways (Supple-
mentary Fig. 8 and Supplementary Table 6). Clustering based on the
spatial PCs identified seven spatial domains that correspond to the
annotated cortical layers 1 through 6 and white matter (Fig. 2a). Such
clustering results are robust with respect to the number of spatial
genes, the number of spatial PCs, the number of clusters specified, the
kernel matrix used, and the bandwidth selected for modeling spatial
correlation, as well as the clustering methods (Supplementary Figs. 9
and 10). The identified layers by SpatialPCA are enriched with known
layer marker genes, including CXCL14 (layer 2), SV2C (layer 3), HTR2C
(layer 5), and NR4A2 (layer 6/6b)37 (Fig. 2d), and depict the annotated
spatial domains more accurately (median ARI = 0.542) than Bayes-
Space (ARI: median =0.438), SpaGCN (ARI: median =0.443), HMRF
(ARI: median = 0.304), stLearn (ARI: median = 0.470), PCA (ARI: med-
ian = 0.358) and NMF (ARI: median =0.262; Fig. 2e, Supplementary
Figs. 11, 12, and Supplementary Table 7). In addition, the spatial
domains detected by both SpatialPCA (median LISI = 1.057; median
CHAOS=0.059; median PAS =0.02) and BayesSpace (median LISI =
1.088; median CHAOS =0.061; median PAS = 0.032) are spatially
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continuous and smooth, more so than that detected by the other
methods (HMRF: median LISI = 1.138, CHAOS=0.06, PAS = 0.049;
SpaGCN: median LISI = 1.234, CHAOS=0.06, PAS =0.111; stLearn:
LISI = 1.455, CHAOS=0.065, PAS = 0.175; PCA: LISI = 1.591, CHAOS=
0.064, PAS =0.246; and NMF: LISI = 1.449, CHAOS=0.064, PAS =
0.207; Fig. 2e and Supplementary Fig. 11). We performed differential
gene expression (DE) analysis to identify regional-specific genes
(Supplementary Table 8) and found them to be highly enriched in the
pathways of myelin sheath, neurogenesis, and neuron projection
(Supplementary Fig. 13). The enriched pathways are critical for infor-
mation processing and neural development in the cortex layers38.
SpatialPCA can be easily extended to make use of histology

information as the features extracted from H&E images can be incor-
porated as pseudo-dimension in the distance matrix. However, the
histology feature vectors are not highly predictive for the pathologist
annotations (median pseudo R2 = 0.220 across 12 tissue sections).
Consequently, when histological feature extracted from SpaGCN
(Supplementary Fig. 14a) were included in SpatialPCA, we observed a
slight decrease in spatial clustering performance (median ARI = 0.539,
Supplementary Fig. 14b).

We performed trajectory inference using the spatial PCs and
detected one trajectory on the tissue (Supplementary Fig. 15a). The
detected trajectory projects from inner to outer layers and captures
thewell-known “inside-out”patternof corticogenesis: newneurons are
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Fig. 2 | Analysis of the cortex data from DLPFC. a Clustering of tissue locations
based on SpatialPCA, BayesSpace, SpaGCN, stLearn, HMRF, PCA, and NMF. Ground
truth of tissue regions on sample 151676 of the human prefrontal cortex are
annotated by the original DLPFC study. b For SpatialPCA, PCA, and NMF, we
summarized the inferred low-dimensional components into three UMAP compo-
nents and visualized the three resulting components with red/green/blue (RGB)
colors through the RGB plot. Color code corresponds to the RGB values of each
location’s three UMAP components inferred from low-dimensional components in
dimension reduction. Different colors indicate different values for each of the three
UMAP components on the tissue section, highlighting the difference of the low-
dimensional components from different methods included in the panel. c Upper
panel: spatial PCs in SpatialPCA have higher prediction accuracy for the ground
truth of tissue regions in terms of McFadden’s pseudo-R2 than latent components
from PCA, NMF, and SpaGCN. For BayesSpace and HMRF, we treated their inferred
cluster labels as the predictors. Lower panel: spatial PCs in SpatialPCA have
higher clustering accuracy for the ground truth of tissue regions in terms of ARI.

dMean expression of layer-specific markers including layer 2 marker gene CXCL14,
layer 3 marker gene SV2C, layer 5 marker gene HTR2C, and layer 6/6b marker gene
NR4A2 (n = 3460 spots). The cluster labels correspond to the labels of SpatialPCA
detected spatial domains in (a). In the boxplot, the center line denotes the mean
value of the expression. e Left: clustering accuracy of different methods in reca-
pitulating the true tissue domains. Accuracy is measured by the adjusted Rand
index (ARI) in all 12 sections. For BayesSpace, SpaGCN, and HMRF, clustering was
performed based on their default settings. For dimension reductionmethods (PCA
and NMF), clustering was performed based on the inferred low-dimensional com-
ponents on spatially variable genes. Right: clustering performance of different
methods in obtaining smooth and continuous spatial domains measured by spatial
chaos score (CHAOS) in all 12 sections. Lower CHAOS score indicates better spatial
continuity of the detected spatial domains. In the boxplot, the center line, box
limits and whiskers denote the median, upper, and lower quartiles, and 1.5× inter-
quartile range, respectively.
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born in the ventricular zone, migrate along the radial glia fibers in a
vertical fashion towards the marginal zone on the outskirt of the cor-
tex, and pass the old neurons in the existing layers to form the new
cortical layers39,40. In contrast, the trajectories inferred based on the
low-dimensional components of PCA and NMF point towards almost
random directions on the tissue (Supplementary Fig. 15b, c). We also
performed trajectory inference using stLearn, which detectedmultiple

trajectories projecting from the white matter region to different cor-
tical layers (Supplementary Fig. 15d, e) with spot-level trajectories
oriented towards almost random directions on the tissue. We further
examined genes that are associated with the inferred pseudo-time
(Supplementary Fig. 16a and Supplementary Table 9) and found that
the pseudo-time associated genes by SpatialPCA are highly enriched in
synapse-related, synapse signaling and neuron projection pathways.
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The identified pseudo-time-associated genes highlight the importance
of the development and signaling of neurons across the cortical layers.

Mouse cerebellum data by Slide-seq
Next, we analyzed the mouse cerebellum data1, which contains 18,671
genes measured on 25,551 locations (Fig. 3). The RGB plot from Spa-
tialPCA displays a clear regional segregation on the tissue, more clearly
than the RGB plots from PCA or NMF (Supplementary Fig. 17a, b). The
resulting RGB plots are not sensitive to the scaling of the input data
(Supplementary Fig. 17c–f). In addition, genes associated with the spatial
PCs are enriched in synapse-related, axon-related, synaptic signaling, and
oligodendrocyte differentiation pathways (Supplementary Fig. 18 and
Supplementary Table 6). Clustering based on the spatial PCs categorizes
the cerebellum into eight distinct spatial domains that are consistent
with the known anatomic structures of the cerebellum (Fig. 3b). These
detected spatial domains include three sublayers of the granule cell layer
(GCL), Purkinje cell layer, molecular layer, cerebellum nucleus, white
matter, and choroid plexus (Fig. 3b and Supplementary Fig. 19). The
clustering results from SpatialPCA are robust with respect to the number
of spatial PCs used, the input gene set, the number of clusters, and the
kernel matrix used for modeling spatial correlation (Supplementary Fig.
20). In addition, the spatial domains detected by SpatialPCA are
spatially continuous and smooth (median LISI = 1.404, CHAOS=0.016,
PAS=0.104), more so than that detected by the other methods (Bayes-
Space: median LISI = 3.489, CHAOS=0.028, PAS=0.781; SpaGCN: med-
ian LISI = 2.157, CHAOS=0.021, PAS=0.359; HMRF: median LISI = 2.326,
CHAOS=0.026, PAS=0.479; PCA: median LISI = 3.166, CHAOS=0.026,
PAS=0.528; NMF: median LISI = 3.877, CHAOS=0.032, PAS=0.845;
Fig. 3c and Supplementary Fig. 17i, j).

A careful examination of the spatial domains detected by Spa-
tialPCA and marker gene expression leads to two important observa-
tions. First, SpatialPCA identified an important spatial domain, choroid
plexus, that is missed by the other methods (Fig. 3b and Supplemen-
tary Fig. 19). Cst3, a marker gene for choroid plexus41, is clearly enri-
ched in the choroid plexus identified by SpatialPCA (Fig. 3d). Cst3
encodes the cystatin C protein, which is secreted primarily from the
choroid plexus into the cerebrospinal fluid42. Second, unlike the other
methods, the three sublayers of the GCL detected by SpatialPCA dis-
play expected spatial localization and transcriptomic profiles. Speci-
fically, the outer GCL sublayer is adjacent to the Purkinje cell layer and
is enriched with the marker gene Otx2 (Fig. 3d). Otx2 encodes ortho-
denticle homeobox 2, a transcription factor that shapes the morpho-
genesis of the cerebellum through controlling the proliferation of
postnatal granule cell precursors43. The middle GCL sublayer is enri-
chedwith themarker geneCbln3, which is predominantly expressed in
mature granule cells that have ceased division and finished migration
into the GCL44. CBLN3 forms a heteromeric complex with CBLN1 in the
early postnatal stage and participates in CBLN-mediated synaptic
development and function in the cerebellum45–47. The inner GCL sub-
layer is adjacent to the white matter and is enriched with the marker
gene Eomes. Eomes encodes eomesodermin, also known as T-box brain
protein 2 (TBR2), which is an important transcription factor expressed

in unipolar brush cells, a type of glutamatergic interneurons in
GCL48–50. TBR2 is expressed in the nuclei of a subset of interneurons in
the internal granular layer in adult mouse cerebellum48 and these
interneurons amplify inputs from vestibular ganglia and nuclei by
spreading and prolonging excitation within the internal granular
layer48. The correct identification of the choroid plexus and three GCL
sublayers characterized by distinct transcriptomic profiles highlights
the utility of SpatialPCA in revealing the transcriptomic and functional
basis of fine-grained cerebellum structures.

