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Cone‑beam CT delta‑radiomics 
to predict genitourinary toxicities 
and international prostate 
symptom of prostate cancer 
patients: a pilot study
Rodrigo Delgadillo 1,4, Benjamin O. Spieler 1,4, Anthony M. Deana 2, John C. Ford 1, 
Deukwoo Kwon 3, Fei Yang 1, Matthew T. Studenski 1, Kyle R. Padgett 1, 
Matthew C. Abramowitz 1, Alan Dal Pra 1, Radka Stoyanova 1 & Nesrin Dogan 1*

For prostate cancer (PCa) patients treated with definitive radiotherapy (RT), acute and late RT-related 
genitourinary (GU) toxicities adversely impact disease-specific quality of life. Early warning of 
potential RT toxicities can prompt interventions that may prevent or mitigate future adverse events. 
During intensity modulated RT (IMRT) of PCa, daily cone-beam computed tomography (CBCT) 
images are used to improve treatment accuracy through image guidance. This work investigated the 
performance of CBCT-based delta-radiomic features (DRF) models to predict acute and sub-acute 
International Prostate Symptom Scores (IPSS) and Common Terminology Criteria for Adverse Events 
(CTCAE) version 5 GU toxicity grades for 50 PCa patients treated with definitive RT. Delta-radiomics 
models were built using logistic regression, random forest for feature selection, and a 1000 iteration 
bootstrapping leave one analysis for cross validation. To our knowledge, no prior studies of PCa have 
used DRF models based on daily CBCT images. AUC of 0.83 for IPSS and greater than 0.7 for CTCAE 
grades were achieved as early as week 1 of treatment. DRF extracted from CBCT images showed 
promise for the development of models predictive of RT outcomes. Future studies will include using 
artificial intelligence and machine learning to expand CBCT sample sizes available for radiomics 
analysis.

Prostate cancer (PCa) is the most common malignancy among men and the second-leading cause of cancer-
related mortality in the United States (US)1. With 3.1 million PCa survivors in the US, acute and late side effects 
of PCa treatment impact a significant proportion of US men2. Definitive radiotherapy (RT), a primary interven-
tion for intermediate and high-risk PCa, aims to limit treatment-related side effects and preserve patient quality 
of life (QOL) while delivering curative dose to the prostate3–6. Efforts to minimize toxicity to nearby organs at 
risk (OAR), mainly gastrointestinal and genitourinary (GU) tissues, have established intensity-modulated radio-
therapy (IMRT) as the standard external beam technique for RT of PCa7–10. Modern image-guided RT (IGRT) 
with linac-mounted cone-beam CT (CBCT) improves the therapeutic index through enhanced visualization of 
the prostate prior to daily treatment, allowing for reduction of planning target volume (PTV) margins and spar-
ing of adjacent OAR6,7,11,12. Despite innovations in RT techniques, modalities and fractionation, overall patient 
QOL suffers compared to men without PCa in part due to RT-related side effects13. As a result, prevention and 
alleviation of symptoms that impact QOL during and after RT is a priority for PCa survivorship research and 
clinical practice14,15. Published data support an association between acute and late post-RT toxicity among PCa 
patients, with early QOL decline linked to long-term dissatisfaction16,17. Studies suggest that acute toxicity and 
early decline in QOL scores can be used to identify patients who may benefit from personalized supportive 
care intended to mitigate high risk of late toxicity17,18. Accordingly, early prediction of acute and subacute side 
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effects, as well as compromised QOL, can prompt interventions and preventative strategies that benefit PCa 
survivorship18,19.

Radiomics, an analytic technique that extracts quantitative characteristics from medical imaging, has been 
incorporated into predictive models in diverse cancers including PCa20–27. Delta-radiomics is a version of radiom-
ics applied to medical imaging at multiple time points to identify changes in tissue biology typically in response 
to a therapeutic intervention. Increasing evidence suggests that radiomic features extracted from imaging plat-
forms such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) may be useful 
as non-invasive biomarkers to predict cancer treatment response and prognosis. Recent publications analyzing 
diagnostic imaging before and after PCa RT have identified radiomic features that may be predictive of patient 
outcomes, but do not describe tissue response during RT itself20–27. Few previous radiomics studies investigated 
the use of daily CBCT setup images for predicting patient response28,29. To our knowledge, no prior radiomics 
studies of PCa have analyzed daily CBCT images. In this study, we hypothesized that delta-radiomics of daily 
patient CBCT set-up images during definitive IMRT of PCa can predict acute and subacute RT-related toxici-
ties, providing clinicians with the opportunity to implement preventative strategies and early interventions that 
benefit PCa survivorship. This is a pilot study to test the feasibility of predicting acute GU toxicity, sub-acute GU 
toxicity, and change in International Prostate Symptom Scores (IPSS) using daily CBCT-based delta-radiomics 
acquired during definitive RT of PCa.

Materials and methods
Patient population.  Fifty patients enrolled in institutional review board (IRB)-approved protocols for the 
treatment of PCa were selected for this study. The ethical approval for this study was obtained from the Univer-
sity of Miami Institutional Review Board (IRB). Written informed consent was obtained from all patients in this 
study. The data was retrospectively collected and analyzed. All methods undertaken in this work were carried out 
in accordance with the relevant guidelines and regulations. Characteristics of the patient cohort are summarized 
in Supplementary Table S1. To maintain consistency in imaging quality and reduce variability between different 
kV imaging devices available in the facility several constraints were placed on the patients selected for this study. 
Only PCa patients who received definitive volumetric modulated radiation therapy (VMAT) on a TrueBeam 
linear accelerator (Varian Medical Systems, Palo Alto, CA) with daily CBCT were included in the study. Raw 
projection data was exported from the treatment machines and later reconstructed using image reconstruction 
software to maintain consistent reconstruction parameters for all the images. More details on image reconstruc-
tion are described in the following section. Patients with body mass index (BMI) > 40 or intrapelvic metal pros-
theses were excluded due to X-ray hyper attenuation and metal streaking artifacts, respectively. CBCT images 
were analyzed from the daily scans throughout the entire course of treatment.

