nature communications

Article

https://doi.org/10.1038/s41467-022-34937-8

Sampling of structure and sequence space of
small protein folds

Received: 16 April 2021

Accepted: 10 November 2022

Published online: 22 November 2022

M Check for updates

Thomas W. Linsky"?28, Kyle Noble®%, Autumn R. Tobin®2, Rachel Crow ® 2,
Lauren Carter?, Jeffrey L. Urbauer ®°, David Baker ® € &
Eva-Maria Strauch ®37

Nature only samples a small fraction of the sequence space that can fold into
stable proteins. Furthermore, small structural variations in a single fold,
sometimes only a few amino acids, can define a protein’s molecular function.
Hence, to design proteins with novel functionalities, such as molecular
recognition, methods to control and sample shape diversity are necessary. To
explore this space, we developed and experimentally validated a computa-
tional platform that can design a wide variety of small protein folds while
sampling shape diversity. We designed and evaluated stability of about 30,000
de novo protein designs of eight different folds. Among these designs, about
6,200 stable proteins were identified, including some predicted to have a first-

of-its-kind minimalized thioredoxin fold. Obtained data revealed protein
folding rules for structural features such as helix-connecting loops. Beyond
serving as a resource for protein engineering, this massive and diverse
dataset also provides training data for machine learning. We developed an
accurate classifier to predict the stability of our designed proteins. The
methods and the wide range of protein shapes provide a basis for designing
new protein functions without compromising stability.

Proteins are critical to most biological processes and act as catalysts,
messengers, and transporters, among other tasks. Their sequences
determine their structures, which define their molecular role. Yet, the
natural sequence space only covers a small fraction of possible
proteins’. The evolution of a molecular function generally occurs
through the diversification of a relatively small number of known
protein families. This highlights the power of shape diversity to
increase functional diversity>. Hence, the ability to sample and control
small structural variations with high accuracy represents an essential
advancement in designing proteins with new functionalities. So far, a
few de-novo-designed globular folds®™ have been generated. Still, the
structural diversity within a given fold has not been purposely sampled
and experimentally verified, mainly due to the lack of a versatile

computational infrastructure. Recent advances demonstrated that the
exploration of a Loop-Helix-Loop motif enables geometric sampling of
existing folds®; here, we go beyond and describe how to exhaust the
plasticity of small protein folds at a large scale, sampling each sec-
ondary structure and loop connector to generate shape diversity
within a given fold (Fig. 1, Supplementary Fig. 1).

Control over small geometric variations of a protein is crucial for
engineering a new molecular functionality. For instance, exploring
these shape variations could enable the design of ideally shaped
binding proteins that fit well into a target pocket. With the advent of
oligonucleotide synthesis and experimental screening technology’,
thousands of short genes can be affordably manufactured as single
oligonucleotides in large pools and screened for stability. Proteins up
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Fig. 1| Overview of the FoldArchitect and RosettaScripts integration. a The
FoldArchitect accepts user specification, which includes length ranges of second-
ary structure (SS) and loops, as well as how the distance constraints are applied (for
instance, harmonic constraints). In addition, register shifts and beta bulges can be
specified to introduce larger curvature into beta sheets. We then use the previously
reported fragment insertion protocol' and filter for geometrically realistic back-
bone conformations before designing the sequence of the new construct. After
sequence design, the decoys are screened for their stability using varying con-
centrations of trypsin and chymotrypsin. The information gained from the stable
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designs was fed back into the FoldArchitect. b Various distance constraints (yellow
lines) and secondary structure element pairing can be encoded in a fold-description
file (following an XML format); the XML allows the user to specify next-to-length
variations also, specific or ambiguous distance constraints, also pairing of helices or
helix-sheet-helix, sheet orientations or bulge insertions into beta-sheets.

¢ Polypeptide ABEGO regions within the Ramachandran plot can be specified for
loop connections within RosettaScripts. Source data is provided as Source

Data File.

to 110 amino acids can also be synthesized via assembly methods®.
Combined with yeast surface display methods, this has enabled the
rapid, high-throughput experimental evaluation of the stability of
thousands of proteins at a time’. Although machine-learning-based
approaches for sampling and generating monomeric protein back-
bones have been recently successfully developed™, these methods are
not designed to systematically probe the shape space of a given fold in
a controlled manner. Rosetta-based computational methods for de
novo design of monomeric proteins can systematically sample this
space, but so far have been limited to a relatively small number of
exemplar helical bundles and simple beta-strand-containing topolo-
gies. This limitation is driven by a reliance on static, predetermined
secondary structure lengths and backbone torsion angles required to
form the desired fold. The torsion space of canonical amino acids
within a protein can be summarized into a five-letter alphabet based on
the Ramachandran plot: ABEGO" (Fig. 1c). This extends the secondary
structure description beyond the simple alpha-helical (“A”) and beta-
sheet (“B”) descriptors and provides a more detailed description of the
complex loop conformational space. Design trajectories of most Ros-
setta de novo backbone design protocols have used predefined
ABEGO sequences (as a “blueprint”) with the exception of the SEWING

method, which stitches together alpha-helices™. In these protocols,
proteins are folded in silico by inserting structured fragments curated
from the PDB*"*'* with the desired ABEGO sequence into an extended
chain. This approach is computationally intensive and has limited
scalability for larger proteins because determining the ABEGO
sequence needed to fold a viable backbone requires expert interven-
tion and multiple manually defined steps. Sampling the shape space
using these methods is challenging because variations within any
secondary structure lengths or loop connections require a new tra-
jectory and blueprint file, and often require concerted and context-
dependent changes to multiple secondary structures (e.g. elongation
of a strand may require elongating a paired strand).