We further examined the transcriptomic profile and cell-type
compositions on the tissue regions detected by SpatialPCA. First, we
performed DE analysis to identify regional-specific genes (Supple-
mentary Table 10) and found them to be highly enriched in the path-
ways of neural nucleus development and synaptic signaling
(Supplementary Fig. 21). The enriched pathways are critical for infor-
mationprocessing andneural development in the cerebellar cortex51,52.
Second, we performed deconvolution analysis to infer the cell-type
composition on the detected spatial domains. As expected53,54, we
found that the detected Purkinje layer is enriched with Bergmann and
Purkinje cells; the granule cell layer is enriched with granule cells; the
white matter region is enriched with oligodendrocytes; and the cere-
bellum nucleus is enriched with interneurons (Fig. 3e and Supple-
mentary Fig. 22). The Purkinje layer detected by SpaGCN, HMRF and
BayesSpace is also enriched with Purkinje cells, though it is not as well
segregated from the granule and molecular layers as in SpatialPCA
(Fig. 3f, Supplementary Fig. 19, and Supplementary Fig. 22). In contrast,
clusters inferred by NMF are dominated by granule cells while each
PCA cluster is generally dominated by one cell type, supporting the
utility of PCA in segregating cell types rather than spatial domains as
demonstrated in simulations (Supplementary Fig. 22). We also exam-
ined the distribution pattern of representative cell types in the ana-
tomic tissue structures.We reason that, if an anatomic tissue structure
is correctly depicted, then its representative cell type should be enri-
ched in this spatial domain. In all methods, the Bergmann cells are
enriched in Purkinje layer as expected (Fig. 3g and Supplementary Figs.
22 and 23). However, in PCA, the Bergmann glia cells are wrongly
clustered into the regionof themolecular layerwhich is adjacent to the
Purkinje layer. In SpaGCN and HMRF, the choroid plexus region is not
detectable, such that the choroid plexus cells are distributed across
multiple regions (Fig. 3g and Supplementary Figs. 22 and 23). While
BayesSpace and NMF were not able to detect obvious Purkinje layer
with clear boundaries.

Mouse hippocampus data by Slide-seq V2
Next, we analyzed themouse hippocampus data2, which contains 23,264
genes measured on 53,208 locations (Fig. 4). Consistent with the pre-
vious datasets, the RGB plot from SpatialPCA displays a clear regional
segregation of the tissue, more clearly than the RGB plots from PCA or
NMF (Supplementary Fig. 24a, b). The resulting RGB plots are not sen-
sitive to the scaling of the input data (Supplementary Fig. 24c–f). In
addition, the genes associated with spatial PCs are enriched in synapse-
related, cilium movement, electron transport, and neurogenesis

Fig. 3 | Analysis of the cerebellum data from Slide-seq. a The structure of the
mouse cerebellum cortex, with the main tissue regions annotated. b Clustering on
the low-dimensional components inferred by SpatialPCA segregates tissue loca-
tions into distinct tissue regions. The detected tissue regionswere annotated based
on their relative positions on the tissue and the enriched cell types in each detected
tissue domain. cClustering performance of differentmethods in obtaining smooth
and continuous spatial domainsmeasured by local inverse Simpson’s index (LISI) in
20,982 locations. Lower LISI score indicates more homogeneous neighborhood
spatial domain clusters of a spot. In the boxplot, the center line, box limits and
whiskers denote the median, upper and lower quartiles, and 1.5× interquartile
range, respectively. dMean expression of regional marker genes in the cerebellum
(n = 20,982 locations). The cluster labels correspond to the labels of SpatialPCA

regions in (b). In the boxplot, the center line denotes the mean value of the
expression. e Percentage of different cell types (x axis) in each tissue domain
detected by SpatialPCA (y axis). f SpatialPCA correctly depicts the Purkinje layer.
Left: tissue location clustering results using different methods; different color
represents different location clusters. Right: the Purkinje layer detected by differ-
ent methods is highlighted in orange, and the background is colored in light blue.
For spatial clusteringmethods (BayesSpace, SpaGCN, andHMRF), location clusters
were inferred using the software. For dimension reduction methods (PCA and
NMF), clustering was performed based on the inferred low-dimensional compo-
nents after dimension reduction using spatially variable genes. g Distribution of
Bergmann glia cells and choroid plexus cells in each cluster for different methods.
The summation of the cell-type percentages in all clusters is 100% for eachmethod.
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pathways (Supplementary Fig. 25 and Supplementary Table 6). Cluster-
ing based on the spatial PCs categorizes the hippocampus into fourteen
distinct spatial domains that are consistent with the known anatomic
structures of the hippocampus (Fig. 4a and Supplementary Fig. 26).
These detected spatial domains include cortical layers (layers 4, 5, and 6),
corpus callosum, CA1, CA3, dentate gyrus, hippocampus regions (so/sr,
slm, so), thalamus regions (subregion 1, 2, and 3), and the third ventricle.
The clustering results from SpatialPCA are robust with respect to the
number of spatial PCs used, the input gene set, and the number of
clusters (Supplementary Fig. 27). In contrast, clusters from SpaGCN, or
clustering based on the low-dimensional components from PCA and
NMF do not reveal clear segregation of spatial domains (Fig. 4b and
Supplementary Fig. 26). Importantly, SpatialPCA also correctly detected
the expected three cortical layers and three thalamus subregions while
the other methods did not. In addition, the spatial domains detected by
SpatialPCA are continuous and smooth (median LISI = 1.043, CHAOS=
0.013, PAS=0.036), more so than those detected by the other methods
(SpaGCN: median LISI = 2.014, CHAOS=0.016, PAS=0.031; PCA: median

LISI = 2.322, CHAOS=0.020, PAS=0.449; NMF: median LISI = 3.539,
CHAOS=0.021, PAS=0.684; Fig. 4c and Supplementary Fig. 24i, j).

We carefully examined the transcriptomic profile and cell-type
compositions in the spatial domains detected by SpatialPCA. First, we
performed DE analysis to identify regional-specific genes (Supple-
mentary Table 11) and found them to be highly enriched in the path-
ways of cellular componentsof the synapse aswell as synapse signaling
(Supplementary Fig. 28). Second, we performed deconvolution ana-
lysis to infer the cell-type composition on the detected spatial domains
(Fig. 4d). As expected, we found that the detected CA1 region is enri-
ched with CA1 principal cells; the CA3 region is enriched with CA3
principal cells; the dentate gyrus region is enriched with dentate
principal cells; the third ventricle region is enriched with choroid
plexus cells; and the cerebellumnucleus is enrichedwith interneurons.
SpaGCN, PCA, and NMF were not able to distinguish between CA1 and
CA3, as both regions are enriched with CA1 and CA3 principal cells
(Supplementary Fig. 29).We then examined the distribution pattern of
representative cell types in the anatomic tissue structures (Fig. 4e and
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Fig. 4 | Analysis of the hippocampus data from Slide-seq V2. a Left panel: The
structure of themouse hippocampus, with themain tissue regions annotated from
Allen Brain Atlas. Right panel: SpatialPCA segregates tissue locations into distinct
tissue regions. Lower panel: Tissue structures based on annotations from Allen
Brain Atlas and spatial domains detected by SpatialPCA. The detected tissue
regions were annotated based on their relative positions on the tissue and the
enriched cell types in each detected tissue domain. b Clustering of tissue locations
based on the other methods. For SpaGCN, clusters were inferred directly by the
software. For dimension reduction methods (PCA and NMF), clustering was per-
formed based on the inferred low-dimensional components on spatially variable
genes. c Clustering performance of different methods in obtaining smooth and

continuous spatial domains measured by local inverse Simpson’s index (LISI) in
51,398 locations. Lower LISI score indicates more homogeneous neighborhood
spatial domain clusters of a spot. In the boxplot, the center line, box limits and
whiskers denote the median, upper and lower quartiles, and 1.5× interquartile
range, respectively. d Percentage of different cell types (x axis) in each spatial
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each cluster for different methods. The summation of the cell-type percentages in
all clusters is 100% for each method. f Left: mean expression of marker genes in
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Supplementary Fig. 30). In SpatialPCA, the entorhinal cortex cells are
enriched in the three detected cortical layers as expected. However,
SpaGCN and PCA are not able to delineate the cortical layers, and the
entorhinal cortex cells are enriched in clusters without continuous
shape or boundaries. We did not compare representative cell-type
distributions in NMFbecause it cannot detect obvious spatial domains
with clear boundaries. Third, the spatial domains detected by Spa-
tialPCA allowed us to identify region-specific markers that are not
identified by other methods. For example, only SpatialPCA detected
the enrichment of Itpka, Igfbp4, and Map4 in the CA1 region of the
hippocampus, consistent with their known enrichment pattern in the
hippocampus pyramidal neurons55–57 (Fig. 4f). Othermarker genes that
are highly expressed in the substructures of the hippocampus are
shown in Fig. 4f.

We performed trajectory inference on the cortical layers 4–6
using spatial PCs and identified one trajectory projecting from layer 6
toward 4 (Supplementary Fig. 31a, b), which is again consistent with
corticogenesis39,40. In contrast, the pseudo-time values inferred based
on the low-dimensional components of PCA andNMF are intermingled
across layers (Supplementary Fig. 31c, d). We further examined genes
that are associated with the inferred pseudo-time by SpatialPCA. We
found that the pseudo-time-associated genes are highly enriched in
neuronal pathways such as synapse pathways and neurodegeneration
diseases (Supplementary Fig. 16b and Supplementary Table 9), high-
lighting the functional importance of the trajectory inferred by
SpatialPCA.

HER2 tumor data by spatial transcriptomics (ST)
Finally, we analyzed the HER2-positive breast tumor data58, which
contains 15,030 genes measured on 613 spatial locations (Fig. 5).
Consistent with previous datasets, the RGB plot by SpatialPCA clearly
segregates the tissue into multiple spatial domains, with the neigh-
boring locations sharing more similar colors than those that are far
away (Supplementary Fig. 32a, b). The resulting RGB plots are not
sensitive to the scaling of the input data (Supplementary Fig. 32c–f). In
addition, genes associated with spatial PCs are enriched in cell acti-
vation, cell-cell adhesion, cell migration, and immune response path-
ways (Supplementary Fig. 33 and Supplementary Table 6). The top
spatial PCs altogether are highly predictive of the tissue regional
annotations based on the histological image obtained by pathologists
in the original study (pseudo R2 = 0.666), much more so than the low-
dimensional components extracted from PCA (pseudo R2 = 0.477),
NMF (pseudoR2 = 0.472; Fig. 5b).While the correlation between spatial
PCs and regular PCs are high in this data (the absolute Pearson’s cor-
relation values between the top five spatial PCs and the top regular PCs
are 0.953, 0.922, 0.933, 0.9, and 0.82), the spatial PCs still contain
more spatial information than the regular PCs. TheMoran’s I of the top
five spatial PCs are on average 30.2% higher than that of the corre-
sponding regular PCs (range = 21–70%). Indeed, clustering based on
the spatial PCs categorizes the tissue into seven spatial domains that
are consistent with the regional annotations obtained by pathologists
(ARI = 0.445, Fig. 5c, d). The seven detected spatial domains include
normal glands, cancer region, cancer surrounding region, fibrous tis-
sue near tumor, immune cell region, fat tissue, and fibrous tissue near
normal gland (Fig. 5c). The spatial domains detected by SpatialPCA are
more accurate than that by the other two dimension reduction
methods (PCA: ARI = 0.342; NMF: ARI = 0.32) and that by the three
spatial domain detection methods (BayesSpace: ARI = 0.418; SpaGCN:
ARI = 0.376; HMRF: ARI = 0.35, Fig. 5d). The clustering results from
SpatialPCA are robust with respect to the number of spatial PCs used,
the input gene set, and the kernel matrix used for modeling spatial
correlation (Supplementary Fig. 34). In addition, the spatial domains
detected by both SpatialPCA (median LISI = 1.84, CHAOS=0.138,
PAS =0.198) and BayesSpace (median LISI = 1.73, CHAOS =0.139,
PAS =0.176) are continuous and smooth, more so than those detected