Imaging characteristics and reconstruction.  All clinical CBCT images used in this study had the same 
image size (512 × 512 pixels), pixel size (0.9 mm), slice thickness (2 mm), and FOV (465 mm). The tube voltage 
(125 kVp) and tube current–time product (1073–1074 mAs) were consistent for all CBCT scans.

sCBCT refers to CBCT images reconstructed using standard filtered back-projection reconstruction. iCBCT 
refers to CBCT images reconstructed using an iterative reconstruction algorithm that employs a scatter correction 
method that estimates scatter in X-ray projection images by solving the linear Boltzmann transport equation and 
statistical iterative reconstruction for final-pass image reconstruction30. For all patients, raw projections of both 
sCBCT and iCBCT images were collected to reconstruct CBCT images using the reconstruction method of choice 
(sCBCT or iCBCT) post-treatment. A research image reconstruction software (iTools, Varian Medical Systems, 
Palo Alto, CA, USA) was used to generate either sCBCT or iCBCT image sets for each patient. Daily CBCT raw 
projections were reconstructed utilizing eight combinations of various reconstruction algorithms, convolution 
filters, and noise suppression filters (Table 1). One aim of the iterative reconstruction algorithm is to minimize 
the variation in voxel intensity in the final reconstruction. The degree to which this variation is minimized is 
referred to as the noise suppression. While noise suppression is only available in iCBCT, different convolution 

Table 1.   Reconstruction and pre-processing parameters considered in this work. ‘1’ means Collewet 
Normalization was applied and ‘0’ means Collewet Normalization was not applied.

Abbreviation
Reconstruction 
algorithm Convolution filter Noise suppression

Quantization 
algorithm

Collewet 
normalization

iCBCT-Sharp-Very-
Low-Llo-1 iCBCT Sharp Very low Lloyd-Max 1

iCBCT-Sharp-Very-
Low-Uni-0 iCBCT Sharp Very low Uniform 0

iCBCT-Std-Medium-
Llo-1 iCBCT Standard Medium Lloyd-Max 1

iCBCT-Std- Medium-
Uni-0 iCBCT Standard Medium Uniform 0

sCBCT-Sharp-Llo-1 sCBCT Sharp Lloyd-Max 1

sCBCT-Sharp-Uni-0 sCBCT Sharp Uniform 0

sCBCT-Std-Llo-1 sCBCT Standard Lloyd-Max 1

sCBCT-Std-Uni-0 sCBCT Standard Uniform 0
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filters can be applied to both iCBCT and sCBCT. Convolution filters can affect image spatial frequency char-
acteristics by convolving the image with a kernel. Though the aim of convolution filters and noise suppression 
is to improve image quality in one way or another, there are tradeoffs. Smooth convolution filters can reduce 
noise at a loss of resolution. Very high noise suppression will reduce noise at a loss of contrast. Delgadillo et al. 
analyzed the repeatability and reproducibility of CBCT-based radiomic features for PCa patients receiving RT31 
and found that reconstruction and preprocessing parameters that improve feature repeatability often decrease 
reproducibility31. Reconstruction and preprocessing paraments that strike a balance between repeatability and 
reproducibility are recommended. Considering tradeoffs between image filters and image quality and the find-
ings from Delgadillo et al.31, CBCT images in this study were reconstructed using Very Low noise suppression, 
when applicable, and Sharp convolution filter. Since CT has higher image quality and has been shown to be useful 
for modeling and predicting outcome25, it would be useful if some predictive feature were reproducible to daily 
CBCT to exploit changes during treatment that are predictive to patient outcome. However, the reconstruction 
parameters used in the clinic are typically Medium noise suppression, when applicable, and standard convolu-
tion filter. The default clinical image reconstruction settings were also included to compare the delta-radiomics 
feature model performance for CBCT with reconstruction parameters more typically used in other clinics. An 
example of a reconstructed prostate CBCT image using the different reconstruction parameters considered in 
this work is shown in Supplementary Fig. 1.

Image processing, as defined by IBSI, includes procedures such as interpolation, range-re-segmentation, dis-
cretization (quantization), and image filtering32. The quantization algorithm refers to how the image intensities 
are quantized into discrete bins. Collewet normalization is a normalization where the gray levels of the ROI are 
normalized from the range of [µR − 3σR ,µR + 3σR] where µR was the mean and σR was the standard deviation 
of the ROI gray levels33. The IBSI notation refers to this type of Collewet normalization as a re-segmentation 
method RS:3σ 7ACA​32. The work by Delgadillo et al. suggested that the Lloyd-Max quantization algorithm and 
Collewet normalization provided the best balance between repeatability and reproducibility of CBCT-based 
radiomic features31. The Lloyd-Max quantization algorithm is an algorithm where bin levels are assigned in a 
way that minimizes quantization error34,35. For this reason, the Lloyd-Max quantization algorithm with Collewet 
normalization (Llo-1) was applied to the reconstructed daily CBCT images. The most basic quantization algo-
rithm is the Uniform quantization algorithm that defines bins by evenly distributing them from lowest to highest 
grey level. In the IBSI notation the uniform quantization is known as an intensity discretization with fixed bin 
number32. The Uniform quantization algorithm without Collewet normalization (Uni-0) was also applied to the 
reconstructed daily CBCT images to generate a parallel data set to the reconstructions with Llo-1. The reason 
for also considering Uni-0 was to analyze the capability of producing models using the most basic form of image 
quantization. Previous work on the CBCT-based radiomics of prostate showed that the number of quantization 
bins did not have a large effect on the repeatable and reproducibility of radiomic features, but the most repeatable 
and reproducible radiomic features typically did have 256 quantization bins31. Thus, the number of quantization 
bins was set to 256, or 8 bits to be consistent.

