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Abstract
The twenty-first century has seen the emergence of many epidemic and pandemic viruses, with the most recent being the 
SARS-CoV-2-driven COVID-19 pandemic. As obligate intracellular parasites, viruses rely on host cells to replicate and 
produce progeny, resulting in complex virus and host dynamics during an infection. Single-cell RNA sequencing (scRNA-
seq), by enabling broad and simultaneous profiling of both host and virus transcripts, represents a powerful technology to 
unravel the delicate balance between host and virus. In this review, we summarize technological and methodological advances 
in scRNA-seq and their applications to antiviral immunity. We highlight key scRNA-seq applications that have enabled the 
understanding of viral genomic and host response heterogeneity, differential responses of infected versus bystander cells, and 
intercellular communication networks. We expect further development of scRNA-seq technologies and analytical methods, 
combined with measurements of additional multi-omic modalities and increased availability of publicly accessible scRNA-
seq datasets, to enable a better understanding of viral pathogenesis and enhance the development of antiviral therapeutics 
strategies.
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Introduction

Viral infectious diseases perennially threaten global health. 
The most recent pandemic, COVID-19, has globally accounted 
for more than 584 million SARS-CoV-2 infections and 6.4 
million deaths as of August 2022 [1]. Each new viral species, 
strain, and mutation can influence disease severity through 
complex host-virus interactions [2–4]. As obligate intracel-
lular parasites, viruses require host cellular machinery for 

replication. In response, host cells employ antiviral mecha-
nisms to recognize and restrict viral replication [5]. The arms 
race between virus and host at the single-cell level collec-
tively drives variability within virus and host cell populations, 
impacting disease pathogenesis and epidemiological dynam-
ics. Untangling intra- and inter-individual heterogeneity in 
responses to viral infection requires a high-resolution analysis 
of viral dynamics and the ensuing host response.

While bulk RNA-seq studies have been instrumental to 
our understanding of cellular antiviral responses [6–9], these 
methods average over a population of cells, thereby obscur-
ing underlying heterogeneity. In contrast, single-cell RNA 
sequencing (scRNA-seq) allows for transcriptome-wide 
profiling at the resolution of the individual cell, providing a 
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powerful method to interrogate the transcriptomic heteroge-
neity of cellular responses. This single-cell resolution ena-
bles understanding of variations in host responses that can 
be driven by factors that include direct viral infection versus 
activation of bystander cells [10–13], viral genotype and intra-
host viral diversity [14–17], cell type heterogeneity in dis-
ease severity and responses [11, 18–21], and impacts of viral 
burden on host responses [11, 22, 23] (Fig. 1). scRNA-seq 
has previously been used to investigate infection by diverse 
viruses including herpes simplex virus [24, 25], reovirus [26], 
dengue virus [11, 19, 27], influenza virus [28, 29], HIV [20, 
30], hepatitis B virus [10], and SARS-CoV-2 [18, 31–33].

In this review, we aim to provide researchers with tools to 
inform scRNA-seq study design for understanding virus-host 
interactions, as well as encourage increased studies across 
diverse viral species. We highlight various scRNA-seq tech-
nologies and methods, from sample processing to computa-
tional analyses, and the power and nuances of each in exam-
ining antiviral immunology. Throughout, we will present 
important contributions of previous scRNA-seq studies to 
our understanding of viral immunology while highlighting 

areas of scRNA-seq development that show promise. With 
continued scRNA-seq studies and data sharing, together, 
this work will expand our understanding of immunological 
responses across all viruses and drive innovation towards 
antiviral interventions to combat current and emerging 
viruses to enhance pandemic preparedness [34].

Technologies for deep transcriptional 
profiling of antiviral immunity

Overview of scRNA‑seq workflow

The last several years have seen a proliferation of scRNA-seq 
platforms, each with distinct advantages in scalability, flexibil-
ity, applications, and cost. Fundamentally, all scRNA-seq plat-
forms involve the same basic steps: (1) nucleotide barcoding of 
single cells; (2) cell lysis; (3) capture of mRNA; (4) generation 
of cDNA through reverse transcription; (5) cDNA amplification 
by PCR; (6) cDNA library preparation; and (7) sequencing. 
These methods utilize unique barcoding of each cell to identify 

Fig. 1   Transcriptomic approaches to profile antiviral immunity
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each transcript’s cell of origin, with some methods also includ-
ing unique molecular identifiers (UMIs) which can be added to 
each transcript prior to library amplification to reduce amplifi-
cation bias. However, there are important distinctions between 
the different strategies of performing scRNA-seq which impact 
each method’s ability to capture transcripts from particular cell 
types and viruses. Here, we discuss four classes of scRNA-
seq technologies that are distinguished by their strategies for 
single-cell nucleotide barcoding: droplet-based (e.g., 10X), 
well-based (e.g., Seq-Well), plate-based (e.g., Smart-Seq), and 
split-pool-based (e.g., SPLiT-seq). In the following sections, we 
will describe the advantages and limitations of each technology, 
with a focus on how they can be applied to the study of viral 
infectious diseases (Fig. 2).

Droplet‑based methods

Droplet-based sequencing methods rely on microfluidic mech-
anisms to encapsulate individual cells with beads bearing cell 
barcodes in oil droplet emulsions [35]. The use of barcoded 
beads allows for the identification of transcripts from the same 
cell during downstream analysis, as each cell co-localizes 
with one bead bearing a unique oligonucleotide barcode that 
labels all transcripts in a given droplet. These cells are lysed 
within these droplets, allowing transcripts to hybridize into 
the mRNA capture beads. Next, depending upon the platform, 
reverse transcription can happen either within the droplet 
or after the demulsification of the droplet. After transcript 
capture and reverse transcription, standard library prepara-
tion procedures occur during which UMI barcodes are added 
to each transcript prior to PCR amplification. The standard 

droplet-based platforms include inDrop and Drop-Seq [36, 
37], both open-source methods, and the commercially avail-
able methods from 10X Genomics Chromium. Differences 
between these platforms include bead composition, timing of 
cDNA synthesis, barcode design, and sequence processing. 
These methods’ power lies in their ease of use and flexibility, 
with 10X methods particularly increasing the capacity to pro-
file thousands of cells. Recently, 10X Genomics developed the 
Chromium X controller that pushes high-throughput scRNA-
seq sequencing from 10 to 60 K cells per sample by adding 
additional sensors and more accurate pressure and tempera-
ture control during droplet formation. This depth in cellular 
sequencing enables the profiling of rarer cell states and cell 
types that may be missed otherwise.