Here, we provide a computational pipeline for the massively
parallel design of proteins from scratch to rapidly explore the shape
diversity of protein folds and take advantage of high throughput
experimental methods to evaluate it (Supplementary Fig. 1). Unlike
other approaches that sample only conformation during folding tra-
jectories, our approach also samples topology during each trajectory
without prior knowledge of residue-by-residue features. It enables the
design of a diverse representation of a given fold and allows sampling
of (1) the lengths of each secondary structure element; (2) the
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distance(s) between secondary structure elements (which can also be
assessed as a distribution); (3) the alignment of a-helices and S-strands
and, if more than two strands are involved, their register shifts; and
lastly (4) the introduction and placement of bulges to introduce cur-
vature into S-strands’ (Fig. 1). The framework automatically applies
previously discovered protein folding rules and sequence biases for
loop connections* and is extendable to new structural features. The
RosettaScripts XML scheme allows modification of the design strategy
without programming knowledge.

Results
Overview of the design infrastructure and folds designed
The number of amino acids encoded within a single oligonucleotide in
large pools caps the number of independent secondary structure ele-
ments within each protein. For a 230 nt oligomer, the maximum length
is ~64 amino acids, given that the end parts of the DNA fragments are
used for homologous recombination into the yeast surface vector. This
roughly allows up to about six independent secondary structure ele-
ments (meaning sheet or helix) per fold with loop connectors and their
variations, which is sufficient for high throughput synthesis and
screening of several diverse fold sub-families. We designed several
alpha/beta (proteins are structurally composed of alternating a-helices
and S-sheets in which the beta sheets are mostly parallel, Supplemen-
tary Fig. 2), alpha+beta (a-helices and f-sheets that occur separately,
Supplementary Fig. 2), and several non-parametric a-helical folds.
These included three- and four-helical bundles (3H and 4H, respec-
tively), supercoiled 4-helical bundles (“coil”), beta-grasps, ferredoxins,
thioredoxin, and two folds not seen in nature (Supplementary Fig. 3).
To create these folds, the FoldArchitect reads a fold definition and
divides the fold into segments (two secondary structure elements with
a loop connector) that are folded and validated incrementally. During
the folding trajectory of each segment, different features, such as
secondary structure length and loop types, are varied dynamically to
find the best set of properties for the new segment in the context of the
previously folded segments. This results in a diverse set of backbones
for a given fold (Supplementary Fig. 4). For each beta-strand-
containing fold, we introduced loose distance constraints (Suppl.
XML files, Supplementary Fig. 5, Methods) to bias sampling toward
well-formed sheets. The FoldArchitect automatically generates the
beta-strand pairing between neighboring strands, and their directions
(parallel versus antiparallel) can be specified. It uses predefined protein
folding rules obtained through the design of ferredoxins®. As part of
this work, we identified additional design rules that we have now also
incorporated into the sampling of loop conformations. After in silico
folding of the complete protein, we developed two different sequence
design protocols. For the first protocol, we sampled rotamers of a
select set of amino acids based on solvent exposure. It starts with low
repulsive terms to find optimal sidechain interactions. As this scoring
term increases, clashes are relieved while the strongest interactions
typically remain intact. As a second protocol, we took advantage of
residue “pair-motifs”. Pair-motifs are side-chain pairings observed in
high-resolution crystal structures of natural proteins and have pre-
viously successfully guided the design of de novo oligomeric
assemblies”. Before executing the same rotamer-based design
approach as described for the first protocol, we first introduced paired
amino acids to design the core of the proteins; this also reduced the
compute time for the sequence design steps. Further, it substantially
improved the rate of successful designs for 3-helical bundles (Sup-
plementary Fig. 6). This is likely because motifs were selected heavily
from larger helical protein-protein interfaces”. We selected designs for
each topology and sequence design protocol based on a set of filter
terms and their computed energies (Methods, Supplementary meth-
ods). Each design has a unique three-dimensional conformation and a
unique sequence predicted to be near-optimal for that conformation
(Supplementary Fig. 4).

High throughput evaluation of designed proteins

We experimentally characterized 31,500 sequences reflecting these
eight folds using yeast surface display, including about 2300 rando-
mized sequences as negative controls. To estimate protein stability,
the library of all designed proteins displayed on yeast was subjected to
titrations of trypsin and chymotrypsin and uncleaved proteins were
sorted into pools for each protease concentration’ (Supplementary
Fig. 7). A direct correlation between the EC50 values of digested pro-
tein variants with their free energy was previously established’.
Selections were performed using fluorescence-activated cell sorting
(Methods); we used next-generation sequencing to count sequences
from each pool. Additional selections and duplicates were also per-
formed compared to the previously published method to improve
accuracy (Methods). Using the counts obtained through sequencing,
we fit EC50 values for over 31,180 sequences (including control
sequences) for both proteases and calculated a stability score for each
(Supplementary Fig. 8). To improve comparability between assays, we
added five proteins (Fig. 2c) spanning a wide range of previously
measured stability scores using the same protease-based stability
evaluation procedure as a “stability score ladder” internal control. This
ladder allows adjustment for the activity of each enzyme batch.
Digestion of the randomized sequences enabled us to determine the
stability threshold (Supplementary Fig. 9).

Biochemical analysis of individual, soluble designs to validate
high throughput screen

We randomly picked 21 designs with different topologies and stability
scores for detailed characterization (Supplementary Table 1). Of these,
19 proteins expressed in E. coli which were then analyzed via size
exclusion chromatography (SEC) to monitor the presence of aggre-
gate, dimer, or monomeric conformations. While all-alpha-helical folds
were dominantly monomeric, more dimer and aggregate formation
was observed for folds containing beta-strands. All F2 and F4 designs
characterized appeared to be largely in a dimeric conformation with
only little of the protein found in the monomer fraction (Supplemen-
tary Fig. 10). Dimeric and monomeric fractions are not in equilibrium
as they remain in the same state even after several days (Supplemen-
tary Fig. 10).