Prostate contours.  The prostate served as the region of interest (ROI) for the radiomic feature extrac-
tion. Published studies have found that patients with large prostates (> 50 cc) develop significantly more acute 
and late urinary toxicity than patients with small prostates after EBRT, most likely due to an inverse correla-
tion between the volume of inflamed prostatic tissue and urethral patency36,37. Importantly, this increased GU 
toxicity in patients with large prostate volumes is considered a direct result of prostate RT, and not a reflection 
of differences in underlying urinary function or bladder dosimetry36. The urethra is a distensible luminal organ 
acutely sensitive to extramural inflammation, and tissue volume changes arising anywhere within the prostate 
can impact lower urinary tract outflow. Based on these considerations, in our study plan the entire prostate 
including the urethra was segmented for radiomic analysis and modeled for prediction of intra- and post-RT GU 
adverse events. A team of radiation oncologists with expertise in prostate cancer RT delineated the prostate on 
the planning CT (pCT) with the aid of MRI. First, prostate contours were propagated from the pCT to the daily 
CBCTs (both sCBCT and iCBCT) by applying the shifts from rigid registration used for daily patient setup. The 
prostate may change in volume or shape between the planning CT and daily CBCT, and other inconsistencies 
due to registration errors in the prostate contour may occur. In order to manage these discrepancies, a radia-
tion oncologist reviewed the daily CBCT prostate contours and when needed, corrected the contours directly 
on the CBCTs utilizing imaging software (MIM, ver. 6.8.1, MIM Software Inc., Cleveland, OH). Gold fiducial 
artifacts were removed from prostate contours on CBCT images prior to RF extraction using the algorithm 
described in Delgadillo et al.31. The fiducial artifact removal algorithm sets an artifact threshold defined with 
range [µAL − 3σAL,µAL + 3σAL] where µAL is the mean and σAL is the standard deviation of the voxel intensity 
levels on layers not containing fiducial artifacts. On layers containing fiducial artifacts, a mask was generated by 
defining a circle of 5 mm centered on the fiducial marker, including pixels that exceeded the artifacts threshold. 
Typically, metal streaking artifacts in prostate radiate outwards from the center of the fiducial. To capture this 
aspect, masks were generated to overlayed pixel mask lines between the distal artifact pixels to the center of the 
fiducial. An example of the fiducial artifact removal is shown in Supplementary Fig. 2. Fiducial artifact removal 
resulted in a mean percent decrease of 18% in the prostate volume. Though information is lost, removal of 
fiducial artifacts allows for the use of 3D radiomics. A limitation of other radiomics studies in the presence of 
fiducial artifacts is that they only consider 2D radiomics on one slice that was chosen because it contained no 
fiducial artifacts38.

Description of delta‑radiomic features.  Forty-two RFs were extracted from prostate contours on 
daily CBCT images. Forty-two RFs were considered because they represent RFs from the most commonly used 
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classes. Moreover, many more radiomic features are possible though research has demonstrated that many radi-
omic features are intercorrelated39,40. RFs were calculated using the MATLAB (MATLAB, ver. 2020b, Math-
Works Inc., Natick, MA) “Radiomics” package developed by Vallieres, et al. in combination with in-house code 
to extract 3D bitmaps of the ROI using the DICOM structure files from the CT DICOM files41. Textural features 
were calculated from five RF classes including gray-level co-occurrence matrices (GLCM), Neighborhood Gray-
Tone Difference Matrix (NGTDM), gray-level run length matrices (GLRLM), and gray-level size zone matrices 
(GLSZM), and first order statistical features. These features are described in detail in Delgadillo et al., including 
the Image Biomarker Standardization Initiative (IBSI) code equivalent31,42. The full list of RFs along with their 
IBSI code equivalent are shown in Supplementary Table S3. While forty RFs were IBSI compliant, NGTDM 
Coarseness and Strength were not IBSI-compliant. Those definitions can be found in Amadasun and King43. 
In addition to these forty-two features, volume-normalized versions NGTDM Strength, NGTDM Busyness, 
NGTDM Coarseness, GLSZM GLN, GLRLM GLN, and GLRLM RLN were also considered.

The prostate volume can impact radiomic feature analysis because it is known to correlate with GU 
toxicities36,37. Other researchers have also noted that a region of interest’s volume can have a strong correlation 
with radiomics features and can thus have a confounding effect on radiomic analysis44–46. Three approaches 
were used in this study to account for the effects of prostate volume on radiomic analysis. First, the extracted 
images were isotopically resampled to a 1 mm voxel size in order to reduce voxel size dependence of radiomic 
features45,46. Second, volume normalizations (VN) from Shafiq-ul-Hassan et al.45 was used for NGTDM Strength, 
GLSZM GLN, GLRLM GLN, and GLRLM RLN volume normalizations (VNF) from Fave et al.44 were used for 
NGTDM Busyness and NGTDM Coarseness. Third, prostate volume was included the RF space along with the 
other previously mentioned RFs.

To make the changes in RFs between patients more comparable, RFs were normalized to the first fraction. 
The delta-radiomics feature of a given RF (DRF) was defined as:

where RFN is the RF value of the Nth fraction and RF1 is the RF value of the 1st fraction.