The flexibility and modularity of bead construction 
have enabled the development and commercialization of 
multiple different kits on the same platform. For exam-
ple, beads can be designed to hybridize either the 5’ or 
the 3’ ends of mRNAs and can include additional primers 
to enrich for particular transcripts, like B cell receptor 
(BCR) and T cell receptor (TCR) sequences. Beads can 
also include oligonucleotides to capture transposed acces-
sible chromatin fragments or antibody-conjugated oligo-
nucleotides, thereby performing multimodal epigenetic or 
proteomic profiling, respectively. However, this system has 
difficulty capturing usable transcripts from neutrophils and 
other granulocytes, even when these cells are freshly iso-
lated, in part due to their high RNAse levels and sensitiv-
ity to degranulation during microfluidics processing [38, 
39]. While 10X recommends the removal of granulocytes 
from samples, for those that want to profile these cells, 

Fig. 2   Table summarizing the 
advantages and disadvantages 
of different scRNA-seq methods 
in viral immunology research
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10X provides recommendations [40, 41] for capturing 
granulocyte sequences and these have successfully been 
shown to work on neutrophils [42]. A direct comparison of 
10X, inDrop, and Drop-seq found that 10X has the highest 
molecular sensitivity, highest precision, and least techni-
cal noise, though 10X is more expensive and dependent 
on proprietary reagents [43]. Many studies have leveraged 
droplet-based methods to analyze thousands of cells across 
various virus infections [44–48]. Without the constraints 
of array size, droplet-based methods are highly scalable.

Well‑based methods

Well-based scRNA-seq platforms, such as Seq-Well [49, 
50] or the BD Rhapsody platform [51, 52], achieve single-
cell barcoding by loading cell suspensions onto micro-
arrays pre-loaded with oligonucleotide-barcoded mRNA 
capture beads. In Seq-Well, cells are lysed within micro-
arrays sealed with a semipermeable membrane, allowing 
the RNA from each cell to be captured on an individual 
barcoded bead and preventing mRNA contamination from 
neighboring wells. Following capture, the bead-bound 
RNAs can be released from the arrays and processed for 
reverse transcription, library preparation, and sequencing.

In addition to being much cheaper than droplet-based 
scRNA-seq methods, well-based methods have the advantage 
of being gentler on the cells they process. Importantly, this 
allows well-based methods to capture sensitive cell types, such 
as neutrophils, that may be lost during a microfluidic-based 
workflow. The ability of well-based methods to successfully 
preserve the transcriptomes of neutrophils has proven invalua-
ble in the study of viral infections, particularly COVID-19 [18, 
31, 45]. Seq-Well-based studies have identified key features 
of neutrophil activation and dysfunction in severe COVID-19 
that appear to contribute to disease pathology [18]. Moreover, 
these studies discovered a population of immature neutrophils 
that emerges in the peripheral blood of COVID-19 patients 
that predicts 28-day mortality [18, 31, 45].

The portability and economy of well-based methods have 
also made it possible to perform scRNA-seq in extraordinary 
conditions. In a 2020 study, researchers performed Seq-Well 
on peripheral blood mononuclear cells (PBMC) from non-
human primates infected with the Ebola virus under BSL4 
conditions [23]. However, the scalability of well-based meth-
ods is relatively limited. Additionally, well-based methods are 
currently limited to use on unfixed cells.

Plate‑based methods

Plate-based methods, such as Smart-seq [53] and MARS-
seq [54], rely on cell sorters to place individual cells into 
individual wells across 96- or 396-well plates. These wells 

contain lysis buffer and cell barcodes, and can include 
additional UMIs and plate barcodes. These protocols are 
amenable to automation with liquid-handling robots and 
do not require specialized equipment besides a cell sorter 
and a PCR machine. The Smart-seq protocols are able to 
capture full-length transcriptome coverage, with method-
ology improvements made in Smart-seq2 [55] and Smart-
seq3 [56] protocols allowing for higher coverage and 
sensitivity of detected transcripts. The per-plate nature of 
processing tends to lower throughput (96 or 364 per plate) 
and technical variability can be introduced in processing 
steps (e.g., thermocycler used, pipetting steps) that may 
contribute to batch effects between plate and experiment.

The cell sorting step can be made specific to the inclu-
sion/exclusion of particular cell types (e.g., removal of eryth-
rocytes and doublets, inclusion of specific populations) to 
thereby be well suited for profiling rarer cell populations. 
Additionally, using fluorescence-activated cell sorting 
(FACS) of cells prior to plating allows for cell types to be 
identified prior to their sequencing, which can help distin-
guish cell types that are difficult to identify using transcrip-
tomics alone (e.g., intermediate monocytes, NK cells, T 
cells) and/or gain better sequencing depth into populations 
that might not be evenly sampled in a pooled scRNA-seq 
method. A key advantage of these methods is their usefulness 
in investigating the mechanism and/or transcriptomics of spe-
cific cell subsets (e.g., rare cell type, functionally responding 
cell type, viral-protein expressing cells).

An example of the usefulness of pre-sorting popula-
tions comes from Steuerman et al. [29] who FACS-sorted 
CD45 + (immune) and CD45- (non-immune) populations 
from the lungs of influenza-infected mice and performed 
MARS-seq to identify virus and host cell transcripts [29]. 
This approach enabled sufficient depth of sequencing into 
both populations to identify multiple immune and non-
immune cell types associating with varying proportions of 
infected cells. While different cell types carried varying lev-
els of influenza transcript load, all infected cells—independ-
ent of cell type—demonstrated a conserved transcriptional 
response marked by repression of mitochondrial-related 
transcripts. While its strengths lie in pre-sorting to better 
understand the input cell population prior to sequencing, the 
sorting associated with plate-based methods can add time 
and manipulation into sample processing and, paired with 
the use of fixed plates, can make this method lower-through-
put in comparison to droplet-based methods.

Split‑pool methods

Split-pool sequencing is a relatively new technique that lev-
erages combinatorial barcoding to identify individual cells 
rather than using a physical partition such as a droplet or a 
microwell [57]. Split-pool scRNA-seq begins by performing 
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reverse transcription on fixed and permeabilized cells to add a 
sample-specific oligonucleotide barcode to all mRNAs in each 
sample. The cells are then pooled, redistributed, and barcoded 
multiple times such that each cell receives a unique combina-
tion of barcodes. When performed on a 96-well plate, four 
rounds of barcoding are sufficient to create over 20 million 
unique barcode combinations, which can label up to an esti-
mated 1 million cells without creating a significant number of 
multiplets. Once the four barcoding steps are completed, the 
cells are lysed and libraries are prepared for sequencing [57].

Split-pool sequencing has the major advantage of needing 
no specialized equipment. Moreover, split-pool-based plat-
forms are designed to be compatible with paraformaldehyde-
fixed samples, making it particularly attractive for research-
ers working with virus-infected samples that require a high 
level of biosafety or have cells that can’t be processed imme-
diately (e.g., when thawed for use across multiple experi-
ments). Like well-based platforms, split-pool sequencing 
technologies are gentle enough for use on delicate cells such 
as neutrophils that are sensitive to microfluidics. Finally, 
these methods allow for easy multiplexing of a large number 
of samples in one experiment.

Single‑cell TCR/BCR sequencing

Technologies relying solely on short-read sequencing of 
mRNA, while generally appropriate for measuring the abun-
dance levels of most genes, are insufficient for the capture 
and reassembly of the more complex transcripts encoding the 
exquisitely specific receptors expressed on T cells (TCRs) and 
B cells (BCRs). In order to create the extraordinary diversity 
of TCR and BCR sequences found in humans, DNA seg-
ments of the genes encoding these receptors are rearranged in 
a process called V(D)J recombination. Additional diversity is 
introduced post-transcriptionally, when the transcripts undergo 
alternative splicing to produce unique genes that give rise to 
uniquely specific receptors. Therefore, in order to successfully 
capture the full diversity of a given V(D)J region, long-read 
sequencing techniques are necessary. Moreover, while tradi-
tional single-cell RNA sequencing approaches capture the 3’ 
ends of transcripts, the rearranged V(D)J region of a BCR or 
TCR is located at the 5’ end of the transcript, making it difficult 
to capture with short-read approaches [58].