Using the monomeric fraction of all expressed proteins, we
measured their circular dichroism (CD) spectra to assess their sec-
ondary structure formation and found all but two folded (Fig. 3, Sup-
plementary Fig. 11, Supplementary Table 1). When comparing
predicted CD spectra (using the PDBMD2CD software'®) with experi-
mentally determined spectra (Supplementary Fig. 11), we found that
15/19 were similar to the predictions, despite the limitations of these
type of predictions. The exceptions were bGM_166, bGM_649.2, and
F4M _256, which are likely misfolded, and ThioFL24, which we expected
to be unfolded due to its low stability score (Supplementary Table 1).
This protein was used as a control for our high throughput protease
screen. It showed a high trypsin stability score, but a negative score for
chymotrypsin, indicating it should be unfolded. ThioFL24 was soluble
and monodisperse by SEC (Fig. 3). The CD spectrum indicated that it
retained some secondary structure (Fig. 3) but was far from its pre-
diction. This demonstrates that using two proteases is essential for this
high-throughput screen. Because the monomeric version of F4M_256
was misfolded, we examined its dominant dimer fraction. We observed
a secondary structure in the CD spectrum (Supplementary Fig. 11). It is
possible that these folds do not have an optimized folding path and
have not experienced any evolutionary selective pressure that would
avoid dimerization. Further investigation would be needed to prove
these assumptions. To assess whether these proteins are folded
beyond their secondary structure, we measured the '"H NMR spectra
for four designs (Supplementary Fig. 12) and confirmed they indeed
formed structured conformations. We measured thermostability for
eight designs (Fig. 3). We found them either to be stable at high
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Fig. 2 | Characterization of designed small proteins using a protease-based high
throughput screen on the yeast surface and biochemical analysis of individu-
ally expressed proteins. a Cartoon scheme of yeast surface display experiment.
Unfolded proteins are cleaved and, thereby, will not be fluorescently labeled.

b FITC fluorescence after incubation of yeast cells displaying the designed proteins
as a pool with increasing concentration of trypsin; cells were labeled with a c-Myc

antibody conjugated to FITC. ¢ Trypsin and chymotrypsin stability of previously
evaluated proteins with known stability scores were included in the pool of the
query proteins as a “stability score ladder” to help adjust for protease activities.
d The number of designs from each fold with indicated stability score or higher was
used to compute e the “success rate” of each designed topology for a given stability
score bin. Source data is provided as Source Data File.

temperatures or capable of refolding to their original folded state after
being denatured (Fig. 3). We then predicted their structures using the
AlphaFold2-based ColabFold" interface, which allows running without
the use of a multiple sequence alignment as they are de novo designed
proteins (Supplementary Fig. 13). The topologies of all folds were
predicted as modeled (within 0.4-3 A), except for Thio_330 and bG-
518.1. For the thioredoxin, the last beta-strand was predicted to be part
of the previous helix, whereas the beta grasp fold was predicted to
have a strand swap of the last two strands. AlphaFold2 currently has
the highest prediction accuracy based on Critical Assessment of
Structure Prediction (CASP)". It is a fast and complementary structure
prediction method to Rosetta-based methods and may be helpful to
pre-select correctly predicted models to be evaluated experimentally.
However, parameters for this should be carefully assessed in more
detail and experimentally validated to identify ideal thresholds.

Evaluation of designed fold families

The different folds varied in their success rates (fraction of designs
with stability score > 0.5) using our protease digestion assay (Fig. 2).
Three helical bundles generally showed the highest success rate; this is
consistent with the previous report’. The invented folds F2 and F4 had
higher success rates than the naturally occurring folds that contained
alpha helices and beta-strands; thioredoxin and the super helical-
coiled four helical bundles (coil) had the lowest. For the 4H and coil
designs, it is possible that fewer secondary structure contacts, a
smaller core, and an additional loop compared to the 3H designs may
decrease the margin for error.

To explore small alpha+beta proteins, we sampled variations of
the beta-grasp (Supplementary Fig. 14) and variations of the ferredoxin
(Supplementary Fig. 15) fold. Previous attempts to design very small
versions of the ferredoxin fold have failed, resulting in unfolded
proteins®. We extensively sampled secondary structure lengths and
registers for the ferredoxin fold and found that there are indeed

geometric limitations (Supplementary Fig. 15), likely due to the
inherent requirement of right-handed strand-helix-strand motifs. We
were able to design small and stable variations of this fold as small as 55
amino acids in length (Supplementary Fig. 15E).

Parametrically de novo designed helical bundles® or repeat
proteins” are highly stable. However, the non-parametric small helical
bundle fold space can provide more diverse shapes which have not
been extensively sampled, particularly the 4H bundles. To address this,
we designed a variation of 4H bundles, “coil” designs, that alternate
between shorter and longer helices, using specific distance constraints
to guide supercoiling. Furthermore, protein design rules for the loop
connections of two alpha helices and angle variations were missing up
to this point; having revealed these with our 3H and 4H bundles, we
implemented these connector rules to our design platform (Supple-
mentary Figs.16-18). To further test our design algorithm, we explored
alphatbeta folds beyond those that are naturally occurring. We
derived affBpa and BaafpBp folds, named F2 and F4 (Supplementary
Fig. 3). F2/4 designs expressed well and showed distinct peaks using
SEC. Although there were aggregates or higher order oligomers pre-
sent, the designs appeared to be mostly dimeric after expression in E.
coli and Ni-NTA purification (Supplementary Fig. 9). This suggests a
mechanism at work that is not captured by our design method; it is
possible that the lack of interconnectedness in these folds enables the
fold to become a swapped dimer. The thioredoxin fold, for example,
contains a B2 - 3 strand swap that interweaves the beta strands of the
thioredoxin fold and may prevent the formation of domain swapped
dimers. Folds that have a direct linear connectivity of their secondary
structure elements, such as F2 and F4, may require further optimiza-
tion through disulfide connections or, perhaps, negative design that
discriminates against a swapped dimeric conformation. Although the
oligomeric state was not as designed, our pipeline was readily able to
produce models for these folds that are stable against proteolysis and
are folded.
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Fig. 3 | Biochemical and biophysical characterization of a subset of the
designed proteins. Circular dichroism spectra were measured at 25 °C, 95 °C, and
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measurements were averaged, and no smoothing was allowed. Melting curves
show the change of molar residue ellipticity (MRE) at 220 nm at increasing tem-
peratures. Source data is provided as Source Data File.