by the other methods (SpaGCN: median LISI = 2, CHAOS =0.153,
PAS =0.265; HMRF: median LISI = 1.95, CHAOS=0.149, PAS =0.272;
PCA: median LISI = 1.94, CHAOS =0.148, PAS = 0.354; NMF: median
LISI = 2.25, CHAOS=0.154, PAS =0.437; Supplementary Fig. 35). The
comparison results on spatial domain detection not only hold for
the above sample H1 but also for all eight tissue sections where the
original study provided ground truth spatial domain annotations
(Supplementary Fig. 36). We further evaluated the ability of differ-
ent methods in detecting fine-grained structures on the tissue by
examining the expression pattern of domain-specific genes. In
particular, we calculated an enrichment score of the domain-
specific genes in the domains detected by different methods, where
a high score suggesting a consistent pattern between the domains
detected by the method and those characterized by the domain-
specific genes (details in the Methods; Supplementary Fig. 37). As
expected, SpatialPCA achieves the highest enrichment score (1.417)
compared with the other methods (BayesSpace 1.269; HMRF 1.202;
NMF 1.345; PCA 1.248; SpaGCN 1.096) not only in the sample H1 but
also for all eight annotated samples (SpatialPCA median score 1.141;
BayesSpace 1.082; HMRF 0.916; NMF 0.983; PCA 0; SpaGCN 0.822;
Supplementary Fig. 36b–d). Similar to the application in DLPFC, the
histological characteristic vector in the ST tumor data is not that
predictive of the pathologist annotations (pseudo R2 = 0.258).
Consequently, when histological information was included in Spa-
tialPCA, we observed decreased accuracy for spatial domain
detection (ARI = 0.254, Supplementary Fig. 14c, d).

We characterized the transcriptomic and cell compositional
properties of the spatial domains detected by SpatialPCA through two
additional analyses. First, we identified genes that are specifically
expressed in different spatial domains through DE analysis (Supple-
mentary Table 12). We found that the DE genes in the immune region
detected by SpatialPCA are highly enriched in the pathways of immune
response, while the DE genes in the tumor region detected by Spa-
tialPCA are highly enriched in the pathways of biological adhesion
(Supplementary Fig. 38). Second, we carefully examined the cell-type
compositions in each spatial domain through cell-type deconvolution
(Fig. 5e and Supplementary Fig. 39). In the analysis, we found that the
detected tumor region mainly contains epithelial basal cells and epi-
thelial basal cycling cells, which are cancer cells and cancer cells with
high proliferation, respectively59. The detected tumor surrounding
region is mainly composed by cancer cells with high proliferation,
along with some B cells and T cells. In PCA and NMF, the detected
tumor regions are not as smooth or continuous as SpatialPCA, as the
latter explicitly models spatial correlation in dimension reduction. In
addition, PCA and NMF inferred the original annotated tumor region
to consist of two ormore clusterswhile not being able to detect the fat
tissue region. Importantly, we found that the detected immune cell
region resembles a tertiary lymphoid structure (TLS)60,61 with multiple
features of TLS: the region is located near the tumor; the region pri-
marily contains T cells and B cells, all of which are key cell types in
TLS60,62–64; the region is enrichedwith chemokine signature genes such
as CCL19 and CCL21 and T follicular helper cell signature genes such as
CXCL13 and TIGIT (Fig. 5f), all of which are marker genes associated
with TLS neogenesis in breast cancer60. We also obtained a TLS score
on each location from the original study, which were computed based
on the interaction strength between B cells and T cells as a key indi-
cator of TLS. We found that the TLS scores are highly enriched in
the TLS region detected by SpatialPCA (Supplementary Fig. 40). TLS is
an ectopic lymphoid organ developed in non-lymphoid tissues that
generate and regulate antitumor defenses. The detection of TLS is
predictive of the treatment outcome in HER2-positive tumors65

and highlights the potential of SpatialPCA in understanding antitumor
immune response and future prediction of tumor outcome.

The accurate tissue domains detected by SpatialPCA allowed us
to identify multiple region-specific genes. For example, we found
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that ERBB2 is enriched in the tumor region detected by SpatialPCA
while TRAF2 is enriched in the tumor surrounding region detected
by SpatialPCA (Fig. 5g). ERBB2 encodes a membrane receptor in the
epidermal growth factor receptor family, is a key breast cancer
marker, and involves in breast cancer metastasis66–72. TRAF2 is
associated with breast cancer progression and metastasis73, is a
member of the tumor necrosis factor receptor-associated factor
family of intracellular signal transduction proteins, and is a critical
mediator of both the activation of NF-κB and MAPK pathways74. The
enrichment of TRAF2 in the tumor surrounding region suggests the
progression of tumor cells in invading and penetrating the sur-
rounding tissues, potentially aiding in the prognosis of the can-
cer stage.

We performed trajectory inference on tumor and tumor-adjacent
regions to investigate how the tissue locations are connected to one

another in tumorigenesis. Spatial trajectory inference based on spatial
PCs identified one trajectory pointing from tumor region towards
tumor surrounding region and further towards normal tissues (Fig.
5h). We further examined genes that are associated with the inferred
pseudo-time (Supplementary Fig. 41 and Supplementary Table 9). We
found that the pseudo-time-associated genes are highly enriched in
immune response, cell-mediated immunity, and phagocytosis recog-
nition pathways, highlighting their importance in cancer progression,
tumor invasiveness, and metastasis75,76.

Discussion
We have presented SpatialPCA, a spatially aware dimension reduction
method that is tailored for spatial transcriptomics. SpatialPCA expli-
citly models the spatial correlation structure in the latent space during
dimension reduction and preserves the neighborhood similarity in the
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Fig. 5 | Analysis of theHER2 tumordata fromST. aHaematoxylin and eosin (H&E)
staining image shows distinct tissue regions annotated by a pathologist in the
original study. The annotated tissue regions include invasive cancer (red), fat tissue
(cyan), fibrous tissue (blue), normal breast glands (green), in situ cancer/DCIS
(orange), and immune cells (yellow). b Left: spatial PCs in SpatialPCA have higher
prediction accuracy in terms of McFadden’s pseudo-R2 (right) for the ground truth
labels than latent components in PCA, NMF, and SpaGCN. For BayesSpace and
HMRF, we treated their inferred cluster labels as predictors. Right: spatial PCs in
SpatialPCA have higher spatial domain clustering accuracy in terms of adjusted
Rand index (ARI) for the ground truth labels. c Clustering of tissue locations using
differentmethods. For dimension reductionmethods (SpatialPCA, PCA, and NMF),
clustering was performed based on the inferred low-dimensional components on
spatially variable genes. For BayesSpace, SpaGCN, and HMRF, clusters were infer-
red directly by the software. d Clustering accuracy of different methods in

recapitulating the true tissue regions. Accuracy is measured by ARI. e The per-
centage of cell types inferred through cell-type deconvolution analysis on each
tissue domain detected by SpatialPCA. fHeatmap shows themean expression level
of multiple tertiary lymphoid structure (TLS) signature genes on different tissue
domains detected by SpatialPCA. gMean expression of tumor region differentially
expressed gene ERBB2 and tumor surrounding region differentially expressed gene
TRAF2. The figure legend on the bottom relates the cluster numbers detected by
SpatialPCA to tissue domain names. h Left: visualization of the trajectory inferred
by SpatialPCA. Middle: diagram shows the directionality of the trajectory, which
points from the tumor region toward the normal tissue through the tumor’s sur-
rounding region. Right: arrows point from tissue locations with low pseudo-time to
tissue locations with high pseudo-time. i High-resolution spatial map reconstruc-
tion in SpatialPCA.
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original data onto the low-dimensional manifold. As a result, the low-
dimensional components of SpatialPCA contain valuable spatial cor-
relation information and can be paired with existing scRNA-seq ana-
lysis tools to enable various downstream analysis of spatial
transcriptomics. In addition, SpatialPCA relies on a data-generative
model to accommodate spatial correlation and can thus be used to
impute the low-dimensional components on new and unmeasured
tissue locations, enabling the construction of a refined spatial map
with increased spatial resolution. SpatialPCA is computationally effi-
cient, and is easily scalable to spatial transcriptomics with tens of
thousands of spatial locations and thousands of genes (Supplementary
Table 13). We have illustrated the benefits of SpatialPCA for spatial
transcriptomics visualization, spatial domain detection, trajectory
inference on the tissue, as well as high-resolution spatial map
construction.

While we have primarily focused on spatial domain detection and
trajectory inference on the tissue, we note that the modeling frame-
work of SpatialPCA can also allow us to impute low-dimensional
components and gene expression levels on new tissue locations, thus
facilitating the construction of a high-resolution spatial map on the
tissue (details in “Methods”). Because of the data-generative nature of
SpatialPCA and its explicit modeling of spatial correlation, SpatialPCA
canbeused to construct the high-resolution spatialmap for any spatial
transcriptomics technologies with any arbitrarily high resolution—
both these features are in direct contrast to BayesSpace, which can
only enhance ST or 10x Visiumdata with a fixed resolution of either six
or nine times higher than that of the original.We applied SpatialPCA to
construct a high-resolution map in the low-resolution ST tumor data
and found that the constructed high-resolution map displays con-
tinuous and spatially smooth pattern, more so than that produced by
BayesSpace (Fig. 5i and Supplementary Fig. 42). Clustering based on
the high-resolution spatial map also pinpoints precise boundaries
between tissue regions and refines a thin layer of tumor surrounding
region immediately outside both the tumor and immune regions,
which highlights the ability of SpatialPCA in detecting fine-grained
transcriptomic changes that underlie the structural and spatial orga-
nization of carcinogenesis.