In 2019, Repertoire And Gene Expression by Sequencing 
(RAGE-seq) was developed to pair full-transcript sequenc-
ing with 5’ capture in order to robustly resolve TCR and 
BCR sequences in a high-throughput manner [58]. This 
method is most commonly used in conjunction with micro-
fluidics-based platforms such as those offered by 10X 
Genomics, though similar methods have now been devel-
oped for compatibility with well-based platforms, including 
BD Rhapsody and Seq-Well, which use a unique 3’ approach 
to capture TCR sequences [59]. The advent of techniques 

that allow for simultaneous study of the whole transcriptome 
and TCR/BCR sequences provides the opportunity to ana-
lyze the transcriptomes of cells with specific TCR or BCRs, 
for example, clonally expanded populations [60–64].

A limitation of studying antigen-specific T cells is that 
these populations can be too small to serve as inputs into 
many scRNA-seq methods. SELECT-seq was developed as 
a method to address this limitation and gather both TCR 
sequencing and cellular transcriptomic information for 
rare/specific cell populations of interest. SELECT-seq does 
this by using a modified Smart-Seq2 protocol to generate 
cDNA libraries from single T cells, then taking an aliquot 
of each library for nested PCR to amplify CDR3 regions 
of both TCRɑ and TCRβ chains [65]. T cell libraries were 
selected for further high-coverage in-depth whole transcrip-
tome sequencing based upon whether there were duplicated 
CDR3 regions present (assumed to be clonally expanded). 
The authors utilize this method to identify transcriptional 
differences between CD8 + T cell populations with high 
versus low clonal expansions. They show that they are able 
to select for CMV-reactive CD8 + T cell populations (by 
activating T cells with CMV peptide) and identified that 
clones with low expansion had increased IL2RA (T cell acti-
vation signaling receptor) and CD27 and CD28 (costimula-
tory markers) while highly expanded clones had increased 
expression of TIGIT (coinhibitory receptor) and KLRG1 
(senescent marker). The advantage of this method is that it 
reduces costs associated with whole transcriptome sequenc-
ing by allowing users to select for cell populations of interest 
as well as for specific TCR clones for limited scRNA-seq.

LInking B-cell Receptor to Antigen specificity through 
Sequencing (LIBRA-seq) can be used to interrogate the anti-
gen specificity of BCRs while simultaneously collecting BCR 
sequences and whole transcriptome data at the single-cell level. 
Briefly, LIBRA-seq involves exposing B-cells to a pool of oli-
gonucleotide-barcoded antigens. Antigens bound by a B-cell 
are then captured within a droplet alongside the cell so that 
the antigen barcode can be sequenced in conjunction with the 
B-cell’s mRNA, thereby revealing the specificity of that cell’s 
BCR [66]. LIBRA-seq has also been leveraged for the discovery 
of novel broadly neutralizing antibody lineages in HIV-infected 
patients [66] and the identification of novel neutralizing antibod-
ies against SARS-CoV-2 [67]. It can also be used to interrogate 
the transcriptomes of viral antigen-specific B-cells [66].

Adaptations to established scRNA‑seq 
methods for measuring viral transcripts

Capture of non‑polyadenylated viral transcripts

Most scRNA-sequencing methods that perform 3’ mRNA 
capture (e.g., Seq-Well, BD Rhapsody, Drop-Seq, inDrop, 
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and several 10X Genomics kits) utilize poly-T oligonucle-
otide (oligo(dT)) primers to capture polyadenylated tran-
scripts associated with human mRNA, while limiting the 
measurement of highly abundant ribosomal RNAs [68]. 
Because many viruses are polyadenylated, they can be 
detected through standard methods: for example, SARS-
CoV-2 transcripts can be measured using standard 10X 3’ 
methods [69, 70] and Ebola virus can be measured using 
the standard Seq-Well protocol [23].

However, a limitation of many scRNA-seq methods is that 
they cannot capture non-polyadenylated transcripts. Some 
viruses, such as those in the Flaviviridae family (e.g., dengue 
virus, Zika virus, yellow fever virus, and hepatitis C virus), 
generate non-polyadenylated transcripts. Hence, if the study 
goal is to understand host responses in relation to viral infec-
tion dynamics, it can be important to choose a sequencing 
method that will capture non-polyadenylated reads. There 
are numerous methods that have been developed to measure 
non-polyadenylated transcripts, some of which have been uti-
lized in the context of viruses. For example, virus-inclusive 
single-cell RNA-Seq (viscRNA-Seq) adapts the Smart-seq2 
plate-based scRNA-seq protocol to pair standard oligo(dT) 
primers with virus-specific primers prior to cDNA generation 
(Fig. 3). As part of viscRNA-seq, amplified cDNA is split 
into aliquots for two purposes: (1) qPCR for viral RNA that 
can be associated with (2) sequencing for host transcripts 
[11]. This method measured viral RNA transcripts from the 
dengue virus and Zika virus from in vitro infections and 
recovered dengue viral transcripts from the PBMCs of den-
gue patients to identify viral tropism [11].

Droplet-assisted RNA targeting by single-cell sequenc-
ing (DART-seq), which is an adaption of Drop-seq to include 
multiplexed RNA amplicon sequencing, captured the non-pol-
yadenylated viral transcripts in an in vitro reovirus infection 
[26]. Other methods that utilize intentional primer design to 

generally capture both polyadenylated and non-polyadenylated 
transcripts include vast transcriptome analysis of single cells by 
dA-tailing (VASA-seq) which can be adapted in droplet work-
flows (VASA-drop) and plate-based workflows (VASA-plate) 
[71]; single-cell universal poly(A)-independent RNA sequenc-
ing (SUPeR-seq) [72]; and multiple annealing and dC-tailing-
based quantitative single-cell RNA-seq (MATQ-seq) [73].

Long‑read sequencing for viral genomes

Many RNA viruses have low-fidelity, error-prone polymerases 
that introduce mutations into the viral genome upon replica-
tion. For example, estimates for HIV-1’s RNA-dependent DNA 
polymerase predict around ~ 5–10 errors per HIV-1 genome per 
replication round [74]. Thus, during an in vitro or in vivo viral 
infection, viruses can exist as a viral quasispecies—a popula-
tion of viruses differing in genetic variation leading to com-
petent and/or defective viral particles that can differentially 
infect and drive host pathogenesis [73]. scRNA-seq studies 
that examine host antiviral responses without measuring viral 
genetic diversity are studying the combined effect of various 
viral mutations and defects. Most scRNA-seq methods incorpo-
rate library fragmentation for downstream short-read sequenc-
ing, but viral genomes span from 1–2 kb (Circoviruses) [75] 
to ~ 30 kb (SARS-CoV-2) and past 1000 kb (Mimiviruses) [76], 
allowing these methods to only capture a fraction of most viral 
genomes. Thus, methods that incorporate long-read sequencing 
empower an understanding of viral genomic diversity in rela-
tion to cellular responses in addition to viral transcript abun-
dance (Fig. 3). One such method was developed by Russell 
et al. which utilizes 10X technology to generate cell-barcoded 
cDNA from influenza virus (IAV)–infected cells and split 
the cDNA for two measurements: (1) standard downstream 
fragmentation and short-read sequencing and (2) enrichment 
of IAV-specific transcripts through PCR amplification and 

Fig. 3   Schematic demonstrating 
key differences between host 
and viral RNA that can require 
alternative approaches for 
sequencing virus transcripts
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full-length sequencing using PacBio methods [14]. The group 
demonstrated that two-thirds of IAV-infected cells had muta-
tions or defects in one or more of IAV’s 7 genomic segments 
and were able to use this integrated data to identify four IAV 
defects that correlated with increased cellular IFN induction 
and further validate these in vitro. An alternative approach, 
Single-cell Nanopore sequencing with UMIs (ScNaUmi-seq), 
leverages the 10X Genomics Chromium system to generate 
cell-barcoded cDNA products that are prepared downstream 
for Oxford Nanopore long-read sequencing [77].