To evaluate shape diversity, we compared both protease-stable
and unstable proteins for each fold. We compared distances between
secondary structure elements, register shifts, dihedral of the outer
beta-strands to describe the curvature of the sheets, dihedrals between
adjacent secondary structure elements, interhelix distance, and helix
angles given specific phi and psi angles in their loops, demonstrating
that each fold has local plasticity, validating our basic rules of de novo
protein design and suggesting an additional set of rules (Fig. 2, Sup-
plementary Figs. 14-18).

De novo design of a minimized thioredoxin fold

So far, de novo design of a thioredoxin fold had not been reported.
Here, we tackled the even more challenging problem of minimizing the
overall fold. Naturally occurring thioredoxin has a three-layer f/a
sandwich with the central sheet formed by five strands flanked by two
a-helices on each side (Fig. 4). Many thioredoxin-like proteins have
variations in their a-helices or the fifth g-strand (Fig. 4a, b). The con-
served core elements of the thioredoxin fold can be subdivided into an
N-terminal Saff motif and a C-terminal fa motif (Fig. 4a), which is
commonly connected by a small helix (a0 or a2, Fig. 4a, b). The faf
element (characteristic for the alpha/beta family) is found in many
larger proteins as it is the connecting motif that enables the expansion
of the protein domain space’ and distinguishes members of this
superfamily from the alphatbeta family which does not have the

repetition of this motif. Its incorporation will generally allow for
extensions of a fold and thereby provides means to build larger pro-
teins. Hence, the ability to design this element with high shape diver-
sity provides a tool for building larger and more shape-diverse folds
and domains. We designed a minimal version of the thioredoxin fold,
containing only the core four sheets and two parallel or anti-parallel
helices, replacing the common a2 helix with an extended loop (Fig. 4g).
We solved the structure of one of our designs using nuclear magnetic
resonance (NMR, Fig. 4d, Supplementary Fig. 19, Supplementary
Table 2). The NMR ensemble agrees with the designed model with the
top structure having an RMSD of 1.9A (based on C-alpha atoms)
compared to the model; deviations are mostly from the last helix. All 8-
strands were close to the design model (1.1 A C-alpha RMSD) making
this the first accurately de novo designed thioredoxin fold.

A single machine learning model to identify stable designs

Having a large and diverse set of stable and unstable proteins of dif-
ferent folds available with varying shapes and physical properties, we
were able to re-evaluate stability-defining features and develop a
classifier based on a Random Forest model*° that determined whether
a given small protein is stable with high accuracy. Compared to pre-
viously described physical and statistical features for stability, we
evaluated additional features describing residue interaction networks
and energetic contributions of individual amino acids within tightly
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connected hubs of residues, resulting in a total of 110 sequence- and
structure-based features. The most predictive of these additional fea-
tures was the overall energy contributions of the most connected
residue: residues that contact many other residues are interaction
hubs. They tend to be generally highly buried and provide the “glue” of
the hydrophobic core of proteins. Hence, favorable energetics of these
“hub” residues is essential for the protein core formation while
potential clashes could result in instability. As previously seen’, correct
local geometry as measured through alignment with short structural
fragments (Supplementary Figs. 20-23) is the most predictive feature
for the folding of a de novo designed protein, followed by the number
of hydrophobic residues within the protein core. Unlike previous stu-
dies, by using our larger and more diverse fold data set and descriptive
features, we were able to train a model on multiple folds, instead of
one fold at a time® (Supplementary Fig. 20) and could predict stability
even for unseen folds (Fig. 5c, Supplementary Figs. 21-23). We believe

that this diverse scaffold set is enabling us to learn more general
descriptions of these folds and increases the predictive power of the
model. To confirm this observation, we predicted the stability of the
previously published data set with several different small folds by
Rocklin et al.” and observed a predictive power of an AUC of around
0.83 using our single classifier (Supplementary Fig. 23).

Discussion

While previous work simulated the space of a handful of folds*™ using
the elaborate blueprint-based protocols combined with manually
defined multi-step for the assembly of larger folds, only a few designs
were experimentally verified in solution, with the exception of mini-
proteins that were examined in the context of the development of the
protease-based high throughput screen. We built upon previously
discovered protein design rules’, including connection rules for
strands and helices, and provide a versatile fold assembly and design
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Fig. 5| Performance of the stability prediction classifier. a The receiver operator
curve (ROC) illustrates the predictive power of our Random Forest classifier. To
avoid potential bias, we compared the ROC of predicting stabilities for any protein
within the whole set vs. a ROC of the different folds or all combined (mix) after
training on the other folds within the set. For this prediction, one fold at a time was
omitted (“dropout”), and the classifier was trained on all other folds to predict the
stability of the unseen fold. b AUCs of three iterations of the predictions described
under (A); This graph represents the minimum, maximum, and median in the data
set. ¢ Summary of AUCs of predictions for individual folds. Boxplots describe the
spread of data after three independent training and predictions, showing mini-
mum, maximum, and median. Source data is provided as Source Data File.

pipeline that allows dynamic sampling of a given fold during the in
silico folding trajectory. Our extensive sampling and high throughput
evaluation allowed us to examine thousands of designs at once,
revealing geometric diversity of different folds. We also extracted
additional rules for protein design, such as loop connectors for helical
elements, which we in turnincorporated into the design algorithm and
can be readily accessed in any Rosetta design step. Lastly, our exten-
sive study allowed us to develop a simple prediction model to help
future design approaches identify stable proteins. The algorithm is
implemented into the RosettaScripts” framework, which enables all
design features and protocols to be accessed and executed in the form
of XML files without prior programming knowledge. This work
also provides an extensive scaffold database as a general resource for
alternative scaffold engineering and protein design projects, which
recently resulted in the development of picomolar COVID-19
inhibitors** and also served as starting scaffolds for a variety of

newly designed binding proteins targeting FGFR2, TrkA, IL7Ra, and
VirB8 for which co-crystal structures illustrate atomic accuracy of the
overall folds®.

