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Highlights Impact and implications

� ISGylation is a robust host defense response

following HCV infection in hepatocytes.

� Stem cells demonstrate undetectable ISGylation
following interferon stimulation.

� High baseline expression of SOCS1 protein nega-
tively regulates ISGylation in stem cells.

� SOCS1 gene expression is controlled through
epigenetic regulation during differentiation.

� Downregulating SOCS1 enhances IFN-induced
ISGylation which could have implications in can-
cer development.
https://doi.org/10.1016/j.jhepr.2022.100592
To elucidate the mechanism underlying regulation of
ISGylation, a key process in the innate immune
response, we studied changes in ISGylation-associated
genes at the different stages of differentiation from
iPSCs to hepatocytes. We found that high basal levels
of SOCS1 inhibit STAT1 activation and subsequently
IFN-induced UBE2L6 and ISGylation in iPSCs. Impor-
tantly, epigenetic regulation of SOCS1 and subse-
quently ISGylation may be important factors in the
development of cell type-specific host defense re-
sponses in hepatocytes that should be considered
when studying chronic infections and oncogenic pro-
cesses in the liver.
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Background & Aims: Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key
factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and
associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes.
Methods: To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs,
hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured
following treatment with poly(I:C), IFNa and HCV infection.
Results: When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a
lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-
conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of
SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subse-
quently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher
intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh
7.5.1 cells led to increased ISGylation.
Conclusions: Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6
and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by
modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate
immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense
responses and related oncogenic processes.
Impact and implications: To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate im-
mune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to
hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and
ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the
development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic
infections and oncogenic processes in the liver.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Very few viruses, of which HCV is one, can manifest as chronic
pathogenic infections in humans.1,2 An estimated 58 million in-
dividuals are living with chronic HCV infection globally, and
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chronic infection with HCV is a major risk factor for the devel-
opment of hepatocellular carcinoma (HCC), the third leading
cause of cancer deaths worldwide according to the World Health
Organization.3 The mechanisms underlying the establishment of
chronic HCV infection in the liver are not fully characterized. The
pertinent cell-intrinsic innate antiviral responses in hepatocytes
have also not been fully elucidated.4–10 A critical step in estab-
lishing an antiviral state is through the upregulation of
interferon-stimulated genes (ISGs).2,4,6,10–13 Among these,
interferon-stimulated gene 15 (ISG15) has been shown to have
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Fig. 1. ISGylation is detectable in hepatocytes following HCV infection. (A-B) Mouse-propagated human hepatocytes (mpHHs) were treated with HCV (MOI=1)
for 8, 24 and 48 h. (A) Western blot analysis of protein expression for ISG15, UBE1L, UBE2L6, pSTAT1, STAT1, HCV Core Protein and b-actin. (B) qPCR analysis of
mRNA expression for ISG15, UBE1L, UBE2L6, STAT1 and HCV intracellular RNA. Data from repeated experiments in triplicate were averaged and are expressed as
mean and standard deviation values (error bar) presented with an unpaired Student’s t test with Welch’s correction used to determine the p values. A p value
<0.05 was considered significant. *p <0.05, **p <0.001, ***p <0.0001, n.s., non-significant. (C-F) RNAseq analysis from PHHs following 48 h of HCV infection (MOI=1)
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both antiviral and proviral activity against a variety of viruses
including HCV.14,15

ISG15 is a 15 kDa protein upregulated following the activation
of type I and III interferon signaling during HCV infection and it is
expressed in many tissue types and cells throughout the human
body, including the liver and hepatocyte.16 The cellular activities
of ISG15 and associated proteins are involved in a ubiquitin-like
post-translational process designated ISGylation. The specific
proteins that catalyze ISGylation are the ubiquitin-activating
enzyme E1 (UBA7/UBE1L), ubiquitin-conjugating enzyme E2 L6
(UbcH8/UBE2L6), three potential E3 ligases, and the deconjuga-
tion enzyme ubiquitin specific peptidase 18 (USP18).17 Unlike
ubiquitination in which multiple ubiquitin proteins can be con-
jugated to a targeted protein, ISGylation involves only one ISG15
protein conjugated to a targeted protein. To date, around 300
proteins have been identified as ISGylation targets.18 Overall,
ISG15 may regulate inflammatory responses through its conju-
gation to hundreds of host and viral proteins.19–21 Importantly,
recent studies have suggested that ISGylation is targeted to
newly synthesized proteins22 during viral infection, implicating
ISGylation of viral proteins as a general host defense mechanism.
Importantly, ISG15 may be conjugated to HCV viral proteins to
downregulate viral replication.23,24 However, most of these
studies were performed in immortalized or transformed cell
lines, which display blunted antiviral responses; as such, these
studies require validation in primary cells that have fully intact
innate antiviral responses. In addition, studying the develop-
ment of these pathways that underlie host antiviral defense
mechanisms are of paramount importance to further understand
responses that may be tissue or cell type specific.