Insights from single‑cell transcriptional 
profiling of antiviral immunity

Unbiased discovery of cell type

By profiling cellular phenotype at the transcriptome-wide 
scale, scRNA-seq enables the discovery of cell type and state 

that is not biased by the selection of marker panels, as in 
flow or mass cytometry (Fig. 4). Unbiased discovery of cell 
type generally relies on unsupervised clustering analysis, 
which groups transcriptionally similar cells into “clusters” 
based on gene expression. Most toolkits for scRNA-seq 
computational analysis, including Seurat, scanpy, and Mono-
cle, include implementations of several graph-based unsu-
pervised clustering algorithms; the strengths and weaknesses 
of these various algorithms have been extensively assessed 
and reviewed elsewhere [78–81]. The use of unsupervised 
clustering to assess cell type composition in scRNA-seq data 
is advantageous because it does not require a priori knowl-
edge, allowing for easy discovery of unexpected populations.

Analyses of COVID-19 patient samples exemplified the 
utility of leveraging unsupervised clustering approaches for 
cell type discovery. Early evidence of emergency myelopoie-
sis in severe COVID-19 came from scRNA-seq datasets that 
unexpectedly found immature neutrophils in the peripheral 
blood of patients with severe COVID-19 [31], which was 

Fig. 4   Overview of ways in which scRNA-seq can enable a deeper understanding of cellular antiviral responses and viral dynamics
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directly enabled by performing transcriptome-wide measure-
ments. Broadly, cell type annotation in scRNA-seq can be 
accomplished by manually assigning identities to cell clus-
ters, or by using automated tools to annotate individual cells. 
In the absence of a suitable transcriptomic reference dataset, 
differentially expressed genes (DEGs) for each cluster can be 
compared to known or expected transcriptomic profiles from 
the literature to call cell types for each cluster [82].

Reference datasets can greatly simplify this task, and a 
variety of automated tools have been developed to lever-
age transcriptomic references to annotate query datasets 
(reviewed by [83]). Generally, these tools operate either by 
correlating the transcriptomic profile of each single query 
cell to a reference bulk or single-cell profile (scmap [84], 
SingleR [85], scMatch [86]), by identifying mutual nearest 
neighbors between reference and query cells and transfer-
ring cell type labels (Seurat v4 [87], scArches [88]), or by 
performing supervised classification (SingleCellNet [89], 
scClassify [90], LAmbDA [91], scPred [92]).

Choosing a suitable reference is a critical and challeng-
ing step in any automated cell annotation process. The most 
robust reference-based automated cell type annotations 
would ideally use references that contain the same cell types 
as the query and from the same tissue niche. Most reference 
datasets are derived from homeostatic tissue niches, and care 
must be taken when interpreting reference-based cell type 
annotations in a highly perturbed query dataset. For exam-
ple, there are frequent situations where unexpected cell types 
are present outside of their typical tissue niche. For example, 
when emergency myelopoiesis results in immature myeloid 
cells being present in the peripheral blood [31, 45], applying 
peripheral blood references to peripheral blood datasets with 
emergency hematopoiesis [93] will lead to incorrect and 
misleading cell type annotations [93]. Thus, reference-based 
cell type annotation should always be paired with manual 
verification based on biological knowledge and expectations.

In addition to generating and annotating new references, 
there is an ongoing effort in cell type annotation to incor-
porate additional data modalities into assigning cell type 
identity. For instance, T cells contain low RNA content that 
makes biologically distinct T cell subtypes difficult to dis-
tinguish based on transcriptomic data alone [87]. However, 
these subtypes can be readily dissected by their cell surface 
proteome. Data from single-cell multimodal methods that 
capture both transcriptome and cell surface protein data [94] 
thus have the potential to solve this problem. Recently, Hao 
et al. [87] introduced weighted nearest neighbor (WNN) 
analysis to leverage multiple data modalities for neighbor 
graph generation, clustering, integration, and data transfer. 
WNN analysis learns, for each cell, which data modality 
best predicts that cell’s identity and uses these single-cell 
modality weights for downstream analytical tasks. This 
approach allows highly accurate (r = 0.91) quantification of 

difficult-to-identify T cell subsets like mucosal-associated 
invariant T (MAIT) cells [87]. We anticipate that the contin-
ued publication of additional multimodal references, by inte-
grating additional dimensions of a cell’s biological identity, 
will enable even more robust cell type annotations.

Analysis of dynamic cellular processes

Viral infection can drive cells towards different states with 
diverse functional consequences. scRNA-seq powerfully 
reveals RNA abundances of cells at the time of sample col-
lection; however, transcript abundances alone are not enough 
to determine drivers of infection-altered cell trajectories, 
which are important to elucidating disease pathogenesis. 
RNA velocity seeks to derive cell trajectory dynamics by 
leveraging explicit measurements of newly transcribed pre-
mRNAs (unspliced) and mature mRNAs (spliced) in order 
to estimate gene splicing and degradation rates. These meas-
urements can help infer the continuous, dynamic spectra of 
cell states and estimate an individual cell’s position in that 
spectrum as a pseudotime value (Fig. 4). Both scVelo [95] 
and Velocyto [96] are both tools that enable an analysis of 
this information. RNA velocity has limitations, including its 
high dependency on the k-NN graph built on the data, the 
cells included in the collected data, and its strong depend-
ence on two-dimensional representations for visualization 
built on observed transcriptional data that do not fully 
capture cell-state transitions [97]. The recently developed 
veloViz addresses some of these limitations by incorporating 
RNA velocity information into 2D and 3D embeddings to 
better capture cellular trajectories even when intermediate 
cell types are missing [98].

RNA velocity has been leveraged to understand drivers 
of myelopoiesis and lymphopenia seen in severe COVID-
19 patients. To do so, Wang et al. [99] profiled bone mar-
row mononuclear cells of COVID-19 patients and utilized 
RNA velocity to identify differences in hematopoiesis. The 
study found that hematopoietic stem cells from patients with 
severe COVID-19 demonstrated preferential differentiation 
trajectories towards granulocyte-monocyte progenitors and 
away from lymphoid progenitors, potentially underlying dif-
ferences in myeloid and lymphoid cell proportions in the 
blood of severe COVID-19 patients.