Using biologically effective dose (BED) to bin radiomic features from different fractionation 
schedules.  The patients considered in this study were treated with a variety of dose fractionation schedules 
as summarized in Supplementary Table S1. Time points were considered on a BED binned basis to account for 
the different schedules. BED was calculated using the formula:

where n is the number of fractions, d the dose per fraction, and α/β is the linear-quadratic ratio for the specified 
tissue. An α/β = 3 was used to account for dose delivered to the prostate for the BED calculation47. DRFs were 
averaged per accumulated BED bins between 20 to 120 Gy BED bins with a bin width of 20 Gy. A 20 Gy BED 
bin width was chosen as a compromise between the standard 80 Gy in 40 fraction treatment, which includes 6 
fractions per BED bin, and the moderately hypofractionated 70.2 Gy in 26 fraction treatment, which includes 4 
fractions per BED bin. Thus, a 20 Gy BED bin roughly represents one week of treatment. The workflow for the 
extraction of delta-radiomics features along with BED bin averaging is shown in Fig. 1.

Clinical endpoints.  Clinical endpoints considered were acute and sub-acute GU adverse events graded per 
CTCAE v5.0 and total International Prostate Symptom Score48,49 (IPSS). Acute GU toxicities were defined as 
toxicities that occurred before the end of RT and sub-acute GU toxicities were toxicities that occurred after RT. 
GU toxicities considered were frequency, nocturia, dysuria, urgency, urinary obstructive symptoms, and incon-
tinence. A summary of the percentages of events for the outcomes and BED levels is shown in Supplementary 
Table S2. A visual representation of the categorization of the clinical endpoints is shown in Fig. 2.

GU toxicities.  Logistic regression models were built by categorizing GU toxicities based on the max severity 
after their respective time point. For example, only toxicities that occurred after the patient accumulated 20 Gy 
was considered for the 20 Gy BED bin. For sub-acute GU toxicities, only toxicities occurring after the end of 
treatment were considered. Thus, the sub-acute GU toxicities endpoint did not change with the BED bin. For the 
logistic regression, GU toxicities were further categorized by their CTCAE v5.0 grade:

•	 Category 1: Maximum severity ≥ grade 2
•	 Category 0: Maximum severity < grade 2

IPSS.  From a clinical perspective, the change in IPSS due to treatment was the relevant metric to describe how 
a patients urinary related quality of life changed due to the radiation therapy. Consequently, the ∆IPSS is defined:

where IPSSf  is the patient’s final score after treatment and IPSSi is the patient’s initial score before treatment. For 
the logistic regression, ∆IPSS were categorized as:

DRF =
RFN − RF1

|RF1|
,

BED = nd

(

1+
d

α/β

)

,

�IPSS = IPSSf − IPSSi ,
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•	 Category 1: ∆IPSS < grade 0
•	 Category 0: ∆IPSS ≥ grade 0

A low IPSS score indicates that the patient has few to no occurrences of urinary-related symptoms on the 
IPSS questionnaire and a high IPSS score indicates more occurrences of lower urinary tract symptoms (LUTS). 
Consequently, a positive ∆IPSS indicates a detriment to the patient and a negative ∆IPSS indicates an improve-
ment to the patient.

Model building and data analysis.  Delta-radiomics models of acute GU toxicities, sub-acute GU tox-
icities, and ∆IPSS were generated using logistic regression. Model building and data analysis were performed 
using a statistics and machine learning toolbox from scientific computation software (MATLAB, ver. 2020b, 
Math-Works Inc., Natick, MA). Models were built for every BED bin to analyze model predictive properties as a 
function of time. The model building and data analysis workflow are shown in Fig. 3.

Figure 1.   Extraction of delta-radiomic features (DRF) from prostate daily CBCT images for analysis and model 
building.

Figure 2.   Visual representation of categorization of clinical endpoints for this study.
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The feature selection phase is the first phase of the model building and data analysis workflow. The concept 
is to ultimately choose the DRF that will go into the final models. All BED bins were considered together as 
one cohort in the feature selection phase to keep the DRF allowed in the model to be consistent across all BED 
bins. One could consider a scenario where feature selection is performed independently for each BED bin, but 
it was decided that this would add more uncertainty and make it more difficult to compare model performance 
as function of BED.

A Random Forest approach was used for feature selection50,51. Feature selection was considered independently 
for acute toxicities, sub-acute toxicities, and IPSS. The random forest contained 500 trees and two-thirds of the 
patients in each bag. At each tree, 7 radiomic features were used to prevent overfitting using the convention that 
the number of radiomic features at each tree should be limited to the square root of the total number of features 
in the feature space52. Often for modelling with multiple variables, some input predictor variables will turn out to 
be more relevant than other predictor variables. One way to measure predictor performance is the Gini index. The 
Gini index is estimated by first accumulating the changes in the risk due to splits on every predictor and by then 
dividing the sum of the number of branch nodes52. Consequently, the radiomic features were ranked using the 
Gini index to select the most important delta-radiomics features. An example of the Gini index is shown in Fig. 4.