Methods

Computational protein design

Overview. Proteins were designed using three steps. First, the back-
bones were constructed, which outlay the three-dimensional structure
of the final fold. This step made extensive use of the here developed
pipeline and differs from previous approaches that have utilized the
blueprint builder. The second step involves sequence design for which
we utilized two different protocols. The third step is the selection of
designs to test. All steps can be done in the RosettaScripts* XML for-
mat and our protocol has been deposited on github [https://github.
comy/strauchlab/scaffold_design].

Backbone design. The underlying algorithm of the Fold Architect
(FoldArchitectMover) has several modular components that work
together to design a de novo peptide backbone for a fold. Together,
these components provide the framework to take a fold-level
description (e.g., 3 helix bundle, each helix of length 10-15 a.a. con-
nected by loops of length 3-4 a.a.) and produce protein backbones
with the desired secondary structure, realistic geometries, and helix-
pairing interactions. These modules are part of different “sub-archi-
tects,” which uses a user-provided (via XML) description of a fold or
subset of residues within a fold to create a set of per-residue instruc-
tions; a “pose folder” that applies an in silico folding algorithm, which
uses the instructions provided by the architect to perform the folding
process; a set of “filters”, which can be any Filter recognized by
Rosetta, which evaluate the backbone generated by the pose folder to
ensure that it is correctly folded; and a “perturber”, which instructs an
architect to generate a set of instructions in the event that the filters
did not accept the backbone. Each of these components can be arbi-
trarily extended to support new algorithms by creating subclasses of
the Architect, PoseFolder, Filter, and Perturber classes.

One complication with the de novo extended chain folding of
backbones is that it scales poorly with length; a single missing hydrogen
bond in a backbone can lead to incorrect secondary structure and
failure of filters. While a helix of length 15 might be correctly formed
after most fragment insertion as part of Monte Carlo trajectories, a
complete 40-50 amino acid long miniprotein fold might require
thousands of trajectories from an extended chain to find one that is
correctly folded. This has been addressed in previous work with single
folds through extensive intervention by an expert. To address this
problem for arbitrary folds, we developed an algorithm (Divi-
deAndConqueror) that identifies subsegments of a full-length backbone
that can be folded individually and generates a strategy to build the
backbone incrementally, piece-by-piece. The DivideAndConqueror
algorithm uses the architect(s) to split the work for a full backbone into
subsegments as small as possible that contain a complete pairing; all
possible divisions are considered. For example, for a simple fold with
topology BBaf (three antiparallel strands + one helix that is paired to
the strands), the algorithm might divide the work by first folding 3
(contains a pairing between the two strands), then adding o (contains a
pairing between the helix and already-folded strands), and finally 3
(contains pairing to an already-folded strand). Each subsegment is fol-
ded with the modules described above, and once built, is evaluated
using the filters. If the model passes the filters, the algorithm then
preserves the backbone and folds the next structural element; if the
model fails the filters, the Perturber instructs the architects to permute
the parameters of the subsegment (e.g. secondary structure lengths,
register shift, phi and psi angles, loop connectivity) and another folding
attempt is made. In this way, the FoldArchitect gradually adds and folds
a backbone while sampling different lengths, ABEGO combinations and
other parameters that fit within a combination of user-defined
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restraints, as well as a series of previously discovered protein design
principles to find parameters required for correct properties of the fold.

As there are five distinct structure-related areas of phi-psi angle
distributions, proteins can be described with a five letter alphabet®:
ABEGO (Fig. 1c). This extends the secondary structure description
beyond the simple alpha-helical, beta-sheet and loop region, yet nar-
rows the description of the loop conformational space which is
necessary to guide the in silico folding process. We eliminate reliance
on a single, immutable linear AGEGO sequence in form of a “blueprint”
file or possibly a handful of blueprints in favor of the abstract
description of a fold described here.

Folds were in silico folded by inserting structured fragments
curated from the PDB®’ (Supplementary Fig. 1) specified by the
architect-determined ABEGO sequence into an extended chain of poly-
valine residues.

Loop connection sampling. Instead of sampling all possible loop
conformations for a given loop length, only loop conformations
commonly found between af}, Ba and Bf connections as previously
discovered were sampled®. In addition, our study identified rules for
the connection of helical elements, which we also incorporated. As
more principles are identified, they can be readily added. Furthermore,
we enabled the possibilities to provide distance constraints between
adjacent elements and incorporate “bulges” to introduce curvature
into a strand®, which we took advantage of to build beta-grasps. Pre-
viously discovered protein design principles for loop connections are
respected and the protein is dynamically assembled adding one seg-
ment at a time.

Secondary structure element pairings. Secondary structure ele-
ments that interact with one another in the desired fold are identified
by “Pairings.” Movers and filters can then also use this information to
obtain information about the desired fold. The different pairing types
are “HelixPairing”, which describes a pairing between two helices (e.g.,
parallel/antiparallel); and “StrandPairing”, which describes a strand-
strand pairing (e.g., parallel/anti-parallel, register shift); and “Helix-
SheetPairing”, which describes an interaction between a helix and a
beta-sheet.