The reprogramming of adult somatic cells, such as fibroblasts,
to generate induced-pluripotent stem cells (iPSCs) provides a
newer model to study the development of cell-specific host de-
fense mechanisms. Stem cells can self-renew with the capability
of differentiating into any cell in the human body. The differen-
tiation of iPSCs can be achieved using different combinations of
small molecules and recombinant proteins.25 Importantly, pub-
lished studies have begun to characterize the innate antiviral
response within stem cells to viral pathogens. Chen et al.26

determined that stem cells express low levels of Toll-like (TLR)
and RIG-I-like (RLR) receptors. Hong et al.27 demonstrated that
iPSCs have an attenuated IFN response due to the expression of
suppressor of cytokine signaling 1 (SOCS1), which inhibits signal
transducer and activator of transcription 1 (STAT1) activation
and subsequent transcription of ISGs. Wu et al.28 reported that
despite an attenuated IFN response and low RLR and TLR
expression, stem cells express a high level of a specific subset of
intrinsic ISGs (attributed to epigenetic regulation) facilitating
resistance to viral infection. It is clear that the basal expression of
ISGs is dynamic, regulated during cellular differentiation, and
may be controlled through epigenetic mechanisms that remain
to be further clarified. Although ISG15 expression has previously
been detected in stem cells and stem cell-derived cells, ISGyla-
tion and its subsequent regulation were not assessed in previous
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE211161 (C) Heat map of
plot of gene expression changes stratified by log-fold change and p value. (E) Top 1
left panel) Heat map of gene expression of ISG15, UBA7, UBE2L6 and USP18 in indiv
gov/geo/query/acc.cgi?acc=GSE84346 published dataset. (G-right panel) Heat map
treatment with sofosbuvir and ribavirin from https://www.ncbi.nlm.nih.gov/ge
experiment with two technical replicates. mpHHs, mouse-propagated human he

JHEP Reports 2022
studies despite its important role in infection by HCV and other
viruses.20,21,23

In this study, we sought to characterize the expression of
ISG15, ISGylation, and associated enzymes at each stage of dif-
ferentiation from iPSCs to hepatocytes. We report that ISGylation
is inhibited in iPSCs following IFN treatment due to differential
regulation of ISG15, UBE1L, and UBE2L6 through IFN-dependent
and IFN-independent mechanisms associated with SOCS1
expression and epigenetic regulation, respectively. ISGylation
was also found to be dysregulated in transformed hepatoma cell
lines. Importantly, epigenetic regulation of SOCS1 and subse-
quently ISGylation may be important factors in the development
of cell type-specific host defense responses in hepatocytes,
which could also be implicated in the development of liver
cancer.
Materials and methods
See supplementary information for procedures on cell culture,
hepatocyte differentiation, RNA sequencing (RNAseq), HCV
infection, lipofectamine transfection, RNA interference, plasmid
transfection, real-time quantitative PCR, immunoblot assay,
immunoprecipitation assay, reduced representative bisulfate
sequencing, and chromatin immunoprecipitation qPCR.

Statistical methods
Mean and standard deviation values were calculated using
Microsoft Excel. GraphPad Prism 9’s unpaired Student’s t test
with Welch’s correction was used to determine p values. A p
value <0.05 was considered significant. *p <0.05, **p <0.001, ***p
<0.0001.
Results
ISGylation occurs in hepatocytes following HCV infection
ISGylation is observed in multiple cell types in response to
infection by many distinct pathogens; importantly, it has also
been observed with the activation of cell-intrinsic innate anti-
viral responses, in primary human hepatocytes, following stim-
ulation with a variety of pathogen-associated molecular patterns,
HCV, and IFN treatment.12,29 For our initial studies, we sought to
characterize the ISGylation system and corresponding expres-
sion of ISG15, UBE1L, UBE2L6, and STAT1 in mature hepatocytes
following 48-hour stimulation with HCV. ISGylation was visual-
ized through immunoblotting in which we observed a protein
smear at varying molecular weights greater than the molecular
weight of ISG15, which is approximately 15 kD. This smear
represents the hundreds of mono-ISG15-conjugated proteins.
ISGylation was observed at 48 h post HCV infection (Fig. 1A).
Since ISGylation enzymes (and some targets) are also ISGs, we
assessed the activation of STAT1, which is one of the main
transcription factors that induces ISGs in response to type I and
III IFN signaling.4,6 Increased ISGylation was observed following
HCV infection with corresponding higher levels of ISG15,
gene expression from the top 40 significantly upregulated genes. (D) Volcano
0 upregulated signaling pathways. (F) Top 15 enriched ingenuity pathways. (G-
iduals with and without chronic HCV infection from https://www.ncbi.nlm.nih.
of gene expression of ISG15, UBA7, UBE2L6 and USP18 in humans pre- and post-
o/query/acc.cgi?acc=GSE51699 published dataset. RNAseq data are from one
patocytes.