We have primarily focused on analyzing normalized data for
dimension reduction. The raw gene expression measurements from
spatial transcriptomics, however, are obtained in the form of counts:77

they are collected either as the number of barcodedmRNA for a given
transcript in each single-cell through smFISH-based technologies or as
the number of sequencing reads mapped to a given gene on each
tissue location through sequencing-based spatial technologies. Ana-
lyzing normalized expression data from spatial transcriptomics can be
suboptimal as this approach fails to account for the mean–variance
relationship existed in raw counts, leading to a potential loss of
inference accuracy and subsequent loss of analysis power. Indeed, a
similar loss of power has been well documented formethods that only
analyze normalized data in many other omics sequencing studies78–81

as well as in spatial transcriptomics77. Consequently, many recently
developed dimension reduction methods for scRNA-seq studies have
chosen to directly model raw count data, which have resulted in
improvement in inference accuracy20–22. In principle, SpatialPCAcanbe
extended to model raw count data from spatial transcriptomics based
on the generalized linear model framework, with an additional zero
component to model the potential zero inflation that might be
encountered in certain spatial transcriptomic technologies. Such
extension of SpatialPCA, however, will likely incur substantial increase
in computational cost, along with potentially numerical instability
issues associated with optimizing the likelihood function in the pre-
sence of sparse counts82. Extending SpatialPCA towards effective
modeling of count data while keeping computational cost and
numerical stability in check will be an important future research
direction.

We have primarily performed SpatialPCA analysis using kernels
computed based on Euclidean distance. We note, however, that the
framework of SpatialPCA is flexible and can be paired with kernels
computed using various non-Euclidean distances. To illustrate this
feature, we performed analysis in the DLPFC dataset using Delaunay
triangulation-based distance (details in “Methods”). We found that
SpatialPCA with the Delaunday distance achieves an ARI of 0.453 for
spatial domain detection, which is lower than using the default cov-
ariance matrix constructed by Euclidean distance (ARI = 0.577, Sup-
plementary Fig. 10b). While non-Euclidean distance does not work as
well as Euclidean distance in this particular dataset, we note that non-
Euclidean distance could be beneficial in other datasets and thus we
include Delaunday distance as an option in the SpatialPCA software.
For trajectory inference, we have followed recent approaches83,84 of
directly applying single-cell RNA-seq trajectory inference methods to
spatial transcriptomics datasets.We note, however, that the single-cell
trajectory inference methods were initially designed with single-cell
data in mind, and it may not be optimal to directly apply them to
spatial transcriptomics where the measured locations can contain a
mixture of cells85. Therefore, it will be important in the future to
develop spatial transcriptomics-specific trajectory inferencemethods,
which, when paired with spatial PCs, may further improve the perfor-
mance of trajectory inference. SpatialPCA can also be easily extended
to perform dimension reduction on multiple samples (details in
“Methods”).We applied suchextensionof SpatialPCA to jointly analyze
three tissue sections in theDLPFCdata, with one fromeachof the three
individuals. In the joint analysis, we found the extension of SpatialPCA
can help substantially improve the spatial domain detection accuracy
for some tissue sections but at the slight cost of the accuracy loss of
other sections. Specifically, the single dataset analysis version of Spa-
tialPCA achieves an ARI of 0.540, 0.376, and 0.577 for samples 151507,
151669, and 151673, respectively; while the extension of SpatialPCA
achieves an ARI of 0.518, 0.431, and 0.552 (Supplementary Fig. 10c).
Finally, we note that SpatialPCA can also be applied to datasets col-
lected from in situ hybridization-based technologies. To illustrate such
feature, we applied all methods to a MERFISH dataset86 (Supplemen-
tary Fig. 43) and found that SpatialPCA achieved higher spatial clus-
tering accuracy (median ARI = 0.454) than othermethods (median ARI:
BayesSpace 0.1, SpaGCN 0.262, HMRF 0.414, NMF 0.06, PCA 0.07).

We have primarily focused on performing spatially aware
dimension reduction based on the probabilistic version of PCA. PCA is
a linear dimension reduction method that effectively expresses the
low-dimensional components as a linear function of the input matrix.
Despite its simplicity, dimension reduction based on PCA is surpris-
ingly effective and facilitates many downstream analytic tasks in
scRNA-seq studies16. Indeed, PCA is implemented in commonly applied
scRNA-seq tools such as Seurat23, SCANPY87, andCell Ranger RKit88, for
downstream data visualization, clustering analysis, or trajectory
inference. Certainly, dimension reduction based on linearity likely only
captures the first-order relationship between the original data and the
reduced manifold and may not be effective in capturing all complex
biological signals contained in the input genomic data. To further
improve the effectiveness of dimension reduction and capture non-
linear signals in the expression matrix, several non-linear dimension
reduction methods have been recently developed for scRNA-seq.
These non-linear methods are often based on deep neural networks
and can flexibly model the non-linear relationship between the
expression matrix and the extracted low-dimensional
components89–92. Extending SpatialPCA towards non-linear modeling
based on the deep learning framework for spatial transcriptomics is
another important future direction.

Finally, we note that the main idea of incorporating spatial cor-
relation information into PCA has a long-standing history in geo-
graphics and genetics. In geographics, PCA has been commonly
applied for dimension reduction in geographical datasets93 and has
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been previously extended to a geographically weighted version that
performs local PCA at each spatial location while accommodating the
local neighboring structure94. In genetics, a spatial version of PCA was
previously developed to incorporate the autocorrelation structure
measured byMoran’s I into PCA for the identification of cryptic spatial
patterns of genetic variability95. Our SpatialPCA effectively extends
these ideas into a formal data-generative model with a maximum
likelihood inference framework. Compared to these early approaches,
SpatialPCAperformsdimension reduction at the global insteadof local
level, automatically infers the contribution of spatial correlation in
determining the variation in the low-dimensional components, and is
capable of imputing low-dimensional components in new and
unmeasured spatial locations. Because of these modeling advantages,
examining the utility of SpatialPCA in applications beyond spatial
transcriptomics may benefit other research fields.

Methods
SpatialPCA overview
We consider a spatial transcriptomics study that collects gene
expression measurements for m genes on n spatial locations of a tis-
sue. These locations have known spatial coordinates that are recorded
during the experiment. We denote si as the k-vector of spatial coor-
dinates for ith location, with i 2 ð1, . . . ,nÞ. Depending on the spatial
transcriptomics technology, the spatial coordinates vary continuously
over either a two-dimensional space (k = 2; si = si1,si2

� � 2 R2) or a three-
dimensional space (k = 3; si = si1,si2,si3

� � 2 R3). We denote Y as the
m×n gene expression matrix measured in the study. The jith element
of Y, yji(si), represents the gene expression measurement for jth gene
on ith location. Following88,96,97, we assume that the expression mea-
surements have already been normalized through variance stabilizing
transformation and further scaled for eachgene tohave zeromeanand
unit standard deviation.

Our goal is to perform dimension reduction on the gene expres-
sion matrix and infer a d × n factor matrix Z that represents a low-
dimensional embedding of Y. The factor matrix Z contains d factors,
and its lth row, Zl, is an n-vector that represents the lth factor values
across n locations. For dimension reduction, we consider the following
latent factor model

Y = ðXBÞT +WZ + E ð1Þ

where X is an n × q matrix of covariates, which contains a column of
ones as the intercept alongwith (q − 1) other potential covariates;B is a
q ×mmatrix of corresponding coefficients;W is am×d factor loading
matrix; and E is anm×nmatrix of residual errors. In the present study,
weonly include the intercept for all analyses, and thusq = 1.We assume
that the jith element of E, Eji, follows an independent normal dis-
tribution with mean zero and variance σ2

0, or E ji ∼Nð0,σ2
0Þ:

The factor model in Eq. (1) is not yet identifiable as any rotational
transformation ofW and Zwould lead to the same solution. Therefore,
we need to place further modeling constraints on both W and Z to
ensure model identifiability. For W, we follow the probabilistic prin-
cipal component analysis model (PPCA)98 and impose an orthonorm-
ality constraint on its columns to have WTW = Id : For Z, PPCA

98 and
other previous approaches99,100 commonly assume element indepen-
dence. That is, each element of Z is independently and identically
distributed from a normal distribution N(0,1). However, such element
independence assumption on Z is not ideal for spatial transcriptomics.
In spatial transcriptomics, the neighboring locations on a tissue often
share similar composition of cell types and display similar gene
expression levels. Consequently, the factor values on neighboring
locations are likely similar to each other, more so than those on loca-
tions that are far away. The factor values on neighboring locations thus
contain invaluable information that can be used to facilitate the
inference of the factor values on the location of interest. To encourage

neighborhood similarity in factor values and facilitate information
sharing across neighboring locations for factor estimation, we follow101

and assume that each Zl⋅ follows a multivariate normal distribution

Z l� ∼MVN 0,Σ l

� � ð2Þ

where the n × n covariance matrix Σl models the correlation among
the spatial locations and is a function of their spatial coordinates.
Here, we use the Gaussian kernel to construct the covariance
matrix and assume that the ði,i0Þth entry of Σl is in the form of
σ2
0τlKðsi,si0Þ, where K si,si0

� �
= expð�∣si � si0∣

2=γÞ with γ being the
bandwidth parameter and σ2

0τl being a variance component that is
scaled with respect to the residual error variance σ2

0. The func-
tional form of Σ l is designed to induce spatial correlation of factor
values on the tissue and encourage factor similarity in neighboring
locations. Specifically, if two locations are close to each other, then
the corresponding element in Σ l will be large, leading to similar
factor values on the two locations; and vice versa. The bandwidth
parameter γ in Σ l determines the strength of such spatial corre-
lation: a small γ leads to a low spatial correlation while a large γ
leads to a high spatial correlation102,103. The variance parameter τl
in Σl , on the other hand, determines the scale of the lth factor
values: a small τl corresponds to small factor values relative to the
residual errors while a large τl corresponds to large factor values
relative to the residual errors. For γ, we determine γ in a sample
size dependent fashion104,105. Specifically, for data with large sam-
ples (n > 5000), we use Silverman’s “rule-of-thumb” bandwidth,
which is defined as 0:9min σ̂, IQR1:34

� �
n�1

5. Here, the bandwidth is
computed for one gene at a time, where σ̂ is the standard deviation
of gene expression and IQR is the interquartile range of gene
expression104. We obtain the median bandwidth value across all
genes to serve as γ. For a data with small samples, the asympto-
matic “rule-of-thumb” bandwidth is no longer applicable. Thus, we
use the non-parametric Sheather & Jones’s bandwidth that is
especially robust for data with small samples105. We again compute
the bandwidth for each gene in turn and obtain the median value
across all genes to serve as γ. For τl , we follow PPCA98 and assume
scale homogeneity across factors by setting τl = τ.