BetaSheetArchitect. The BetaSheetArchitect is used to define de novo
beta-sheets by combining information from StrandArchitects. Sheets
are defined spatially by looking at the face of the sheet (this does NOT
use N- > C ordering). Strands are assumed to be paired to the strands
that are defined above/below.

The architect automatically adds the appropriate strand pairings.
The architect will only attempt to build valid sheets, those where the
fully built sheet has no unpaired residues.

Distance constraints. Distance constraints of any kind can be
applied ambiguously without knowledge of the final length used in
the dynamic algorithm. We developed a mover that allows the
application of distance constraints between residue selectors (Dis-
tanceConstraintGenerator). Because folds are built dynamically, key
features are not known prior to the assembly process, such as the size
and the N or C-terminal residues for each secondary structure element.
To address this, we developed a NamedSegment residue selector that
keeps track of each element and tracks residue numbering as needed.
This allows the assignment of distance constraints even without
knowing precisely the final structural composition of the fold. Distance
constraints were coupled to a simple harmonic or abounded harmonic
function with a loose standard deviation of 2 A. After measuring dis-
tances between helices and sheets of a few example beta-grasps and
ferredoxin folds, we chose 8 A as the default starting value for sheet
and helix distances. Adjustments were made depending on the output
for a given fold and distances were increased or decreased. For

example, in the beta-grasp fold, the distance between the C-terminal
part the helix and the N-terminal part of the second sheet was adjusted
to 9 A. Details are within each XML file for the computed folds.

Helix “kink”. This filter monitors the curvature of helices and allows to
restrict them. We generally only allowed bending of less than 15°.

Backbone design. To build the tertiary structure of a protein, short,
structured fragments with the desired ABEGO sequence are used for its
assembly. However, recording a tertiary structure as a single ABEGO
sequence in an individual file does not allow for variation in lengths of
any secondary structure element, register shifts, bulges, as well as
distant constraints during the trajectory. The residues involved in the
latter would also need to be precomputed based on each blueprint.
Further, structures that are longer than 40 amino acids would require
two independent folding steps to avoid large amounts of time spent
sampling the possible backbone conformations within a given ABEGO
space. Thereby the infrastructure was limiting to large-scale design of
highly diverse scaffolds of a desired fold.

We addressed these limitations by creating a definition for a
fold with parameters that can be altered during a trajectory. For the
design of a single protein of a given fold, a fold description is read and
subsegments are incrementally varied, built and computationally
validated. Folding of the backbone was followed as previously repor-
ted through fragment insertion, with the difference that a subsegment
was folded at a time enabling efficient sampling within the pre-defined
parameter space. The Perturber adjusts dynamically the folding pro-
cess (for instance by varying lengths or type of loop insertion, register
shift) to satisfy all specified parameters of the folded backbone.

Sequence design. Backbone constructs representing the complete
fold were stringently filtered for the omega and rama angles before
designing their sequence. Two different design protocols were uti-
lized, one utilizing the previously described pair-motifs' to design the
core of the proteins. The pair motif database contains two directly
interacting side chains of two amino acids extracted from crystal
structures, thus describing a “pair”. We observed that using this pro-
tocol, efficient sequence design was observed that passed all filters,
such as local structural geometry, the average degree of connectivity
within a certain radius to ensure good packing, Rosetta scores, and
several others (See SI and code availability).

Scoring matrix and design selection. All score terms for filtering and
evaluating designs are summarized in the SI. Their implementation can
be found in the design protocols sequencedesign.xml and sequence-
design_w_motifs.xml, rescorel5.xml and rescorel6.xml followed by
adding terms previously reported as “enhanced_score.sc”. For each
fold, 2000-12,000 finished design models were generated and scored.

Random forest prediction model

Models were fit using the scikit.learn package® using the Anaconda2
package, Python 2.7.16 (default, Sep 24 2019). A random forest clas-
sifier model was generated using listed 110 features using fivefold
cross-validation to evaluate its accuracy. We used 500 as numbers
defining the decision trees for the estimator and the default “gini” as
criterion over entropy. The Gini index prefers the features possessing
the least value of the Gini Index while building the trees. The Gini Index
is determined by deducting the sum of squared of probabilities of each
class from one (1):

n
i=1

Gini Index=1- " (P’ @

We allowed bootstrapping and used the “out-of-bag” samples to
estimate the generalization accuracy. For each tree, the whole dataset
is used.
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AlphaFold2 predictions

Structure prediction of analyzed scaffolds was performed using the
ColabFold batch mode. The single sequence option was utilized as
multiple sequence alignments for de novo scaffolds are not applic-
able. The unrelaxed prediction output structures were then repacked
and minimized in Rosetta. Ca Rmsd of original designs with the
AlphaFold2 predictions were computed based on the relaxed
structure.

Library generation

Amino acid sequences of designed proteins were encoded into DNA
using DNAworks2.0 and “ecoli2” codons®. Oligo libraries encoding
designs and control sequences were purchased from Agilent Tech-
nologies as part of a 27,000-oligonucleotide pool. For genes shorter
than 230 base pairs, additional amplification sequences were added as
previously reported® to amplify sequences equally. Amplification was
performed using a qPCR (BioRad) to avoid overamplification. The
number of cycles was chosen based on a test qPCR run to terminate the
reaction at 50% maximum yield. Second, this reaction product was gel
extracted to isolate the expected length product and re-amplified by
gPCR to obtain larger amounts. The amplified PCR product was gel
extracted and concentrated for the transformation of EBY100 yeast”
(1-2pg of insert and 1pg of a linearized vector). Yeast display
employed the pETCON3?, which was linearized by digesting its DNA
with Ndel and Xhol. The amplified libraries included 40 bp segments on
either end to enable homologous recombination with the pETCON
vector. Gel extraction and PCR purification were performed using
QIAquick kits (Qiagen Inc).

