Skip to main content
. 2022 Nov 21;9(1):110. doi: 10.1186/s40537-022-00660-w

Table 5.

The classification metrics for the oversampled Russian texts

Classifier NB SVM LR k-NN DT RF XGBoost Average
Accuracy 0.71 0.60 0.84 0.67 0.91 0.95 0.64 0.76
Precision-macro 0.73 0.61 0.84 0.77 0.91 0.95 0.64 0.78
Precision-micro 0.71 0.60 0.84 0.67 0.91 0.95 0.64 0.76
Precision-weighted 0.73 0.61 0.84 0.77 0.91 0.95 0.64 0.78
Recall-macro 0.71 0.60 0.84 0.66 0.91 0.95 0.64 0.76
Recall-micro 0.71 0.60 0.84 0.67 0.91 0.95 0.64 0.76
Recall-weighted 0.71 0.60 0.84 0.67 0.91 0.95 0.64 0.76
F1-score-macro 0.71 0.59 0.84 0.65 0.90 0.95 0.63 0.75
F1-score-micro 0.71 0.60 0.84 0.67 0.91 0.95 0.64 0.76
F1-score-weighted 0.71 0.59 0.84 0.65 0.90 0.95 0.63 0.75
Average 0.71 0.60 0.84 0.69 0.91 0.95 0.64