With the above model specifications, we infer the factor loading
matrix W and the factor matrix Z, along with the hyper-parameters
(τ,σ2

0), through maximum likelihood-based optimization. Specifically,
we first integrate out both B and Z to obtain a marginal likelihood,
based on which we infer τ,σ2

0 and W (details in the Supplementary
Note). We then estimate Z by computing their posterior mean condi-
tional on the estimated τ,σ2

0 and W. In the algorithm, we incorporate
multiple algebraic innovations to enable scalable computation such as
applying a low-rank approximation on the kernel matrix K, with a low
rank r to ensure that the approximate matrix captures at least 90% of
the variance in the original matrix in the present study. Overall, the
computational time complexity of our algorithm is O(tdm2 + rn2),
where t represents the number of iterations used in the optimization
algorithm, with memory requirement being O(mn + n2) (Details
in Supplementary Note). To further save memory and computation
time, we also provide in the software the option to calculate a sparse
kernelmatrixwhen the sample size is large. Theuser candetermine the
sparsity level of the matrix by providing a cutoff value (default 1e-20)
to set every element below this value to be0. Because the factormodel
builds upon PPCA and the factor matrix Z contains crucial spatial
correlation information among locations, we refer to our model as the
spatial probabilistic PCA (SpatialPCA) and refer to these factors as
spatial PCs. SpatialPCA is implemented in an R package, which uses an
S4 object to contain the model parameters and takes raw expression
count data and spatial locations as input. SpatialPCA is freely available
at www.xzlab.org/software.html with detailed documentation.
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Downstream analyses with spatial PCs
The inferred spatial PCs Z from SpatialPCA can be paired with various
methods already developed in the scRNA-seq literature to enable a
range of downstream applications in spatial transcriptomics. Following
ref. 33,we examine theperformanceof SpatialPCA throughdownstream
analyses. Here, we examine the use of SpatialPCA for two important
analytic tasks in spatial transcriptomics: spatial domain detection and
spatial trajectory inference on the tissue. Spatial domain detection aims
to segment the tissue into multiple structures, domains or micro-
environments, each of which is characterized by a distinct tran-
scriptomic profile. Spatial trajectory inference, on the other hand, aims
to infer the transcriptomic relationship among spatial locations and
construct trajectories directly on the tissue to represent the potential
developmental lineages across locations that happened in the past. To
thebest ofourknowledge,only ahandfulmethodshavebeendeveloped
for spatial domaindetection28,29,31 andnomethodhas beenpublished for
spatial trajectory inference on the tissue. For spatial domain detection,
we formulate it as a clustering problem on the inferred spatial PCs Z. In
particular, we apply standard scRNA-seq clustering algorithms on Z to
categorize spatial locations into different spatial domains. Because Z
contains critical spatial correlation information across locations, clus-
tering basedon the spatial PCswould lead to similar cluster assignments
in the neighboring locations, resulting in smooth boundaries in the
detected tissue structures. For spatial trajectory inference on the tissue,
we apply standard scRNA-seq trajectory analysis methods on Z to infer
the progression in gene expression across spatial locations. Spatial tra-
jectory inference on Z allows us to properly account for the spatial
relationship among locations, resulting in continuous trajectories with
consistent directionality across neighboring locations. In the present
study, we use Walktrap algorithm and Louvain algorithm for clustering
analysis and slingshot19 for trajectory analysis following the recom-
mendations of18,35. However, SpatialPCA can be potentially paired with
any clustering algorithm16 or trajectory inference algorithm18 developed
in the scRNA-seq literature to take advantage of their benefits.

Importantly, because SpatialPCA builds upon a data-generative
model that automatically infers the spatial correlation structure across
tissue locations, it can also be used to construct a refined spatial map
on the tissue. In particular, with the inferred spatial correlation, we can
predict and impute spatial PCs on new and unmeasured locations
based on the inferred spatial PCs on themeasured locations. Imputing
spatial PCs on new locations would allow us to obtain a spatial map
with a resolutionmuchhigher than thatmeasured in the original study.
To do so, we examine one spatial PC at a time. For the lth spatial PC, we
denote Zl ðsÞ as the n-vector of spatial PC values on the original loca-
tions s and denote eZl ðesÞ as the en-vector of spatial PC values on the en
new locations es. Based on Eq. (2), the (n+ en)-vector of ðZl ðsÞ,eZl ðesÞÞT
follows a multivariate normal distribution. Consequently, we can
obtain the conditional mean of eZl ðesÞ given Zl sð Þ based on the property
of multivariate normal distribution:

eZl es� �
= eΣT

l es, s� �
Σ�1
l Zl sð Þ ð3Þ

where eΣ l es, s� �
= σ2

0τK es,es� �
is an en by n covariance matrix measuring

the spatial correlation between the new and measured locations. We
use the conditional mean in Eq. (3) to serve as the imputed spatial PCs
on the new locations.

The imputed PCs on the new locations also allow us to directly
impute the gene expression levels for individual genes on the new
locations. Specifically, we calculate the posterior mean of gene
expression as the product of the estimated loading matrix fW and the
high-resolution predicted spatial PCs eZl es� �

, with

eY =fW eZl es� � ð4Þ

Simulations
Weperformed simulations to evaluate the performanceof ourmethod
and compare it with the othermethods. To do so, we first obtained the
cortex tissue from the DLPFC data (sample id 151673) and manually
segmented the tissue into four cortical layers through Adobe Illus-
trator as illustrated in Fig. 1a. We exported the illustrative figure as a
1100 pixel by 984 pixel image in JEPG format and extracted the four
cortical layer labels for each pixel based on the RGB values. We then
randomly sampled 10,000pixels from the image to serve as the single-
cell locations and extracted their x/y coordinates. We assumed that
these single cells belong to four different cell types, with distinct cell-
type composition in each cortical layer. In particular, we set the cell
types with the highest to lowest proportions to be 1, 2, 3, and 4 in the
first layer, 2, 3, 4, 1 in the second layer, 3, 4, 1, 2 in the third layer, and 4,
1, 2, 3 in the fourth layer. We then considered four cell-type compo-
sition scenarios in the simulations. In the first scenario, each layer
contains one dominant cell type, with 70% of the cells belonging to the
dominant cell type and 10% of the cells belong to each of the three
minor cell types. In the second scenario, each layer contains two
dominant cell types with equal proportion, each consisting of 45% of
cells, along with two minor cell types each consisting of 5% of cells. In
the third scenario, each layer contains two major cell types with
unequal proportion, with one consisting of 60% of cells and the other
consisting of 30% of cells, along with two minor cell types each con-
sisting of 5% of cells. In the fourth scenario, each layer contains three
major cell types and one minor cell type, consisting of 35%, 30%, 30%,
or 5% of cells, respectively. In each scenario, we randomly assigned
each single cell in each layer to one of the four cell types based on a
multinomial distribution with parameters set to be the cell-type com-
position in the layer. We performed ten simulation replicates for each
simulation scenario.

In parallel, we obtained a scRNA-seq data on human prefrontal
cortex obtained through Smartseq2106, which contains expression
measurements for 24,153 genes and 2394 cells that belong to six cell
types annotated in the original study. The six cell types include
astrocytes (n = 76 cells), GABAergic neurons (n = 701), microglia
(n = 68), neuron cells (n = 1057), oligodendrocyte progenitor cell (OPC;
n = 117), and stem cells (n = 290). We used the cells from the neuron
cells in the scRNA-seq data as a reference to simulate gene expression
counts for 5000 genes and 30,000 single cells using Splatter107. In
Splatter, we used the splatEstimate function to estimate the cell-type
parameters in the scRNA-seq data; we set de.prob=0.5; and we set
group.prob=c(0.25, 0.25, 0.25, 0.25) so that the four cell types have
equal probability. From the simulated cells, we randomly selected
10,000of themwith the desired cell-type compositions determinedby
the simulation scenario described in the aboveparagraph and assigned
these cells onto the 10,000 locations to create the single-cell resolu-
tion spatial transcriptomics. With the single-cell resolution spatial
transcriptomics, we further generated spot-level spatial tran-
scriptomics data by merging expression counts of single cells into
spots. In particular, we created square grids on the tissue, treated each
square grid as a subspot, and annotated the spatial domain label of
each subspot based on the majority of the spatial domain labels for
cells located within the subspot. We treated the spatial domain label
for the subspots as ground truth for spatial clustering accuracy com-
parison. We merged every nine subspots into a spot following the 10X
ST subspot layout and obtained the coordinates for the spot based on
the coordinates of the center subspot31. We varied the length of the
square grids to create three spot-level spatial transcriptomics settings
with varying resolution, with spot diameter being 90 µm
(n = 5077 spots), 107 µm (n = 3602), or 145 µm (n = 1948); where the
spot diameter for a 10X ST data is 100 µm. We focused on the simu-
lation setting with spot diameter being 90 µm in the main text and
places the other two cases in Supplementary Figures.
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For each simulated spatial transcriptomics,we applied SpatialPCA
and the other methods to detect spatial domains on the tissue. The
other methods include BayesSpace, SpaGCN, HMRF, PCA, and NMF.
We did not compare with stLearn in the simulations as the simulations
did not contain H&E images—stLearn becomes PCA without an H&E
image. Following the recommendation of SPARK-X82, we obtained
spatially variable genes (SVGs) in the single-cell level simulations using
SPARK-Xdue to its efficiency in computational speed andmemory cost
and obtained SVGs in the spot-level simulations using SPARK due to its
higher statistical power.

Besides the above main simulation scenarios, we also performed
additional simulations to examine the performance of SpatialPCA and
the other methods in detecting spatially non-contiguous and non-
smoothly varying domains such as stripe patterns (Supplementary
Fig. 4f). In particular, we divided the tissue into six equal-sized stripes
and denoted the three odd stripes as domain one and the three even
stripes as domain two. We set the proportions of the four cell types to
be different in the two domains: in domain one, the cell types with the
highest to lowest proportions are cell types 1, 2, 3, and 4; in domain
two, the four types with the highest to lowest proportions are cell
types 2, 3, 4, 1. We considered three cell-type composition scenarios
similar to those used in the abovemain simulations. Specifically, in the
first scenario, each layer contains two dominant cell type, with 60% of
the cells belonging to the dominant cell type and 40% of the cells
belong to the other cell type. In the second scenario, each spatial
domain contains two major cell types with unequal proportion, with
one consisting of 60% of cells and the other consisting of 30% of cells,
along with two minor cell types each consisting of 5% of cells. In the
third scenario, each spatial domain contains three major cell types,
with one consisting of 60% of cells, along with two each consisting of
20%of cells. As above, weperformed ten simulation replicates for each
simulation scenario.