While RNA velocity can be inferred from general scRNA-
seq methods, metabolic labeling combined with scRNA-
seq can enable time-resolved scRNA-seq, or tscRNA-seq, 
through direct experimental measurements of “new” and 
“old” RNA molecules to more accurately measure RNA 
turnover rates and infer cell-state transitions. The method, 
scSLAM-seq (single-cell, thiol-(SH)-linked alkylation of 
RNA for metabolic labeling sequencing), integrates meta-
bolic RNA labeling and biochemical nucleoside conver-
sion with scRNA-seq to directly measure RNA turnover 
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on the basis of U-to-C conversion rates at the single-cell 
level [100]. Proof-of-concept scSLAM-seq experiments on 
mouse fibroblast cells infected with mouse cytomegalovi-
rus (MCMV) showed the robustness of this experimental 
method to identify intermittent “bursting” kinetics (periods 
of transcription separated by transcriptional inactivity) of 
genes in response to MCMV infection. An open-source 
software, dynamo, robustly integrates RNA metabolically 
labeled data with scRNA-seq splicing kinetics to show an 
increased accuracy in RNA velocity estimates in comparison 
to RNA velocity analysis on solely scRNA-seq splicing data 
when used on a metabolically labeled human hematopoiesis 
scRNA-seq dataset [101].

Analysis of viral dynamics

Impact of viral transcript abundance on cellular 
responses

Using an scRNA-seq method optimized to measure virus tran-
scripts of interest can elucidate the impact of viral presence on 
cell function (Fig. 4). Identification of cells containing viral 
reads versus “bystander” (exposed but uninfected) cells can be 
accomplished by including the viral genomes of interest into 
the genome to which scRNA-seq transcripts are aligned. Addi-
tionally, Viral-Track introduced a reference genome (curated 
by Stano et al. [102]) that includes over 1000 virus genomes 
which can be used to detect both expected and unexpected 
viral infections [10, 32]. This viral reference genome has been 
used to identify a putative SARS-CoV-2 and metapneumovirus 
co-infection in a severe COVID-19 patient [10]. Annotating 
infected versus bystander cells allows the identification of dif-
ferentially expressed genes (DEGs) that correlate with viral 
gene presence, and has been used to identify host gene corre-
lates of lymphocytic choriomeningitis virus (LCMV) infection 
of mice in vivo [10].

Unlike in typical bulk RNA-seq workflows, UMI labeling 
of unique transcripts prior to amplification in scRNA-seq 
methods allows for better estimation of the interconnect-
edness between viral abundance and cellular responses. 
Correlation methods, such as Pearson’s or Spearman’s rank 
correlation, can be utilized to connect intracellular viral 
abundance to cellular host responses. Utilizing viscRNA-
seq of cells infected in vitro with either dengue or Zika virus, 
Zanini et al. [19] performed Spearman’s rank correlations 
of all host genes against viral RNA abundance to identify 
a conserved positive correlation between host transcripts 
involved in the endoplasmic reticulum (ER) unfolded protein 
response (UPR) and the abundance of Zika and dengue viral 
transcripts, relevant as both viruses’ replication and transla-
tion processes are largely restricted to the ER. In another 
example, Shnayder et al. [21] used scRNA-seq to show that 

lytic and latent human cytomegalovirus (HCMV) infections 
were distinguished by viral transcript abundance, but had 
similar host expression programs associated with a viral 
infection. Although the ability to correlate viral transcript 
abundance with host transcriptional programs is a powerful 
tool, it is important to keep in mind the challenges in captur-
ing and accurately quantifying viral transcripts as discussed 
throughout this review.

Additionally, there can exist heterogeneity in which par-
ticular viral genes are expressed or not expressed that can 
impact host responses. Sun et al. [103] infected cells in vitro 
with influenza A virus (IAV), performed 10X-based scRNA-
seq, and aligned transcriptomic data to a combined reference 
of both human and influenza virus (IAV) genomes. Among 
cells infected with IAV, the authors found substantial het-
erogeneity in host and viral gene expression [103]. With the 
IAV genome composed of 8 segments, while a majority of 
infected cells expressed genes from all 8 segments, others 
expressed transcripts from different subsets of these seg-
ments with few cells expressing transcripts from only 1–2 
segments. The authors demonstrated that this heterogeneity 
was the result of cells expressing viral genes from a vari-
able combination and number of IAV genome segments. For 
example, cells that did not express the IAV nonstructural 
segment (NS) demonstrated increased ISG and IFN-related 
transcripts—an expected outcome as IAV NS1 is known to 
suppress antiviral responses [2]. The identification of vari-
able viral gene expression dynamics and their differential 
impact on host immune responses was directly enabled by a 
combination of single-cell resolution profiling and unbiased 
mapping of host and viral transcripts.

Determining active replication by scRNA‑seq

A challenge in scRNA-seq studies is the ability to determine 
whether measured viral transcripts are associated with actively 
replicating viral infection rather than non-replicating inter-
nalized, extracellularly bound, or ambient extracellular viral 
RNAs (e.g., those from cell supernatants, bound infection 
inoculum, virus from lysis of an infected cell, internalized via 
phagocytosis). Analytic methods to detect and remove con-
taminating ambient RNA transcripts have been developed by 
Kotliar et al. [23] to identify intracellular Ebola virus tran-
scripts and by Young and Behjait [104], who developed SoupX 
(Fig. 4). These methods follow a similar workflow: (1) estimate 
the ambient RNA profile for empty droplets, (2) estimate the 
fraction of each cell’s transcript associated with the ambient 
RNA profile, (3) determine the level of ambient RNA contami-
nation and correct the expression profile, which helps direct 
analyses towards cells with actively replicating RNA.

Additionally, methods including scSLAM-seq that utilize 
metabolic labeling of new and old RNA transcripts to infer 
active versus ambient transcripts [100] can help understand 
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viral dynamics as well. Erhard et al. [100] showed that 
among cells infected with mouse cytomegalovirus (MCMV), 
scSLAM-seq was able to distinguish between “older” viral 
transcripts (hypothesized to be virion-associated RNA deliv-
ered to the cell) versus “newer” viral transcripts (hypoth-
esized to be associated with actively replicating virus) to 
more accurately identify infected cells.

Additionally, a priori knowledge of the virus of interest can 
inform analyses of viral replication dynamics. In the context of 
DNA viruses and/or latent viruses, sequenced viral transcripts 
could indicate replicating and/or reactivating DNA viruses as 
scRNA-seq processing selects for RNA, therefore not meas-
uring DNA viral genomes and genomically integrated virus. 
Authors studying herpes simplex virus (HSV)-1-infected cells, 
a virus that can exist in either a latent (quiescent) or lytic (active) 
state, were able to use measured HSV-1 transcripts as a cor-
relate of lytic infection to identify the stepwise progression of 
viral gene program transcription as infection progressed and 
host transcripts associated with restricting viral infection [24]. 
In another example, utilizing the method Viral-Track to detect 
viral transcripts present in scRNA-seq data, researchers were 
able to identify human metapneumovirus (hMPV) present in 
a patient with severe SARS-CoV-2 infection [10]. Utilizing 
coverage analysis and hMPV virology, authors identified a 
biased nature to the transcripts (higher abundance of N, P, M, F, 
M2, SH, G, and lower abundance of L hMPV genes) suggest-
ing the presence of actively replicating virus in samples at the 
time of collection. Another method, scCoVseq, can measure 
subgenomic RNA transcripts which are generally only present 
during active viral replication, thus having the potential to iden-
tify cells hosting actively replicating virus across coronavirus or 
nidovirus infections more generally [105]. Furthermore, analy-
sis of strandedness of viral transcripts can identify potential for 
replicative infection: for example, if analyzing an infection by a 
positive-sense RNA virus, detection of negative-stranded RNA 
transcripts (needed as a template to build positive-sense genomic 
RNA to package into progeny virus particles) could indicate 
active replication. However, read alignment softwares such as 
Cell Ranger ignore antisense transcripts, so intentional design 
of alignment genome and processing pipelines is important to 
detect this information. These current analytical tools generally 
require a strong understanding of viral replication and viral gene 
expression dynamics in order to make conclusions about infec-
tion type, with the gold-standard confirmation method being 
plaque assay validation to prove active infection. More work is 
necessary to build tools across virus families to identify active 
versus ambient and extracellular viral RNA in scRNA-seq data.