In previous work by Traverso et al., 80% of 843 radiomics features they considered were inter-correlated 
and 30% of the radiomic features correlated with volume39. This could lead to radiomic features that do not 
contribute very much new, if any, information in terms of building the model. Consequently, cross-radiomic 
feature correlation matrices were calculated the Pearson correlation between radiomic features for all patients 
and combination of radiomic features, including volume. Correlation matrices were built for every reconstruc-
tion and preprocessing method considered in this work. An example of the radiomic feature correlation matrix 
is shown in Fig. 4. A cross-radiomic feature correlation threshold of greater than 0.8 was used to determine if a 
given radiomic feature was strongly correlated with another53. The list of radiomic features in the Gini ranking 
was filtered by only keeping the radiomic feature with the highest Gini index in cases where a set of radiomic 
features correlated strongly with each other. Thus, correlated radiomic features were removed from consideration 

Figure 3.   DRF model and analysis workflow.
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for feature selection. Then, the most important radiomic features were selected by analyzing the Gini index of 
non-correlated radiomic feature, as shown in the example in Fig. 4. Starting from the highest-ranked radiomic 
feature, a search was performed to find radiomic features with high importance. A maximum of seven DRF were 
allowed for feature selection to prevent over fitting.

The DRF that passed the feature selection phase were then used for model building. Each BED bin was mod-
eled independently with the constraint that they used the same selected DRF. However, the different clinical 
endpoints and reconstruction and preprocessing parameters were considered in parallel workflows indepen-
dently. The clinical endpoints were modeled using logistic regression since the clinical endpoints considered in 
this generally could be divided into two categories.

A leave one out cross validation with 1000 bootstrapping iterations was used. The benefit of the leave one 
out cross validation approach is that all the data could go into the training of model, but the downside of this 
approach is that there is no external validation54. However, given the limitations of available patient sample size, 
due to patient selection requirements described earlier, it was best approach to use only internal validation for 
this pilot study. A future work should allow for more patients and to utilize external validation set. The benefits 
of using a leave one analysis over other cross validation methods that assign a greater percentage of data are that 
more data is included in the training set. Finally, the area under the curve (AUC) and their confidence intervals 
and receiving operating characteristic curves (ROC) were calculated. In this work, we considered Delta-radiomics 
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Figure 4.   During the feature selection phase, correlated DRF were filtered out from (a) the initial predictor 
importance ranking to produce (b) the final predictor importance ranking after removing the lower ranked 
correlated features using (b) the Correlation Matrix between the DRF. This example corresponds to iCBCT-
SHARP-VeryLow-Llo-1 for Sub-Acute GU toxicity.
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models with AUC of 0.7–0.8 as moderate performing, and AUC greater than 0.8 as strong performing. For IPSS 
models only, the baseline IPSS, which was acquired prior to radiotherapy, was included in the feature space as 
well.

Results
AUC performance of the models are shown in Figs. 5, 6, 7, 8, 9 and 10. The performance of the models varied 
due to several factors including the different clinical endpoints, the reconstruction algorithm, the feature pre-
processing method, and the accumulated BED. The results of the radiomic feature selection are shown in Table 2. 
Both the number of selected features and the specific features selected varied depending on the clinical endpoint 
and reconstruction and pre-processing method.

Acute GU toxicity.  The comparison of Acute GU toxicity delta-radiomics model performance for different 
reconstruction and preprocessing methods is summarized in Fig. 5. The range of median AUC values for the 
iCBCT-based models of Acute GU toxicity was between 0.64 and 0.71 in the box and whisker plot shown in 
Fig. 5. The range of median AUC values for the sCBCT-based models of acute GU toxicity was between 0.69 and 
0.74. While there was more variation for iCBCT-based models than the sCBCT-based models for the different 
reconstruction and preprocessing methods considered, a similar noticeable drop in AUC can be seen for both 

(c)

Figure 4.   (continued)
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Figure 5.   Acute GU Toxicity AUC of delta-radiomic models vs Reconstruction and Preprocessing methods. 
The AUC collected over 1000 iterations of the leave-one analysis and over all BED bins.

Figure 6.   Acute GU Toxicity AUC of delta-radiomic models vs BED bins. The AUC collected over 1000 
iterations of the leave-one analysis.

Figure 7.   Sub-Acute GU Toxicity AUC of delta-radiomic models vs Reconstruction and Preprocessing 
methods. The AUC collected over 1000 iterations of the leave-one analysis and over all BED bins.
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Figure 8.   Sub-Acute GU Toxicity AUC of delta-radiomic models vs BED bins. The AUC collected over 1000 
iterations of the leave-one analysis.

Figure 9.   ∆IPSS AUC of delta-radiomic models vs Reconstruction and Preprocessing methods. The AUC 
collected over 1000 iterations of the leave-one analysis and over all BED bins.

Figure 10.   ∆IPSS AUC of delta-radiomic models vs BED bins. The AUC collected over 1000 bootstrapping 
iterations using the leave-one analysis.
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iCBCT and sCBCT when comparing no Collewet normalization (0) to with Collewet normalization (1). Fig-
ure 5, for example, shows that the median AUC is equal to 0.71 for iCBCT-Std-Medium without Collewet nor-
malization and equal to 0.64 for iCBCT-Std-Medium with Collewet normalization. The median AUC drops 0.07 
for iCBCT-Std-Medium with the application of Collewet normalization. For sCBCT, the median AUC drops by 
a smaller magnitude. The reconstruction and preprocessing methods of iCBCT-Std-Med-Uni-0 and sCBCT-
Sharp-Uni-0 showed the smallest spread and highest median AUC in their respective categories over all the BED 
bins and bootstrapping iterations.

The performance of the delta-radiomics models for the final selected Acute GU toxicity as function of BED 
is shown in Fig. 6. The sCBCT-based model for acute GU toxicity consistently has a median AUC greater than 
0.7, while the iCBCT-based model falls below AUC of 0.7 between 40 and 80 Gy accumulated BED and oth-
erwise is above 0.7 AUC. The AUC of the sCBCT-based models also drop slightly during the middle range of 
accumulated BED values. The AUC of the Acute GU toxicity models is highest after 100 Gy accumulated BED 
bins, though the Acute GU toxicity dataset starts to approach outcomes more in common with the Sub-Acute 
GU toxicity outcomes.