Besides the above main simulation strategy, we also performed
simulations using a cell split strategy, where we introduced additional
spatial correlation between spots to simulate the sharing of counts
among neighboring spots in non-single-cell level spatial tran-
scriptomics. Specifically, we first obtained 10,000 cells and assigned
them to the spatial locations in the same four scenarios described in
the main simulations. In the process, we randomly selected 2500 cells
to be split. For each of these cells, we randomly split its expression
level into four components based on uniform random weights that
sum up to one.We then added each of the four components randomly
to the expression level of one of its four nearest neighboring cells. This
way, we obtain a total of 7500 pseudo-cells, 86.5% across simulation
replicates contain split expression level from some of its neighboring
cells. Afterward, we aggregate the 7500 pseudo-cells into spots. Again,
we performed ten simulation replicates for each simulation scenario
using this cell split simulation strategy.

Analyzed datasets
We examined four public spatial transcriptomics datasets that include
the followings.

DLPFC human prefrontal cortex data by Visium. We downloaded 12
human DLPFC35 tissue samples from three individuals on the Visium
platform (http://spatial.libd.org/spatialLIBD/). The 12 samples mea-
sured on an average of 3973 spots that weremanually annotated to one
of the six prefrontal cortex layers or white matter. We used sample
151676 as the main analysis example, which contains expression mea-
surement of 33,538 genes on 3460 spots. We presented the results for
the other 11 samples in the Supplementary Figures. In the analysis, we
retained genes with the non-zero expression on at least 20 spots and
retained spots with non-zero expression for at least 20 genes. These
filtering steps lead toafinal set of 14,690genesmeasuredon3460spots
for analysis. The annotated spatial domains in sample 151676 in the

original study is basedon cytoarchitecture and include Layer 1 (n = 289),
Layer 2 (n = 254), Layer 3 (n =836), Layer 4 (n = 254), Layer 5 (n =649),
Layer 6 (n =616), white matter (n = 533), and 29 undetermined loca-
tions. In the spatial domaindetection analysis described in the following
section, we excluded the undetermined locations and treated the
remaining regional annotations as ground truth.

Mouse cerebellumdata by Slide-seq. We obtained the Slide-seq data
on mouse cerebellum from the Broad Single Cell Portal (ID SCP354)1.
We used the file “Puck_180430_6”, which contains 18,671 genes mea-
sured on 25,551 spatial locations. We removed mitochondrial genes
and retained genes with non-zero expression level on at least 20
locations. We also retained locations with non-zero expression for at
least 20 genes. Thesefiltering steps lead to afinal set of 10,515 genes on
20,982 locations for analysis. The Slide-seq data does not come with
tissue domain annotations that can serve as ground truth as tissue
domain detection was not performed in the original study. Therefore,
we relied on theAllen BrainAtlas108 andother literature53,54,109–116 to help
determine which cluster corresponds to which tissue structure.
Because of a lack of corresponding H&E image, such annotations are
approximate and cannot be used as ground truth to evaluate spatial
clustering performance.

Mousehippocampusdata by Slide-seqV2. Weobtained the Slide-seq
V2 data2 from https://singlecell.broadinstitute.org/single_cell/study/
SCP815/sensitive-spatial-genome-wide-expression-profiling-at-cellular-
resolution#study-summary. We used the file “Puck_200115_08”, which
contains 23,264 genes measured on 53,208 spatial locations. We
retained genes with non-zero expression level on at least 20 locations
and locations with non-zero expression for at least 20 genes. These
filtering steps lead to a final set of 16,235 genes on 51,398 locations for
analysis. The Slide-seq V2 data does not come with tissue domain
annotations that can serve as ground truth as tissue domain detection
was not performed in the original study. Therefore, we relied on the
Allen Brain Atlas108 and other literature117–120 to help determine which
cluster corresponds to which tissue structure. Because of a lack of
corresponding H&E image, such annotations are approximate and
cannot be used as ground truth to evaluate spatial clustering
performance.

HER2 tumor data by spatial transcriptomics (ST). We downloaded
the HER2-positive breast tumor data collected from ST platform from
https://github.com/almaan/her2st (Andersson et al. 202158). We used
sample H1 as the main analysis example, which contains expression
measurements of 15,030 genes on 613 spatial locations. The results for
the other 7 annotated samples are provided in the Supplementary
Figures. In the analysis, we retained genes with non-zero expression on
at least 20 spots and retained spots with non-zero expression for at
least 20 genes. We also removed 21 genes associated with a ring pat-
tern observed in multiple samples in the original study. These genes
were confounded by technical artifacts, as explained in the original
study. Thesefiltering steps lead to a final set of 10,053 genesmeasured
on 607 spots for analysis. The ST data consists of seven spatial
domains thatwere annotated by pathologists basedonH&E staining of
the same tissue section. The seven annotated spatial domains include
in situ cancer (n = 97 spatial locations), invasive cancer (n = 90), breast
glands (n = 39), adipose tissue (n = 112), immune infiltrate (n = 23),
connective tissue (n = 166), and other spots in the undetermined
region (n = 80). In the spatial domain detection analysis described in
the following section, we excluded the undetermined region and
treated the remaining regional annotations as ground truth.

Analysis details
Data normalization and dimension reduction. For all datasets, we
normalized the raw expression count matrix using the variance
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stabilizing transformation (VST) implemented in the Seurat function in
SCTransform97. We then standardized the normalized expression
values of each gene to have zero mean and unit standard deviation
following88,96,97. We used the resulting standardized expression matrix
as input for dimension reductionmethods that include SpatialPCA and
PCA, and used standardized log normalized gene expression with the
same set of genes as input for NMF.

For the three spatial domain detection methods, we directly used
their software default for gene filtering. For the three dimension
reduction methods, we performed gene filtering to retain a set of
spatially expressed genes as input. To do so, we followed the recom-
mendation of SPARK-X82 to use SPARK77,121 for SVG analysis in small
datasets (ST tumor and DLPFC) due to its higher statistical power and
use SPARK-X for SVGanalysis in larger datasets (Slide-seq andSlide-seq
V2) due to its computational efficiency. Genes are declared as sig-
nificant based on an FDR threshold of 0.05 using the
Benjamini–Yekutieli procedure implemented in the software. We used
up to 3000 significant SVGs as input, with 2720, 319, 787, and 3000
SVGs selected in theDLPFC, ST tumor, Slide-seq, and Slide-seq V2data,
respectively. We applied SpatialPCA and PCA on the same standar-
dized data matrix for the selected SVGs. In particular, we fitted PCA by
applying singular value decomposition (SVD)122. For NMF, we first
performed log normalization on the gene expression count matrix for
the selected spatially expressed genes using the logNormCounts
function in scater. Afterward, we used the calculateNMF function in
scater123 to perform NMF and obtain low-dimensional components.
Regardless of the method, we extracted the top 20 low-dimensional
components for downstream analyses.

We examined the sensitivity of different methods by carrying out
dimension reduction using three different sets of genes as input in the
DLPFC data. The three gene sets include all genes, 3000 top highly
variable genes (HVGs), and 3000 top SVGs. The HVGs are obtained
using the FindVariableGenes function in the Seurat package. For the
set of all genes, applying SpatialPCA in DLPFC incurs a heavy compu-
tational burden due to its iterative eigen decomposition of a gene-by-
gene matrix. Therefore, we first performed PCA to extract the top
3000 regular PCs from the set of all genes and then used them as input
for SpatialPCA.

We performed additional analysis in the DLPFC dataset using a
kernel computed based on a non-Euclidean Delaunay triangulation-
based distance. The Delaunay triangulation of the spatial locations on
the tissue section is equivalent to the Voronoi diagram for the same set
of locations124. Therefore,wefirst calculated theVoronoi tessellationof
all locations and defined pairs of locations as Delaunay neighbors if
they share a common edge in the Voronoi polygons to construct the
Delaunay triangulation. Afterward, we used the delaunayDistance
function in the R package spatstat.geom to calculate the distance
between each pair of locations i and j in the Delaunay triangulation,
which is the minimum number of edges one must travel through
between the two locations.We then converted the calculatedDelaunay
distance to construct the covariance matrix used in SpatialPCA.

RGB plots for visualizing low-dimensional components. For Spa-
tialPCA, PCA, and NMF, we summarized the inferred low-dimensional
components into three UMAP or tSNE components and visualized the
three resulting components with red/green/blue (RGB) colors through
RGB plot. For each method, we normalized the tSNE or UMAP
embeddings to be in the range of 0 to 1 and used these normalized
values as input for the rgb() function in the ggplot function to generate
RGB plot. In the process, we explored the sensitivity of RGB plot to the
scale of the input low-dimensional components by multiplying them
10or 20 times.On theRGBplot,wealso summarized theRGBcolorson
each location into a vector in the form of weighted RGB values
RGBweighted =

R*var Rð Þ+G*var Gð Þ+B*varðBÞ
var Rð Þ+ var Gð Þ+ varðBÞ , where R,G,B represent vectors of

the color values for the three channels; while varð�Þ represents the

sample variance computed across locations and serves as the weights.
We scaled RGBweighted to have mean zero and variance one. In the
DLPFC data, we examined the spatial distribution of the weighted RGB
values across spatial domains. We also calculated for each spot the
variance of the rescaled RGBweighted on the spot and its six nearest
spots, where a small variance indicates spatial smoothness in neigh-
borhood RGB values.

Spatial domain detection via clustering. We performed clustering
analysis on the low-dimensional components to cluster spatial loca-
tions. Clustering locations allows us to effectively segment the tissue
into distinct spatial domains. Here, we applied two clustering algo-
rithms: the Walktrap method and the Louvain method. For the Walk-
trap method, we first constructed a shared nearest neighbors (SNN)
graph125 based on the low-dimensional components using the scran
package126. SNN measures similarity between each pair of locations by
counting the number of neighboring locations that are connected to
both locations. With the SNN graph, we applied the Walktrap method
using the bluster R package127 to obtain the cluster labels for locations.
For the Louvain method, we first built a k-nearest neighbors (KNN)
network among locations using the FNN package128. In the KNN net-
work, each location is connected to its K-nearest locations in the
Euclidean space. With the KNN network, we applied the Louvain
community detection algorithm to cluster locations using the igraph R
package129. We applied the Walktrap method to the small datasets
(DLPFC and ST tumor) and due to its heavy computational burden
applied the Louvainmethod to the other two large datasets.We set the
number of spatial clusters in the DLPFC and ST tumor datasets based
on the ground truth annotation and set the number of clusters to
achieve the highest average Silhouette width130 in the Slide-seq data. In
Slide-seq V2, we were unable to calculate the Silhouette width because
the required distance matrix is too big due to the large sample size.
Therefore, we set the number of clusters in Slide-seq V2 based on the
number of spatial domains annotated in Allen Brain Atlas108. After
clustering, we performed an additional refinement step following
SpaGCN to relabel a spot based on the majority of the domain labels
from its surrounding spots along with itself if the two are different
(four surrounding spots in the ST data and six in the Visium data).