Deriving the differential impact of viruses 
within a viral quasispecies

Viruses can exist as a heterogeneous quasispecies during 
infection, with virions that can include a range of genomic 

mutations and defects. This viral genetic diversity can het-
erogeneously impact the responses of individual infected 
host cells, necessitating single-cell resolution profiling to 
capture the full phenotypic structure of virus-host interac-
tions. Leitch and McLauchlan sequenced individual Huh7 
cells infected with the hepatitis C virus (HCV) to demon-
strate the heterogeneity in HCV quasispecies within a cell. 
Authors showed a cell could range from harboring only 
wild-type HCV sequences to containing up to four differ-
ent HCV viral sequences with diverse mutations from one 
another, with a population of cells containing 32 different 
HCV sequences [15]. Authors identify differences in fitness 
of three HCV variants identified, which further highlights 
the functional impact of these viral quasispecies on the host. 
More work is necessary to understand the impact of viral 
quasispecies composition and individual variants on host 
antiviral responses, which may be particularly important in 
studying viral escape, and scRNA-seq provides a strong tool 
to start to answer these questions.

Integrated views of cell signaling 
and communication in antiviral immunity

Analysis of intracellular regulatory systems

At its most basic level, scRNA-seq data provides a single 
transcriptional snapshot of cell state and identity, but it is 
possible to go beyond this to provide insights into intercellu-
lar regulatory logic and signaling (Fig. 5). For example, iden-
tifying groups, or modules, of genes that are co-expressed 
can imply orthogonal biological functionality. One of the 
most widespread approaches to this analytical question is 
weighted gene correlation network analysis (WGCNA) [106, 
107]. Originally developed for bulk transcriptomic datasets, 
WGCNA identifies clusters of genes with a high degree of 
topological overlap, a measure of gene interconnectedness, 
between samples. WGCNA has recently been adapted to 
single-cell transcriptomic datasets by discovering modules 
of highly connected genes between individual cells rather 
than between separate samples [30, 108]. This approach has 
recently been applied to longitudinal scRNA-seq profiling 
of hyperacute HIV infection, where it revealed temporally 
coordinated and prolonged expression of gene modules asso-
ciated with NK cell cytolytic activity as potentially associ-
ated with future viral control [30, 109]. Another comple-
mentary approach to WGCNA involves non-negative matrix 
factorization (NMF). NMF-based approaches, including 
consensus NMF (cNMF) [110], have recently been adapted 
for scRNA-seq data, where they have been applied to disen-
tangle highly interconnected gene programs that define cell 
state rather than cell type. For example, cNMF has been used 
to identify a gene program that is associated with bacterial 
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sepsis [111]. This same gene program has now been shown 
to be strongly associated with severe COVID-19 [18], and is 
directly inducible in hematopoietic progenitors treated with 
plasma from severe COVID-19 patients [112].

In addition to implying shared biological functionality, 
strongly co-expressed gene modules can also reflect the activ-
ity of a shared intercellular regulatory network. Many recent 
methods have sought to leverage genetic and epigenetic data 
on gene regulatory pathways to infer what transcription factors 
underlie observed gene modules or DEGs, thereby yielding 
a more integrated view of cellular phenotype. For example, 
SCENIC [113] and companion tool iRegulon [114] use pro-
moter and enhancer sequences associated with each gene to 
predict which motifs and transcription factors are most likely 
to underlie observed transcriptional profiles. This approach 
has been used to identify STAT1/2/3 as a key putative driver of 
neutrophil activation in severe COVID-19 [18]. Alternatively, 
databases of transcriptional regulation have also been assem-
bled from perturbation experiments, enabling the prediction 
of transcription factor activity from empirical measurements 
[115–118]. These databases have been applied to identify the 
activity of IRF9 in the alveolar epithelial cells of patients with 
severe COVID-19 [119, 120].

Recent developments in gene editing technology have 
enabled multiplexed genetic perturbation screens to be com-
bined with deep single-cell transcriptomic readouts, provid-
ing approaches to directly uncover gene regulatory networks 
at a single-cell resolution [121–124]. These methods have 

recently been applied to uncover several host dependency 
factors and pathways for SARS-CoV-2, including the NF-κB 
inhibitor IκBα (NFKBIA) [125] and RAB7A, which pre-
vents sequestration of the ACE2 receptor [126, 127]. In 
addition to performing functional genetic mapping of host 
factors, these techniques can be used to simultaneously per-
turb viral genetic elements. Hein and Weissman [12] have 
recently used Perturb-seq to map both host and viral fac-
tors that are protective or detrimental to Epstein-Barr virus 
(EBV) infection. They leveraged the single-cell resolution 
of Perturb-seq to describe a stereotyped trajectory of EBV 
infection that could be altered by the deletion of viral factors, 
but slowed or accelerated by the deletion of host factors [12]. 
These experiments highlight the power of integrating pooled 
genetic perturbations with single-cell transcriptomic read-
outs, providing a deep view of host and viral interactions.

Analysis of multicellular ecosystems

In the setting of antiviral immunity, immune cells do 
not exert their functions in a solitary void but are rather 
involved in finely balanced communication networks with 
their microenvironment and other immune cells in order 
to limit viral disease. By providing a deep view of cellular 
phenotype at single-cell resolution, scRNA-seq datasets are 
well suited for the prediction of how individual cells may 
communicate with each other in a tissue niche (Fig. 5). The 
curation of ligand-receptor interaction databases has enabled 

Fig. 5   Overview of scRNA-seq analytic approaches to understanding intracellular and multicellular signaling
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the development and application of many tools to infer pat-
terns of cell–cell communication (CCC) from scRNA-seq 
data [128, 129].

The most common approach to inferring CCC in scRNA-seq 
data is to average ligand and receptor expression values for a 
given cluster or cell type, use these aggregated values to predict 
which cells are most capable of communicating, and identify 
which ligand-receptor edges are most specific to communica-
tive pathways between given cell types. These methods include 
CellPhoneDB [130, 131], CellChat [132], Connectome [133], 
NATMI [134], SingleCellSignalR [135], and iTALK [136] 
(reviewed by [137]). These methods have been applied to many 
scRNA-seq datasets profiling antiviral immune responses. For 
example, a recent preprint identified SARS-CoV-2-mediated 
induction of CCL2 in activated interstitial macrophages as a 
potential mechanism to recruit specific dendritic cell (DC) sub-
types through the expression of CCR2 [138].