Sub‑acute GU toxicity.  The comparison of Sub-Acute GU toxicity delta-radiomics model performance 
for different reconstruction and preprocessing methods is summarized in Fig. 7. The reconstruction and pre-
processing methods with the largest median AUC were iCBCT-Std-Med-Llo-0 and sCBCT-Std-Uni-0 with 
median AUC equal to 0.78 and 0.83, respectively. The median AUC of the other iCBCT reconstruction and pre-
processing methods were between 0.62 and 0.70. Consequently, the iCBCT-Std-Med-Llo-0 was a clear choice. 
For sCBCT, the choice for selected reconstruction and pre-processing method was remarkably close between 
sCBCT-Std-Llo-1 and sCBCT-Std-Uni-0. However, sCBCT-Std-Uni-0 was chosen due to its larger median and 
smaller spread in values over all BED bins and bootstrap iterations.

The performance of the selected sub-acute GU toxicity delta-radiomics models versus accumulated BED 
is shown in Fig. 8. A notable difference between the iCBCT-based model and sCBCT-based model is that the 
iCBCT-based models often have a larger spread values which can be seen through the spread in the interquartile 
range, the box. The spread of the minimum and maximum values, the whiskers, are also larger for iCBCT-based 
models. For both the iCBCT and sCBCT based models, the sub-acute GU toxicity there appear to be two local 

Table 2.   Summary of the top DRF found after the feature selection phase organized by clinical endpoint and 
reconstruction and pre-processing method. Asterisks were placed on the iCBCT and sCBCT reconstruction 
and pre-processing methods with the best performing AUC in their respective categories.

Clinical endpoint Reconstruction and pre-processing method N Selected features

Acute iCBCT SHARP VeryLow Llo 1 6 GLCM Correlation, GLCM Homogeneity, GLSZM GLN-VN, Global Skewness, NGTDM Coarseness-
VN, Prostate Volume

Acute iCBCT SHARP VeryLow Uni 0 3 GLCM Correlation, NGTDM Coarseness-VN, Prostate Volume

Acute iCBCT STD Med Llo 1 4 GLCM Contrast, GLCM Dissimilarity, GLSZM LZHGE, Prostate Volume

Acute iCBCT STD Med Uni 0* 4 GLSZM LZHGE, NGTDM Coarseness-VN, NGTDM Strength, Prostate Volume

Acute sCBCT SHARP Llo 1 6 GLCM Energy, GLRLM LRHGE, GLSZM GLN-VN, Global Kurtosis, Global Skewness, NGTDM Busy-
ness

Acute sCBCT SHARP Uni 0 5 GLRLM GLN-VN, GLSZM GLN, GLSZM GLN-VN, NGTDM Coarseness, Prostate Volume

Acute sCBCT STD Llo 1 4 GLSZM GLN, GLSZM GLN-VN, Global Kurtosis, Prostate Volume

Acute sCBCT STD Uni 0* 6 GLRLM GLN, GLRLM GLN-VN, GLSZM ZSN, GLSZM ZSV, Global Kurtosis, Prostate Volume

Sub-Acute iCBCT SHARP VeryLow Llo 1 3 GLCM Contrast, GLCM Correlation, NGTDM Contrast

Sub-Acute iCBCT SHARP VeryLow Uni 0 3 GLCM Correlation, GLRLM RLN, GLSZM ZSN

Sub-Acute iCBCT STD Med Llo 1* 6 GLCM Contrast, GLCM Correlation, GLCM Dissimilarity, GLSZM LZLGE, NGTDM Coarseness, 
NGTDM Strength

Sub-Acute iCBCT STD Med Uni 0 5 GLSZM GLN, GLSZM LZHGE, GLSZM LZLGE, GLSZM ZSV, NGTDM Coarseness

Sub-Acute sCBCT SHARP Llo 1 4 GLCM SumAverage, GLRLM LRHGE, GLSZM GLN, GLSZM LZHGE

Sub-Acute sCBCT SHARP Uni 0 5 GLCM Correlation, GLRLM GLV, GLSZM GLV, GLSZM ZSV, Global Skewness

Sub-Acute sCBCT STD Llo 1 7 GLCM Variance, GLRLM RLN, GLSZM GLN, GLSZM LZLGE, Global Kurtosis, NGTDM Contrast, 
NGTDM Strength

Sub-Acute sCBCT STD Uni 0* 4 GLRLM RLN, GLSZM ZSN, Global Skewness, NGTDM Coarseness-VN

∆IPSS iCBCT SHARP VeryLow Llo 1 6 GLRLM GLN, GLRLM LRLGE, GLRLM RLN, GLSZM ZSN, IPSS Baseline, NGTDM Contrast

∆IPSS iCBCT SHARP VeryLow Uni 0 4 GLRLM RLN, GLSZM SZE, IPSS Baseline, NGTDM Coarseness

∆IPSS iCBCT STD Med Llo 1 4 GLRLM RLN, GLRLM RLV, GLRLM SRE, IPSS Baseline

∆IPSS iCBCT STD Med Uni 0* 4 GLRLM RLN, GLSZM SZLGE, GLSZM ZP, IPSS Baseline

∆IPSS sCBCT SHARP Llo 1* 4 GLRLM GLN, GLRLM RLN, Global Variance, IPSS Baseline

∆IPSS sCBCT SHARP Uni 0 3 GLRLM RLN, IPSS Baseline, NGTDM Contrast

∆IPSS sCBCT STD Llo 1 6 GLCM Variance, GLRLM GLN, GLRLM RLN, GLSZM LZE, Global Variance, IPSS Baseline

∆IPSS sCBCT STD Uni 0 6 GLCM Correlation, GLRLM RLN, GLSZM GLN-VN, IPSS Baseline, NGTDM Coarseness, NGTDM 
Contrast
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maxima in the AUC. For iCBCT models, the maximum AUC BED points are 40 and 80 Gy, while for the sCBCT 
they are 40 and 100 Gy. The highest AUC corresponds to sCBCT models that achieve AUC greater than 0.88 for 
the 40 and 100 Gy BED bins. The sCBCT models more often produced AUC greater than 0.8 than the iCBCT 
models for sub-acute GU toxicity.