Extension of SpatialPCA for jointmodeling ofmultiple samples. We
developed an extension of SpatialPCA to jointly model multiple tissue
sections, which is common inmany spatial transcriptomics datasets131.
In the extension, we used the IntegrateData function in Seurat to first
remove the batch effects from each dataset and obtain an integrated
gene expression matrix, so that the analyzed datasets are compatible
to each other and areplaced on the samemanifold. Afterward, we took
advantage of the fact that distinct tissue sections are not near each
other in physical space and constructed the covariance matrix for the
latent factors in the form of a block diagonal matrix: it consists of the
kernel matrices constructed using the spatial location information
within each dataset, with zero correlation for pairs of locations across
datasets. This way, the latent factorswithin eachdataset are correlated
a priori across spatial locations while the latent factors across datasets
are not correlated a priori. Certainly, if one wants tomodel the a priori
correlation between latent factors across datasets, due to, for example,
their similarity in the features extracted from histology images, then
one can also modify the kernel matrices by constructing them using
features other than spatial location information. We applied the
extension of SpatialPCA to analyze the DLPFC data, which consists of
tissue sections from three individuals. For this data application, we
jointly analyzed three tissue sections, with one section from each
individual, using the extension of SpatialPCA.

Comparedmethods for spatial domain detection. We compared the
performance of the above three dimension reduction methods with
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four spatial domain detection methods for detecting spatial domains
on the tissue. The four examined domain detection methods include
BayesSpace, SpaGCN, HMRF, and stLearn.

BayesSpace is designed for spatial domain detection in ST or
Visium data from 10x genomics. BayesSpace performs PCA on the top
2000 HVGs andmodels the top 15 PCs to infer the latent cluster labels
for spatial domains. BayesSpace can enhance the resolution of clus-
tering in ST or Visium data by segmenting each spot to six (for Visium)
or nine subspots (for ST) and uses a Potts prior to infer the spatial
cluster labels on the subspots. For fitting BayesSpace, we set the
parameter nrep in spatialPreprocess to be 50,000 in DLPFC and Slide-
seqdata, and tobe 10,000 in ST tumordata due to its small sample size
following the BayesSpace tutorial. We set the number of burn in to be
1000 in all datasets. We did not run BayesSpace on the Slide-seq V2
data because it requires too much memory (>100Gb).

SpaGCN28 uses gene expression, spatial location and histology
information as inputs to infer spatial domains on the tissue. Specifi-
cally, SpaGCN reduces the dimension of the preprocessed gene
expressionmatrix using PCA toobtain the top 50PCs as input. SpaGCN
builds a graph to incorporate the spatial and histology information,
and then uses a graph convolutional layer to reconstruct the gene
expression information by aggregating spatial and histological infor-
mation. In the DLPFC data, for all twelve samples, we followed the
SpaGCN tutorial and provided high-resolution H&E image to SpaGCN.
In ST tumor data, we used H&E image with lower resolution down-
loaded from https://github.com/almaan/her2st. For Slide-seq and
Slide-seq V2 data, no H&E images is available, so we choose the “his-
tology=False” option in SpaGCN.

HMRF is amethod initially designed for image segmentation33 and
has been recently adapted for spatial domain detection132 in spatial
transcriptomics.We fittedHMRFusing theGiotto packagewith default
settings. The default setting of HMRF explores 50 different beta values
that range from 0 to 98, where the beta value characterizes the
smoothness of the detected tissue region boundaries. Because the
results for different beta values were very similar in DLPFC, Slide-seq
and ST data, we simply report the results based on beta = 10
throughout the text. We did not run HMRF on the Slide-seq V2 data
because it requires too much memory (>100Gb).

stLearn29 leverages spatial location and histology information to
smooth gene expression for downstream clustering and trajectory
inference. stLearn uses gene expression, spatial location and histology
information as inputs. We followed the default settings in the tutorial
of stLearn to perform clustering analysis on the 12 samples in DLPFC.
We did not apply stLearn to ST tumor data as the original data paper
does not provide a JSON file that is necessary for stLearn. We also did
not apply stLearn to the Slide-seq and Slide-seq V2 data as neither has
H&E information. In trajectory inference, stLearn applies a diffusion
pseudo-time method on the smoothed gene expression data and
focuses onordering the spatial clustersbasedon their average pseudo-
time within clusters. We compared the pseudo-time calculated from
stLearn with that from SpatialPCA in sample 151676 of the DLPFC data.

Spatial clustering performance evaluation. For the DLPFC and ST
tumor datasets that come with spatial domain annotations that can
serve as ground truth, we evaluated the performance of different
methods in spatial domain detection by comparing the detected spa-
tial domains with truth in two different ways. First, we used standard
clustering evaluation metrics that include the adjusted rand index
(ARI)133 and normalized mutual information (NMI)134. Second, we
directly evaluated the information contained in the output from dif-
ferent methods in predicting the true spatial domains without per-
forming explicit clustering. Specifically, we treated the true spatial
domains as the outcome and fitted a multinomial regression model.
For the dimension reduction methods, we treated the extracted low-
dimensional components as predictors in the regressionmodel. In the

regression model, we computed the McFadden-adjusted pseudo-R2

(see ref. 37) to evaluate the predictive ability of the predictor variables
in predicting the ground truth. A higher pseudo-R2 suggests that the
method is capable of extracting informative output in predicting the
true spatial domains.

In the ST tumor dataset, we also performed an alternative set of
fine-grained analysis to measure the clustering accuracy of different
spatial domain detection methods. Unlike the DLPFC data that anno-
tated cortical layers based on cytoarchitecture and selected gene
markers, the ST tumor data only contains pathologist annotations that
are purely based on the H&E image, which may not contain fine-
grained transcriptomic information. To compare the performance of
different methods in detecting fine-grained details in the ST data, we
reasoned that gene expression would capture fine-grained details for
the spatial domains on the tissue much better than the high-level H&E
image annotations can and thus can serve as an important benchmark
for method comparison. Therefore, for each spatial domain in the
annotated eight tissue samples in turn, we first performed differential
expression (DE) analysis using MAST implemented in the FindMarkers
function in Seurat to detect domain-specific DE genes that are enri-
ched in the spatial domain versus the other domains (log2 fold
change > 0; adjusted P <0.001). The number of detected DE genes
ranges from 19 to 408 (48 DE genes in adipose tissue, 39 in breast
glands, 105 in cancer in situ, 53 in connective tissue, 154 in immune
infiltrate, 408 in invasive cancer, and 19 in the undetermined region).
Next, for each spatial domain in turn, we obtained the averaged
expression level of its domain-specific DE genes to serve as the
domain-specific metagene. We further scaled the expression values of
each metagene to 0–1. The expression of the metagene for each
domain likely contains the fine-grained transcriptomic information
and can thus be used to evaluate the fine-grained performance of
different spatial domain detection methods. Therefore, we examined
the enrichment of each of the seven metagenes in the spatial domains
detected by each method for method evaluation. Intuitively, if the
spatial domain detection method is better powered to detect fine-
grained spatial domains, then the expression level of the metagenes
would be enriched in one of the detected spatial domains. Therefore,
for each method in turn, we first selected the spatial domain with the
highest percentage (>=35%) of overlapped spots with the ground truth
domain to serve as the annotated domain for the particular method.
We then calculated a ratio ofmeanmetagene expression in the domain
versus that outside the domain as the metagene enrichment score.

For all datasets, we used another three metrics to evaluate clus-
tering performance. First, we adopted the integration quality quanti-
fication metric used in scRNA-seq and calculated the local inverse
Simpson’s index (LISI)135 to quantify the clustering performance for
spatial domain detection. The LISI score is the effective number of
spatial domain labels represented in the local spatial neighborhood of
a spot and is calculated as

S=
1PK

k = 1 pðkÞ
ð5Þ

wherepðkÞ is the probability that the spatial domain cluster label k is in
the local neighborhood, and K is the total number of spatial domains.
We calculated the LISI score using the compute_lisi function from the
LISI R package with default parameters (perplexity = 30). Lower LISI
score indicates more homogeneous neighborhood spatial domain
clusters of the spot.

Second, we adopted image segmentation performance quantifi-
cationmetrics in mass spectrometry imaging136 and used spatial chaos
score (CHAOS) and percentage of abnormal spots (PAS) score to
quantify the clustering performance for spatial domains.

The CHAOS score measures the spatial continuity of the detected
spatial domains136,137. To calculateCHAOS,wefirst create a one-nearest-
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neighbor (1NN) graph for the spots in each spatial cluster by con-
necting each spot with its nearest neighbor.We denotewij as the edge
weight between spot i and spot j, which is calculated as

wkij =
dij , if spot i and j are connected in the 1NN graph in cluster k

0, otherwise

�

wheredij is the Euclideandistance between the two spots.We calculate
CHAOS as the mean length of the graph edges in the 1NN graph in the
following form

CHAOS =

PK
k = 1

Pnk
i,j wkij

N
ð6Þ

where N is the total number of spots; K is the total number of spatial
domains; and nk is the number of spots in k-th spatial domain. A
smaller CHAOS score reflects better spatial continuity.

The PAS score measures the randomness of the spots that are
located outside of the spatial domain where it was clustered to. The
PAS score is calculated as the proportion of spots with a cluster label
that is different from at least six of its neighboring ten spots. A small
PAS score indicates spot homogeneity within spatial clusters.

Cell-type deconvolution. We performed deconvolution using the
software RCTD with default settings138. Cell-type deconvolution in
spatial transcriptomics allows us to estimate the cell-type composition
on each spatial location using a reference scRNA-seq data.

For the DLPFC data, we used the same scRNA-seq data that we
used as a reference in simulations106 for deconvolution. The scRNA-seq
reference data contains expression measurements for 24,153 genes
and 2394 cells that belong to six cell types annotated in the original
study. The six cell types include astrocytes (n = 76 cells), GABAergic
neurons (n = 701), microglia (n = 68), neurons (n = 1057), oligoden-
drocyte progenitor cell (OPC; n = 117), and stem cells (n = 290).