However, the expression of a cognate ligand-receptor pair 
by two cells does not demonstrate that those cells are indeed 
interacting or that the putative interaction impacts down-
stream cellular phenotype. To address this issue, NicheNet 
introduced a curated database linking ligand activities to tar-
get gene expression and developed a method to infer ligand 
activity from a set of DEGs [139]. In the setting of COVID-
19, NicheNet has been applied to identify persistent IFN-α 
signaling in NK cells from patients with severe COVID-19 
[140], IFN-γ and TNF-α as ligands driving monocyte dys-
function in post-acute sequelae of COVID-19 (PASC) [141], 
and IL-15 and IL-18 as macrophage-expressed ligands pre-
dicted to enhance functional activity of SARS-CoV-2 anti-
gen-reactive CD4 and CD8 T cells [63].

A major limitation of these tools is that they operate at 
the level of the cell type or cell cluster and thus can obscure 
biologically-important heterogeneity and specificity. Our lab 
has demonstrated that CCC analysis methods that aggregate 
at the level of the cell type or cluster lose > 50% of unique 
CCC phenotypes in the process of agglomeration, highlight-
ing the importance of maintaining single-cell resolution 
[142]. Two recent methods, NICHES [143] and Scriabin 
[142], present techniques to analyze CCC at near single-cell 
resolution. The fundamental advancement in both of these 
methods is the encoding of CCC information in a cell–cell 
matrix that measures the interaction potential of cell–cell 
pairs along each possible ligand-receptor edge [142, 143]. In 
applying Scriabin to a longitudinal dataset of SARS-CoV-2 
infection [144], Scriabin revealed that uninfected bystander 
epithelial cells may initiate downstream inflammatory 
pathways through the production of IL1B which can act on 
infected cells to upregulate acute-phase reactant encoding 
genes involved in tissue remodeling processes [142].

Another complementary set of techniques for CCC infer-
ence are computational methods that infer which cells are 
communicating by identifying putative multiplets in the 

dataset (e.g., Neighbor-seq [145]), or by directly sequencing 
interacting cells (e.g., PIC-seq [146]). While this provides 
an additional layer of evidence for biologically-meaningful 
interactions, cells that have previously interacted but are no 
longer associated will not be detected. This latter problem 
has been addressed by techniques such as LIPSTIC [147] 
that permanently label cells that have interacted using par-
ticular ligands or receptors. However, these methods remain 
poorly scalable and require prior cell engineering. We antici-
pate that future technological developments will enable the 
synergy of these complementary approaches towards more 
comprehensive solutions for CCC analysis.

Multimodal profiling of viral infections

Integrated transcriptomic and genomic single‑cell 
methods

Having genomic information to underlie transcriptomic changes 
can highlight the role of inherent genetic differences that may 
drive different antiviral responses and viral susceptibility (Fig. 6). 
Mutations in host proteins required for viral replication can alter 
disease susceptibility. For example, individuals homozygous 
for the CCR5 delta32 allele are resistant to HIV infection [148, 
149], while polymorphisms of ACE2, a cellular entry receptor for 
SARS-CoV-2, may impact ACE2 protein expression and SARS-
CoV-2 binding to potentially affecting COVID-19 pathogenesis 
[150]. Furthermore, associations between the HLA genotype 
and SARS-CoV-2 susceptibility and disease progression have 
been reported [151]. To simultaneously study the complexities of 
genomic variation on transcriptional profiles, G&T-seq (genome 
and transcriptome sequencing) is a method able to measure both 
genomic and transcriptomic information from the same cell 
[152]. After single-cell plating and cell lysis to release mRNA 
and genomic RNA, polyadenylated mRNA transcripts are physi-
cally separated from the DNA with the use of biotinylated oligo-
dT primers, and both the RNA and DNA libraries are processed 
in parallel. Other methods for paired transcriptomic and genomic 
measurements of single cells include TARGET-seq [153], SIDR 
[154], and DR-seq [155]. DNA measurements in combination 
with transcriptomics can also enable an analysis of DNA virus 
genomic abundance as well as capture any integrated viral reads 
(e.g., HIV) or detect latent versus lytic viral infection (e.g., HSV1, 
HSV2) that may drive virus expression dynamics downstream.

Integrated transcriptomic and proteomic single‑cell 
methods

Technical methods have been developed to integrate scRNA-
seq measurements with proteomic measurements of the same 
cells, such as CITE-seq [94] and REAP-seq [156]. The power 
of this integrated approach is the ability to correlate transcript 
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abundance with translated protein expression—important for 
understanding downstream functional responses. Additionally, 
CITE-seq also empowers the analysis of transcriptomes within 
cell types defined by surface proteins, which is important as 
some cell types can be difficult to distinguish on transcriptomes 
alone (e.g., NK cells versus T cells, intermediate monocytes) 
(Fig. 6). A study looking at differences between hospitalized 
patients across moderate, severe, critical, and fatal COVID-19 
severities utilized CITE-seq to measure PBMC transcriptomes 
and paired protein measurements across 188 cell surface proteins 
[157]. The paired transcriptome-protein analysis empowered the 
study’s ability to distinguish NK cell subtypes (CD56hiCD16lo 
NK, CD56dimCD16hi NK, CD56loCD16lo NK) and further iden-
tify IL-15-linked fatty metabolism and attenuated inflammation 
in CD56dimCD16hi NK cells as a primary correlate of disease 
severity across the study group. While unpaired at the cellular 
level, CyTOF and scRNA-seq profiling of whole blood from 
the same COVID-19 patients was able to identify significantly 
decreased expression of activating receptors DNAM-1 and 
NKG2D protein in activated NK cells from severe COVID-19 
samples compared with healthy, but no changes in levels of their 
transcripts [18], which provides an example for the importance 
of multimodal analyses as different conclusions could be had 
when focusing on one measurement for analyses.

Integrated transcriptomic and epigenomic 
single‑cell methods

Investigating the association between transcriptional and 
epigenetic variation can elucidate underlying mechanisms 
and regulatory features that drive immune responses to 

viral infections (Fig. 6). Previous research has demonstrated 
that exposure to different environments and vaccines can 
drive persistent epigenetic changes and downstream cellu-
lar responsiveness to infection and viral susceptibility. For 
example, work from Wimmers et al. [158] demonstrated that 
an adjuvanted H5N1 influenza vaccine can change the his-
tone modification landscape of monocytes, with changes to 
chromatin accessibility that associate with increase expres-
sion of antiviral- and interferon-related genes and resistance 
to dengue and Zika virus infection [158]. There are multiple 
methods that can characterize both the transcriptomics and 
the epigenomics of a single cell and vary at what epigenomic 
and transcriptomic layers they can capture. One method, 
the 10X Chromium Single-Cell Multiome ATAC + Gene 
Expression kit, works by incubating nuclei suspensions with 
Transposases to fragment open region fragments and the 
kit’s Gel Beads include (a) a poly(dT) sequence to build bar-
coded cDNA libraries from polyadenylated nucleic mRNA 
as well as (b) a Spacer sequence to attached to transposed 
DNA fragments for the ATAC library. However, it is impor-
tant to note that methods using nuclei rather than the whole 
cell as input into RNA-seq would be unable to detect viral 
transcripts from viruses that don’t use the nucleus for its 
life cycle (e.g., flaviviruses, coronaviruses). Another method 
called scM&T-seq (single-cell methylome and transcription 
sequencing) [159] utilizes the previously mentioned scG&T 
method but instead of DNA isolation for genomic sequenc-
ing, scBS-seq (single-cell bisulfite sequencing) is applied to 
isolated DNA to generate methylomes from the same single 
cells that transcriptomes are generated. A further adaptation 
to scM&T-seq is called scNMT-seq (single-cell nucleosome, 