Yeast display proteolysis

Protease reagents Trypsin-EDTA (0.25%) solution was purchased from
Life Technologies and stored at stock concentration at —20°C. a-
Chymotrypsin from bovine pancreas was purchased from Sigma-
Aldrich as lyophilized powder and stored at 40 uM concentration in
TBS (20 mM Tris 100 mM NacCl pH 8.0) + 100 mM CaCl, at -20 °C. Each
reaction used a freshly thawed aliquot of protease.

EBY100 yeast cell cultures were induced for 16-18 h at 30 °C in
SGCAAZ. Induced cells were digested with increasing concentrations
of chymotrypsin and trypsin in separate tubes. Cells were normalized
to 1mL at O.D. 1 (12-15 Mio. cells), washed, and resuspended in 250 pL
PBS (20 mM NaPi 150 mM NaCl pH 7.4) for trypsin reactions, or TBS for
chymotrypsin reactions). Proteolysis was initiated by adding 250 pL of
room temperature protease in buffer (PBS or TBS), followed by vor-
texing and incubating the reaction at room temperature (proteolysis
reactions took place at cell O.D. 2).

The library was assayed at five protease concentrations over
sequential selection rounds, as summarized in the experiments.csv file.
For trypsin digestions we used 0.07 uM, 0.21 uM, 0.64 uM, 1.93 uM,
and 5.78 uM protease; chymotrypsin assays used 0.08 pM, 0.25 uM,
0.74 M, 2.22 1M, and 6.67 UM protease. Selections at lower con-
centrations (selection strength 1-3) of each protease were performed
starting from the freshly transformed and induced yeast library. Fol-
lowing these selections, higher concentration conditions were per-
formed as indicated in the experiment.csv file. This file contains the
precise order of selections, including cells sorted and selected.
Selection strengths (as indicated under “parent”) reflects above listed
concentrations respectively; parent O represents the starting library
pool, whereas 1 reflects the lowest concentration as listed above
(0.07 uM for trypsin and 0.08 uM for chymotrypsin. The highest pro-
tease concentration was parent 5.78 uM for trypsin indicated as
selection strength 5. These data are included in the file experiments.csv
and were used in the ECsy fitting procedure.

After 5minutes, the reaction was quenched by adding 1mL of
chilled buffer containing 1% BSA (referred to as PBSF or TBSF), and
cells were immediately washed 4x in chilled PBSF or TBSF. Cells were

labeled with anti-c-Myc-FITC for 10 minutes (SuL in 100 L PBSF),
washed twice with chilled PBSF.

Fluorescence activated cell sorting

Labeled and washed cells were sorted using a Sony SH800 (software
version 2017) flow cytometer using the “Ultra Purity” settings. Events
were initially gated by forward scattering and backward scattering
area to collect the main yeast population and then by forward scat-
tering width and forward scattering height to separate individual and
dividing cells (which were used for analysis) from aggregating cells
(Supplementary Fig. 7). Following these gates, cells were gated by
fluorescence intensity in one dimension (Fig. 1B). Small adjustments
were made to this gate based on daily conditions to maximize the
separation between the major displaying and non-displaying popula-
tions. Post-sorting analysis was done in FloJo (v. 8 and 10.8). For each
sort, we recorded the fraction of cells passing the fluorescence
threshold before proteolysis (using cells from the same starting yeast
population but untreated with protease) and after proteolysis and
recorded the total number of cells collected for each condition. Gen-
erally, about 10 million cells were sorted for each protease con-
centration including the control.

Next-generation sequencing and processing of raw deep
sequencing data

Plasmids of sorted and unsorted populations were extracted using the
Zymo prep kits (Zymo, version 2) of yeast cultures containing the
pETCON3® with some modifications. After DNA extraction, the prep
was digested with Exol and Lambda exonuclease (NEB). Cells were
frozen at —-80 °C before and after the zymolase digestion step to pro-
mote efficient lysis. One-half of the plasmid yield from the Zymoprep
was used as the template for the first PCR amplification. Illlumina
adapters and 6-bp pool-specific barcodes were added in the second
qPCR step*. Unlike libraries prepared for transformation, DNA pre-
pared for deep sequencing was gel extracted following the second
amplification step. The DNA was pooled and sequenced using a mid-
size kit on a NextSeq (Illumina) sequencer. Each library in a sequencing
run was identified via a unique six bp barcode. Following sequencing,
reads were paired using the PEAR program®. Reads were considered
counts for a particular ordered sequence if the read (1) contained the
complete Ndel cut site sequence immediately upstream from the
ordered sequence, (2) contained the complete Xhol cut site sequence
immediately downstream from the ordered sequence, and (3) mat-
ched the ordered sequence at the amino acid level.

ECso estimation from sequencing counts

To determine protease resistance from our raw sequencing data, we
used the previously reported probabilistic model to calculate max-
imum a posteriori estimates of the protease ECso of each member of
the pool. It assumes that proteolysis (i.e., any cleavage that results in
detachment of the epitope tag) follows pseudo-first-order kinetics,
with a rate constant specific to each sequence. Scripts were used
precisely as previously reported without modification’ and directly
taken from the reported repository https://github.com/asford/
protease_experimental_analysis.