For the Slide-Seq data, we selected a scRNA-seq data collected on
the same tissue, the mouse cerebellum, via Drop-seq139 to serve as the
reference data for deconvolution. The reference data contains 26,139
cells that belong to multiple cell types characterized in the original
study.We focusour analysis onmajor cell types that includegranule cell
(n = 21,331 cells), Purkinje neuron (n = 178), interneuron (n = 1547), oli-
godendrocyte (n = 347), astrocyte (n = 326), Bergmann glia (n = 1404),
microglia (n =64), choroid plexus (n = 50), endothelial cell (n = 422),
fibroblast-like cell (n = 241), and interneurons_and_Other_Nnat (n = 229).

For the Slide-seq V2 data, we selected a scRNA-seq data collected
on the same tissue, the mouse hippocampus, via Drop-seq139, to serve
as the reference data for deconvolution. The reference data contains
53,204 cells that belong to multiple cell types characterized in the
original study. The cell types include Anterior Subiculum, proximal to
CA1 (n = 1556 cells), Astrocyte (n = 7503), CA1 Principal cells (n = 2489),
CA1 Principal cells (Anterior) (n = 3088), CA2 Principal cells (n = 330),
CA3 Principal cells (n = 5623), Cajal-retzius (n = 336), Choroid_Plexus
(n = 22), Deep layer subiculum (n = 509), Dentate hilum (n = 530),
Dentate Principal cells (n = 13,265), Endothelial_Stalk (n = 1903), Endo-
thelial_Tip (n = 296), Entorhinal cortex (n = 1580), Entorhinal cortex
(IEG) (n = 27), Ependymal (n = 337), Interneuron (n = 3035), Lateral CA3
Principal cells (n = 649), Medial entorrhinal cortex (n = 867), Medial
entorrhinal cortexm (n = 56), Microglia (n = 467), Mural (n = 705),
MyelinProcesses (n = 227), Neurogenesis (SGZ) (n = 458), Neuron
(n = 3087), Oligodendrocyte (n = 1969), Polydendrocyte (n = 1046),
Postsubiculum (n = 43), Resident macrophage (n = 78), and Sub-
iculum (n = 1123).

For the ST data, we selected a scRNA-seq data collected on breast
cancer to serve as the reference data for deconvolution. The reference
data is collected on breast cancer via the InDrop platform140. It contains
24,271 cells that belong to multiple immune cell types and malignant

cell types characterized in the original study. These cell types include
B_Cells (n = 1245 cells), CD4+ T cells (n = 2003), CD8+ T cells (n = 3691),
Myeloid (n = 4606), Myoepithelial (n = 212), NK cells (n = 358), NKT cells
(n = 164), Plasma_Cells (n = 1955), T_cells_unassigned (n =938), T cells
Cycling (proliferating T cells, n =605), T-Regs (n =994), Tfh cells (T-
follicular helper, n = 175), dPVL (differentiated-perivascular-like,
n = 214), iCAFs (inflammatory cancer-associated fibroblast, n = 1129),
imPVL (immature-PVL, n = 106), myCAFs (myofibroblast-like CAF,
n = 280), Endothelial (n = 610), Epithelial_Basal (cancer cells, n =4095),
Epithelial_Basal_Cycling (cancer cells with high proliferation, n =614),
and Epithelial_Luminal_Mature (epithelial normal luminal, n = 277).With
the scRNA-seq reference data, we estimated the cell-type composition
of the reference cell types on each spatial location.

High-resolution spatial map construction and gene expression
prediction. We constructed a high-resolution spatial map using Spa-
tialPCA and illustrated this feature for the ST tumor data with relatively
low resolution. For high-resolution map construction, we followed
BayesSpace to impute nine subspots for each ST spot and six subspots
for each Visium spot, as the ST andVisium spots are arranged on square
and hexagonal lattices. For the other technologies, we simply set the
default imputation choice tobe imputingon fournew locations for each
measured location. In particular, we scaled the x- and y coordinates of
the measured spatial locations to have mean zero and unit standard
deviation. We then replaced each measured spatial location with four
new locations by adding or subtracting the same small distance on both
x and y coordinates of the measured location. Subsequently, the four
new locations form a square, with the originalmeasured location sitting
in the center. The small distance used to create the new locations is data
dependent: it is calculated as ¼ of the median distance between one
location with its nearest neighbor. Afterward, we imputed spatial PCs
and the expression level of individual genes on the new locations. Note
that spatial imputation is only performed on points in space that are
surrounded by observed expression. Extrapolating outside the mea-
sured tissue area would be challenging, especially when the extra-
polated area contains distinct cell-type composition and transcriptomic
profiles as compared to the measured area.

Trajectory inference on the tissue. Besides spatial domain detection,
we also applied Slingshot19 on the low-dimensional components to
infer the developmental trajectories among spatial locations on the
tissue in the DLPFC, ST tumor, and Slide-seq V2 data83,84. Slingshot is a
common scRNA-seq trajectory inferencemethod originally applied on
regular PCs. Here, we applied slingshot on the spatial PCs so that the
nearby tissue locations with similar gene expression will be inferred
with similar pseudo-time. Slingshot requires the cluster labels as
additional input. We used the cluster labels obtained from the clus-
tering analysis described in a previous subsection for Slingshot. After
trajectory inference, Slingshot assigned each location a pseudo-time
value. Slingshot requires users to specify the start of the trajectory (i.e.,
the beginning of pseudo-time) based on biological knowledge. In the
trajectory analysis, almost all lineage inference methods21,30; require
the user to designate one cluster as the start cluster, or one cell as the
start cell. Setting a start cluster only changes the direction of the tra-
jectory but does not influence the relative position of clusters on the
trajectory. We set the white matter as the start cluster for DLPFC, set
the tumor region as the start cluster for ST, and set the layer 6 as start
cluster for Slide-seq V2. In Slide-seq V2 data, we focused the trajectory
inference only on the cortical layers 4, 5, and 6, because slingshot
cannot handle the large sample size on the whole tissue slice and
because the cortical layers are naturally ordered as they are developed
in a sequential fashionduring corticogenesis. In STdata, we focusedon
trajectory inference on tumor and tumor-adjacent regions to investi-
gate how these locations are connected to one another and underlie
tumorigenesis. Based on the inferred pseudo-time values, we

Article https://doi.org/10.1038/s41467-022-34879-1

Nature Communications |         (2022) 13:7203 17



connected neighboring locations on the tissue to construct trajec-
tories. Specifically, we first overlayed the tissue in each data with an
evenly spaced square grid graph. For each smallest square on the grip
graph, we obtained inside the square the two locations that have the
largest and smallest pseudo-time values. We then draw an arrow line
connecting these two locations, with the arrow pointing towards the
location with the larger pseudo-time. The size of the grid graph is data
dependent: we searched in sequence a set of pre-determined numbers
(10, 15, 20, 25, 30) as grid size choice for each dataset, and selected
among them the smallest number that ensures at least 1/3 of the arrow
lines to start from one spatial domain and end at another spatial
domain. This way, an appreciable fraction of arrow lines would cross
regional boundaries, ensuring effective visualization of trajectories
between spatial domains.With the strategy, we used a 10 by 10 grid for
the ST data and a 20 by 20 grid for the DLPFC data. We also applied
stLearn on DLPFC sample 151676 to infer the trajectory and we set the
spot on the left-bottom corner of white matter as the root spot in the
inference. We did not apply stLearn to the other datasets due to a lack
of H&E image in Slide-seq and Slide-seq V2 data, and a lack of JSON file
in the HER2-positive breast tumor data.

Differential gene expression analysis and enrichment analysis. We
performed differential gene expression (DE) analyses and subsequent
gene set enrichment analyses on all of four datasets. We performed
three sets of DE analyses. The first set of DE analyses aims to identify
spatial domain-specific DE genes. In particular, we examined the Spa-
tialPCA detected spatial domains one at a time and used MAST141

wrapped in the FindMarkers function in the Seurat package to identify
genes that are DE in the domain of focus as compared to all other
domains at a false discovery rate (FDR) of 0.05. The second set of DE
analyses aims to identify pseudo-time-associated genes. In particular,
we used Pearson’s correlation test to identify genes that were asso-
ciated with the inferred pseudo-time based on a Bonferroni corrected
p value threshold of 0.05. The third set of DE analyses aims to identify
genes associated with spatial PCs. In particular, we used Pearson’s
correlation test to identify genes thatwere associatedwith the inferred
spatial PCs based on a Bonferroni corrected p value threshold of 0.05.
After each set of DE analyses, we performed gene set enrichment
analyses (GSEA) on the detected DE genes using the g:GOSt function in
gProfiler2 package. In the enrichment analysis, we used all expressed
genes as background142 and used the default option g:SCS method in
gProfiler2 for multiple testing correction. The gene sets are down-
loaded from the Molecular Signatures Database (MSigDB143,144) avail-
able from the Broad Institute, including the C2 (KEGG), C5 (GO BP:
biological processes, GO CC: cellular components, GO MF: molecular
functions and HP:Human Phenotype Ontology) and hallmark pathway
datasets. For the ST tumor data, we also included cancer-related gene
sets, including C4 (cancer modules) and C7 (immunologic signatures).
For the Slide-seq cerebellum data, we converted the MGI gene IDs to
human homolog gene symbols before GSEA analysis145.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study made use of publicly available datasets. The human DLPFC
samples35 are available at http://spatial.libd.org/spatialLIBD/. ST data58

are available at https://github.com/almaan/her2st. Slide-Seq data1 are
available at Broad Institute’s single-cell repository (https://singlecell.
broadinstitute.org/single_cell/) with ID SCP354. Slide-seq V2 data2 are
available at Broad Institute’s single-cell repository (https://singlecell.
broadinstitute.org/single_cell/) with ID SCP815. The scRNA-seq refer-
ence data used in this study are all publicly available, including
GSE104276106 for human prefrontal cortex; http://dropviz.org139 for

mouse cerebellum and hippocampus; and GSE114725140 for human
breast tumor. The databases we used include Molecular Signatures
Database143,144 (https://www.gsea-msigdb.org/gsea/msigdb), Mouse
Genome Database145 (http://www.informatics.jax.org), and Allen Brain
Atlas108 (https://www.brain-map.org). Source data are provided with
this paper.

Code availability
The SpatialPCA software code146 is publicly available at http://xzlab.
org/software.html and https://github.com/shangll123/SpatialPCA. The
source code is released under the GNU General Public License version
3 (GPL >=3). Example codes for using SpatialPCA are publicly available
at http://lulushang.org/SpatialPCA_Tutorial/index.html. All analysis
codes for reproducing the results of the present study are publicly
available at https://github.com/shangll123/SpatialPCA_analysis_codes.
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