Fig. 6   Venn diagram demon-
strating the information that 
can be derived from epigenetic, 
transcriptomic, and proteomic 
measurements. Overlap-
ping regions contain unique 
information that can be derived 
from integrative analyses of 
multiple omics in the same cell. 
CITE-seq, cellular indexing of 
transcriptomes and epitopes by 
sequencing; trx, transcription; 
scATAC-seq, single-cell resolu-
tion in assay for transposase-
accessible chromatin using 
sequencing; SNP, single nucleo-
tide polymorphism
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methylation, and transcription sequencing) which adds 
measurement of chromatin accessibility by adapting Nucleo-
some Occupancy and Methylation sequencing (NOMe-seq) 
methods prior to BS-seq [160]. Together, all these methods 
can begin to bring together a deeper understanding of regu-
latory mechanisms and cellular trajectories driving immune 
responses to viral infections and the differential drivers that 
contribute to protective versus pathogenic responses.

Integration and reanalysis of public scRNA‑seq 
datasets

The expensive nature of generating scRNA-seq datasets in 
comparison to methods like bulk RNA-seq and flow cytom-
etry tends to limit the number of samples run via scRNA-seq. 
Therefore, studies can vary in the number of samples profiled 
and further limits the heterogeneity of experimental conditions 
and sampled populations that are included. The advent of public 
repositories to submit scRNA-seq data and the accessibility to 
these resources, such as NCBI’s Gene Expression Omnibus (for 
processed data) and the Sequence Read Archive repositories (for 
raw sequencing data), make it possible for scientists around the 
world to download and reanalyze collected data. Xu et al. [161] 
reanalyzed data collected by Zanini et al. [11] of scRNA-seq of 
PBMCs from dengue-infected patients and employed new tools 
such as CellChat [132], which was developed in 2021 after the 
data was published in 2018, to identify cell–cell communication 
rewiring of PBMCs from severe dengue disease compared to 
control and mild dengue patients.

Additionally, a comparative understanding of infection across 
heterogeneity-associated disease manifestations, experimental 

conditions, and sampling population differences can drive a 
robust understanding of viral responses across included contexts. 
Additionally, data integration can boost sample sizes across mul-
tiple axes to power analyses. For example, a review by Tian et al. 
[162] integrated high-quality cells from 21 publically deposited 
COVID-19 scRNA-seq profiling studies of mainly PBMC and 
whole blood. In the end, authors collectively analyzed 3.2 mil-
lion cells from COVID-19 patients from various demograph-
ics and disease severities to identify cell type correlates of 
COVID-19 pathogenesis [162]. Integrated analyses with non-
viral diseases are also powerful: Reyes et al. [112] comparatively 
analyzed scRNA-seq of PBMCs they collected from patients 
with bacterial sepsis and public COVID-19 PBMC scRNA-
seq data to identify shared monocyte transcriptional responses 
during severe disease, marked by reduced MHC-II transcripts 
(important for antigen presentation) and increased expression of 
S100A8 (implicated in the development of myeloid-derived sup-
pressor cells). Further understanding viral infection responses 
comparatively with other diseases and conditions (including 
vaccination) is an important avenue for exploration to better 
understand protective/pathogenic mechanisms.

Conclusions and future directions

scRNA-seq overcomes some of the limits of bulk sequencing 
methods to measure the heterogeneity of viral dynamics and 
cellular responses in relation to one another (Fig. 1). With 
new scRNA-seq methods able to integrate additional meas-
urement technologies, an incredible amount of information 
can be uncovered from a single sample. Multimodal methods 

Fig. 7   Virus-related scRNA-
seq publications from 2013 
to October 2022. SCOPUS 
database search for publications 
associated with “scRNA-seq” 
and “viruses,” with publica-
tions relating to HIV, influenza, 
and SARS-CoV-2 highlighted 
within the identified total
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that integrate transcriptomics with other biological informa-
tion are an important frontier to gaining a deeper under-
standing of the complexities of human antiviral responses. 
Additionally, integrated analyses of data, not just within one 
type of viral infection, but also across various other viral 
infections, vaccine responses, and conditions (e.g., sepsis) 
might also add to our understanding of viral pathogenesis 
through an understanding of the complexities of cellular 
responses. Public availability of scRNA-seq data paired with 
constantly developing data analysis tools allows a deeper 
understanding of viral-host dynamics, thereby allowing 
these data to continue contributing scientific knowledge far 
beyond data collection. It remains important to continue 
scRNA-seq studies across diverse viruses in the context of 
diverse cell types and populations to gather a holistic under-
standing of disease pathogenesis. Importantly, all methods 
discussed have their various pros and cons: when designing 
an scRNA-seq study uncovering virus-host responses, it is 
crucial to understand the study’s goals and limitations (e.g., 
virus type, cell types of interest, sample number, budget) in 
order to decide on a method that can optimally measure the 
information of interest. For example, while many studies 
focus on blood, a number of viruses target specific tissues 
and may not be present in the blood, thus limiting the power 
of discussed methods to optimize virus quantification and 
dynamics. Therefore, utilizing prior information regarding 
viral tropism and disease dynamics to inform scRNA-seq 
study and method design can go a long way to obtaining 
high-information data.

There also remain broad limitations on the use of scRNA-
seq technology. For example, the techniques discussed in this 
review require the sample input to be a single-cell suspen-
sion; therefore, no spatial information is captured, as solid 
tissues must be dissociated prior to analysis. This results in 
the omission of important information in solid tissue infec-
tions (e.g., lung infection in SARS-CoV-2) though is less of 
an issue for blood-borne pathogens. Newer methods such 
as spatial barcoding and high-plex RNA imaging seek to 
remedy this limitation [163, 164]. Additionally, although 
the throughput of scRNA-seq methods has vastly improved 
since the advent of these technologies, the maximum cell 
number that can be used in these workflows is still far below 
the number of cells that can be processed by single-cell pro-
teomic methods such as flow cytometry and CyTOF. This is 
due to both technological limitations of scRNA-seq methods 
as well as cost prohibition, as high-throughput sequencing 
is quite expensive.

We have learned a lot about antiviral immunity with the 
advent of scRNA-seq technology—and there is still more 
to learn. There is a wealth of scRNA-seq publications on 
SARS-CoV-2 (Fig. 7), and we must extend scRNA-seq 
applications across other viral diseases, including those 
identified by WHO as priority diseases [165]. A proactive 

rather than reactive application of scRNA-seq methods to 
a broader range of viral infections will allow us to better 
understand protective and pathogenic cellular responses 
to viruses to be better equipped to manage current and 
emerging viral diseases.
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