Expression of individual proteins, purification, and
characterization

Genes for selected design for detailed biochemical evaluations were
cloned into pET29b+ and expressed in Lemo21 cells (DE3) (NEB) sup-
plemented with 50 ug/mL kanamycin either using Studier autoinduc-
tion media® or at 18 °C in Terrific Broth (TB) media using 1 mM IPTG
for a 3-4 h induction at an O.D. of 0.7. Briefly, starter cultures were
grown overnight at 37 °C TB medium with added antibiotic and used to
start a 500 mL culture at a 1/50 dilution. His-tagged proteins were
purified using a nickel column purification step (QIAGEN). Following
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IMAC, designs (labeled and unlabeled) were further purified by size-
exclusion chromatography on AKTA pure (GE Healthcare) using a
Superdex 75 10/300 GL column (GE Healthcare) in PBS. The mono-
meric fraction of each run (typically eluting at the 15 mL mark) was
collected and immediately analyzed by circular dichroism far-
ultraviolet (CD) measurements were carried out with the Olis DSM
1000 CD Spectrometer except for the ferredoxin folds reported here,
which were measured with an AVIV spectrometer (model 420) CD
Spectrometer. For Olis data, a custom python script was used to
decode the binary files and plot the data. Wavelength scans were
measured from 195 to 260 nm at 25 and 95 °C. Data below 200 nm
showed increased noise levels and was therefore not plotted. Tem-
perature melts monitored dichroism signal at 220 nm in steps of 2 °C/
minute with 30 s equilibration time. Wavelength scans and tempera-
ture melts were performed using 0.35 mg/ml protein in PBS buffer with
a 1mm path-length cuvette, protein concentrations were adjusted
accordingly.

One-dimensional 2H NMR spectra were acquired for samples of
four of the proteins ranging in concentration from ~0.12 to 1.0 mM at
25 °C using the instrumentation described below.

Protein concentrations were determined by absorbance at
280 nm measured using a NanoDrop spectrophotometer (Thermo
Scientific) using predicted extinction coefficients. Protein concentra-
tions for designs lacking aromatic amino acids were measured by
Qubit protein assay (ThermoFisher Scientific).

Isotope labeling for NMR

The expression of uniformly *C, N-labeled ThioM 802 protein for
NMR analysis utilized M9 media with *C glucose and ®N ammonium
salts (Sigma) as the sole carbon and nitrogen sources, respectively. A
30 mL overnight culture was grown and used to induce a 500 mL M9
culture. At an O.D. of 0.5, cells were induced with 1 mM IPTG and grown
overnight at 18 °C. Purification was performed as described above.

NMR spectroscopy and solution structure determination

All NMR spectra were acquired using a Varian INOVA instrument
operating at 600 MHz (*H). After Ni-NTA purification, proteins were
run over SEC using the same column as above but using a lower salt
buffer (10 mM Phosphate buffer, 50 mM NacCl, pH 6.85). Samples were
concentrated to about 607 M using a Amicon Ultra-4 (Millipore),
which may introduce trace elements of glycerol as indicated in its
manual. A total of 5% D,0 was added. The temperature of the sample
was maintained at 25 °C. For structure determination, a single sample
of uniformly ®C, ®N-labeled ThioM 802 protein was used for all
experiments. The sample volume was approximately 300 uL in a
susceptibility-matched NMR tube (Shigemi Inc.). Chemical shifts were
referenced in the recommended manner using an external, standard
sample of Na'DSS™ in D,0°. Data were processed and analyzed using
Felix NMR.

The main chain, and some side chain, chemical shifts of
ThioM_802 were assigned using established triple resonance approa-
ches employing a standard suite of experiments (("H, ®N)-HSQC, (*H,
13C)-HSQC, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH, HNCO, HN(CA)
CO, HBHA(CBCACO)NH). The remaining side chain resonances were
assigned using TOCSY, NOE, and aromatic-specific experiments
(HCCH-TOCSY, HCCH-COSY, H(CCO)NH-TOCSY, C(CO)NH-TOCSY,
(HB)CB(CGCD)HD, 'H-TOCSY relayed constant-time (*H, *C) HMQC
(aromatics), NOESY-('H, ®N)-HSQC, NOESY-(*H, C)-HSQC, NOESY ('H,
BC)-HSQC (aromatics)). The NOESY experiments were acquired with
100 ms mixing times.

Manually identified peaks/signals in the 3D NOESY spectra were
assigned and calibrated, distance restraints defined, and initial struc-
tures determined, in an iterative manner, using CYANA 2.1°.. Using
TALOS-N** main chain dihedral angle restraints, secondary structure
predictions were derived based on assigned chemical shifts. These

structural restraints were used to calculate a set of 100 initial struc-
tures starting from an extended structure using simulated annealing
protocols in CNS 1.3** software suite for macromolecular structure
determination®**. These were then refined, and the 20 structures with
the lowest energies were selected as the final structural ensemble.
CNS, MOLMOL*, PyMOL, PROCHECK_NMR*%, and PROMOTIF* were
used to analyze the ensemble and generate molecular models. The
Protein Structure Validation Software Suite (PSVS, https://
montelionelab.chem.rpi.edu/PSVS) and the MolProbity server®® were
also used to analyze the structures. Chemical shifts, structural
restraints, and atomic coordinates have been deposited in the BMRB
(entry 30844) and the PDB (PDB ID 7LDF).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The NMR structure, experimental restraints, chemical shifts, and
related information have been deposited in the Protein Data Bank
(PDB) under accession code 7LDF and in the Biological Magnetic
Resonance Bank (BMRB) as entry 30844. Sequencing data summary,
stability and score files are available from github [https://github.com/
strauchlab/scaffold_design]. Scaffolds and next-generation sequen-
cing raw data can be sent upon request. Source data is provided with
this paper. Source data are provided with this paper.

Code availability

The Rosetta license can be obtained through Rosetta Commons. Filters
relevant for this work under https://www.rosettacommons.org/docs/
latest/scripting_documentation/RosettaScripts/Filters/Filters-
RosettaScripts. For executing the python dependent scripts, PyRosetta
and the Anaconda2 package Python 2.7.16, default, Sep 24 2019 are
required. Scripts, XML files and examples have been deposited on
github [https://github.com/strauchlab/scaffold_design]. Scripts to fit
protease sequencing counts are available under https://github.com/
asford/protease_experimental_analysis.
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