∆IPSS.  The comparison of ∆IPSS delta-radiomics model performance for different reconstruction and 
preprocessing methods is summarized in in Fig. 9. In comparison to the GU toxicity models in the previous 
sections, the ∆IPSS models show less variation between the iCBCT and sCBCT-based models. The selected 
reconstruction and pre-processing methods for ∆IPSS were iCBCT-Std-Med-Uni-0 (0.73 median AUC) and 
sCBCT-Sharp-Llo-1 (0.77 median AUC) for iCBCT and sCBCT, respectively.

The performance of the selected ∆IPSS delta-radiomics models versus accumulated BED is shown in Fig. 10. 
Both the iCBCT and sCBCT delta-radiomics models were greater than 0.7 AUC. With an AUC of 0.83, the 
sCBCT showed strong performance after 20 Gy accumulated BED but decreases thereafter. For iCBCT, the 
∆IPSS model AUC oscillates between 0.76 and 0.71 for the various BED bins throughout the course of treatment.

Discussion
The aim of this pilot study was to test the feasibility of creating radiomic models of sufficient quality to predict 
acute toxicity, sub-acute GU toxicity, and ∆IPSS from quantitative radiomic features extracted from daily CBCT 
images acquired during definitive RT of PCa. This study found strong evidence supporting the predictive poten-
tial of CBCT-based delta-radiomics. In comparison to other imaging modalities like diagnostic MRI and planning 
CT, CBCT images suffer from poorer image quality. While several CBCT-based delta-radiomics studies have been 
published in the past, this approach represents a novel strategy for PCa by using CBCT images29,44,55–59. Moreover, 
previous studies in other cancer sites have shown that CBCT-based delta-radiomics is viable for building predic-
tive models29,44,55–59. In this work, we have demonstrated that moderately performing models (AUC > 0.7) were 
possible for acute and sub-acute GU Toxicity as early as the initial 20 Gy of accumulated BED, which translates 
to the first week of definitive RT. The ∆IPSS model had greater than 0.85 median AUC based on our internally 
validated test using the leave one out analysis with 1000 iterations bootstrapping.

This study sought to keep image parameters as consistent as possible while also achieving sufficient patient 
sample size to develop models with meaningful statistical power. A unique feature of this study is the collec-
tion of raw projection data from daily CBCT scans, which allowed for retrospective image reconstructions with 
various parameters. Parallel data sets were generated from the raw projection CBCT data using both standard 
back-projection reconstruction and iterative-based reconstruction. It was hypothesized that the iterative-based 
techniques would improve image quality and thus produce better-performing models.

sCBCT-based models often outperformed iCBCT-based models for the three clinical endpoints. This can be 
seen in Figs. 6, 8, and 10. In the box and whisker plots, sCBCT-based models often had a higher median AUC and 
lower spread than the iCBCT-based models. At first glance this appears counter-intuitive since iterative-based 
algorithms should have lower noise and higher image quality. The iterative reconstruction algorithm could be fil-
tering out fine textural details important for quality model building. While iteratively reconstructed CBCT images 
are more appealing to the eye and improve contrast, in the process of smoothing the image the algorithm may 
remove clinically relevant information. Previous studies have shown that an iterative reconstruction algorithm 
with low noise suppression increases radiomic feature repeatability31. Analysis of the modulation transfer func-
tion of CT images has shown that images reconstructed with an iterative algorithm had more attenuation in the 
high spatial frequency portion of the spectrum than standard back-projection reconstruction algorithms60,61. In 
effect, the iterative reconstruction algorithm acts like a low pass filter in spatial frequency. It follows that less high 
spatial frequency information transits the iterative reconstruction, desirable for noise minimization. However, 
other high spatial frequency information and finer image details may be unintentionally lost as a result. In our 
study, the three clinical models all related in some fashion to GU toxicities. Early onset inflammation of prostate 
and urethral tissue due to RT may manifest in subtle textural changes that the iterative reconstruction algorithm 
effaces, leading to less effective prediction of subsequent acute and sub-acute adverse events.

The feature preprocessing method applied to CBCT images and cumulative BED impacted model perfor-
mance. The effect of the preprocessing method was variable depending on the clinical endpoint: For the sub-acute 
models, as shown in Fig. 7, applying Llo-1 pre-processing sometimes increased AUC in comparison to Uni-0, 
while at other times it decreased AUC or had no effect. The role of feature pre-processing in AUC is confounded 
by the selection of different radiomic features for different reconstruction algorithms, as can be seen in Table 2. 
For the ∆IPSS models, other than iCBCT-Std, all reconstruction algorithms have smaller AUC for Uni-0 than Llo-
1, as seen in Fig. 9. However, differences due to preprocessing are very small for the ∆IPSS models. In contrast, 
for all the Acute GU toxicity models shown in Fig. 5, Llo-1 had a lower median AUC than Uni-0. The decreased 
performance seen in the Llo-1 models of Acute GU toxicity could be due to the application of the Collewet nor-
malization, indicated by the "1". Collewet normalization is a method used to remove outliers from the ROI and 
is commonly used in MRI-based radiomics studies33. It could be that the application of Collewet normalization 
leads to a loss in the intensity bias of the image which may contain vital information for model building.

Model performance varied throughout the course of treatment, as noted in Figs. 6, 8, and 10. For the acute 
and sub-acute GU toxicity models there is a dip in model performance midway through treatment, more appar-
ent in acute than in the sub-acute models. Often model performance then improved in either of the final two 
accumulated BED bins (100 and 120 Gy). Within the scope of this pilot study and this sample size, we can only 
hypothesize the reason for the improvement in model performance towards the end of treatment. There could be 
a temporal pattern to toxicity. Patients who experience significant inflammation during the first week are likely 
to develop subsequent acute and subacute symptoms, and patients who develop inflammation toward the end 
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of treatment due to the cumulative effect of radiation are also likely to develop subsequent GU symptoms. In 
between these 2 temporal peaks, the impact of prostate inflammation on eventual toxicity is harder to interpret. 
The best ∆IPSS model (sCBCT-Std-Llo-1) starts out better performing, decreases in performance in the middle, 
and stabilizes towards the end of treatment, as shown in Fig. 10. One notable difference in the ∆IPSS model is the 
use of the baseline IPSS as a covariate in the model. The baseline IPSS has been shown to be a strong predictor of 
post-treatment IPSS62,63. As time progresses and more BED is accumulated to the patient, the difference in time 
increases from when the baseline IPSS was acquired to when the CBCT images were acquired. Consequently, 
it could be that the baseline IPSS becomes more and more irrelevant to the model and leading to a decrease in 
model predictive performance as a result.

Limitations of this study included the presence of image artifacts in daily CBCT, image quality limitations, 
lack of independent validation, use of different dose fractionations, and patient sample size limitations. Most 
prostate patients in this cohort had gold fiducial markers implanted in the prostate prior to RT, resulting in streak 
artifact within the ROI on CBCT images. A gold fiducial artifacts algorithm developed at our institution was 
used to remove streak artifact from the prostate ROI, allowing for 3D radiomics. Other metal artifact strategies 
could be explored, like an iterative algorithm that removes artifacts directly in the raw projections. However, that 
technology is not yet available at our institution and is beyond what can be achieved in the scope of this study.

The limitations of small patient sample size can be overcome over time. However, a challenge is the time spent 
adjusting the contours on the daily CBCT images. A larger patient cohort will make it difficult to replicate the 
results of this study due to time costs. Auto segmentation of the prostate contours through the use of artificial 
intelligence, deep learning, or deformable propagation could greatly reduce the time it takes run radiomics 
studies such as this42. Future work will investigate performance of automated contours in comparison to manu-
ally segmented contours for radiomic analysis. One interesting finding of this study was that sCBCT-based 
delta-radiomics performed well. Most patients were scanned daily with CBCT using standard reconstruction. 
Consequently, it may be possible to greatly increase patient sample size for model building in future studies by 
using patients in our database before iCBCT was implemented in the clinic.

Another limitation of this study is the use of different dose fractionation schemes. To approach an adequate 
patient sample size this study binned the DRF based on the accumulated BED, which ultimately is a biologically 
relevant quantity. The use of different dose fractionation may introduce variables in the patient data set. In an 
internal analysis we found that the models produced using just one dose fractionation were not significantly 
changed with the addition of the patients who had 26 fractions. Most patients in this study were treated with 
very similar dose fractionations. 13 patients were treated on 26 fraction schedules and the remaining 36 patients 
were treated with greater than 37 fraction, as shown in more detail in Supplementary Table S1. A future study 
with a larger cohort could further explore the use of different dose fractionations on DRF.

This study focused on using the CBCT raw projection files to allow for retrospective assessment of differ-
ent reconstruction algorithms and only 50 patients could be included for analysis. In addition, we opted not to 
include patients subjected to different imaging parameters and CBCT imaging modalities over the years, further 
limiting the sample size available for analysis. It remains to be seen if the analysis presented in this project will 
be generalizable to other CBCT imaging modalities and parameters.

Future studies will consider different patient outcomes, accumulate more patients, include an independent 
validation, overcome time inefficiency in the workflow, and provide a clear biologic rationale to explain the 
predictive power of radiomic features. PCa has a long natural history with treatment response and toxicity 
manifesting after many years. Many patients in this study are only 2 years post-RT, before clinical outcomes 
have matured. Other endpoints worthy of consideration for future analysis include intraprostatic persistence 
and recurrence, late toxicity, biochemical control, distant metastasis, and overall survival. This work focused 
on acute and subacute GU toxicities and IPSS since they are documented relatively early in the arc of treatment 
and follow up. As this field further develops, we hope to gain a better understanding of the biological changes 
underpinning these predictive delta-radiomics features.

Conclusion
This pilot study analyzed the performance of CBCT-based delta-radiomics of prostate cancer to predict acute 
and subacute GU toxicity and ∆IPSS. As early as the first 20 Gy BED, corresponding to the first week of RT, 
CBCT-based delta-radiomics features predicted acute and subacute GU toxicity and ∆IPSS with moderate per-
formance (AUC > 0.7). Two acute GU toxicity models had AUC > 0.8. Three sub-acute GU toxicity models had 
AUC > 0.88. The ∆IPSS model had the strongest performance for the 20 Gy BED bin with a median AUC equal 
to 0.83. Early warning of potential RT toxicities can prompt interventions that may prevent or mitigate future 
adverse events18,19.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to being collected 
as part of an ongoing clinical trial. Clinical trial relevant data will be made public upon completion of accrual 
and publication of the primary endpoint. Contact the corresponding author, N.D, to request data from this study.
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