3vol. 4 j 100592
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Fig. 2. ISGylation is not detected in iPSCs following stimulation with IFNa or poly(I:C) but is detectable in HLCs. Cells were treated with 1,000 U/ml IFNa or
500 ng transfected poly(I:C)=(t)pIC for 8 (mRNA expression) and 24 h (mRNA and protein expression). (A-D, top panel) Western blot analysis for protein
expression of ISG15, pSTAT1, STAT1, b-actin, and respective cell markers OCT4, FOXA2, AFP, and ALB in iPSCs, DEs, HBs, and HLCs, respectively. (A-D, bottom panel)
qPCR analysis of mRNA expression for ISG15 and STAT1 in iPSCs, DEs, HBs and HLCs. Data from repeated experiments in triplicate were averaged and are expressed
as mean and standard deviation values (error bar) presented with an unpaired Student’s t test with Welch’s correction used to determine the p values. A p value
<0.05 was considered significant. *p <0.05, **p <0.001, ***p <0.0001, n.s., non-significant. (t)pIC, transfected poly(I:C).

Research article
UBE2L6, STAT1 and activated STAT1 (pSTAT1) (Fig. 1A). Concur-
rently, we observed robust ISGylation at 48 h post infection with
STAT1 activation (Fig. 1A). Increased expression of ISG15, UBE1L,
UBE2L6 and STAT1 mRNA was also observed (Fig. 1B).
JHEP Reports 2022
RNAseq analysis of PHHs 48 h after HCV infection also indi-
cated that ISG15, UBE1L (UBA7), UBE2L6, and STAT1 are among the
top upregulated genes in an unbiased analysis (Fig. 1C–D). These
components of the ISGylation system are primarily associated
4vol. 4 j 100592
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with the IFN signaling pathway (Fig. 1E and F). Utilizing RNAseq
data from uninfected and chronically infected individuals,30 we
observed that genes associated with ISGylation are upregulated
during chronic HCV infection (Fig. 1G-left panel). In cured pa-
tients, we also observed the downregulation of genes associated
with ISGylation following treatment with DAAs31 (Fig. 1G-right
panel). Overall, this data demonstrates that components of the
ISGylation system are upregulated during HCV infection.

ISGylation is not detected in iPSCs following stimulation with
viral mimetics and IFN
Given the biologic significance of ISGylation during HCV infec-
tion, we next endeavored to understand the regulation of the
ISGylation system during the differentiation of iPSCs to hepato-
cytes. Studies have demonstrated an attenuated IFN response in
iPSCs 27,28; however, none have focused on the regulation of
ISGylation in stem cells. Cells at each stage of hepatocyte dif-
ferentiation (Fig. S1) including iPSCs (SLC101A), definitive
endoderm, hepatoblasts (HBs), and hepatocyte-like cells (HLCs)
were treated for 8 and 24 h with IFN or transfected poly(I:C). As a
positive control, the HepaRG cell line was used since these cells
reproducibly demonstrate a high level of ISGylation following
stimulation. Analysis of stage-specific gene expression was also
performed to confirm the differentiation process; OCT4
(octamer-binding transcription factor 4) was expressed at the
iPSC stage, FOXA2 (forkhead box A2) was expressed at the
definitive endoderm stage, AFP (alpha-fetoprotein) was
expressed at the HB stage, and albuminwas expressed at the HLC
stage and in HepaRG cells (Fig. 2A-D-top panel). Baseline protein
expression of ISG15 and subsequent upregulation following
stimulation was observed at each stage of differentiation
(Fig. 2A-D-top panel). This observation was further corroborated
as ISG15 mRNA levels significantly increased at 8 and 24-hours
post stimulation (Fig 2A-D-bottom panel) at each stage. Inter-
estingly, although the ISG15 monomer was detectable following
stimulation at all the stages of differentiation, ISGylation was not
observed in iPSCs after stimulation with IFN or transfected
poly(I:C) (Fig. 2A-D-top panel). To further investigate the IFN
signaling pathway at each stage, we characterized STAT1 and
pSTAT1 protein expression. STAT1 protein was expressed and
further upregulated following treatment with IFN or transfected
poly(I:C) (Fig. 2A-D-top panel). This observation was supported
as STAT1 mRNA levels significantly increased (>3-fold) at 8 and
24-hours post IFN treatment (Fig. 2A-D-bottom panel). Although
STAT1 expression was detected following IFN stimulation, very
low to undetectable levels of activated STAT1 were observed in
iPSCs when compared to HepaRG cells (Fig. 2A). This suggests
that ISG15 is differentially regulated when compared to other
ISGs in iPSCs. Studies have demonstrated that ISG15 expression
is primarily regulated by the STAT2-IRF9 transcription factor
complex independently of STAT1.32 This led us to further inves-
tigate the expression of the enzymes facilitating ISGylation, their
relation to STAT1 and the expression of ISGylation substrates.

Correlation between IFN-induced ISGylation, UBE2L6
expression, and STAT1 activation during hepatocyte
differentiation
Given that, in iPSCs, ISG15 is upregulated following IFN treat-
ment, we initially tested whether these cells were deficient in
other components of the ISGylation system. Specifically, with a
focus on IFN treatment, we directly compared protein expression
levels of ISG15, the activating enzyme UBE1L and the conjugating
JHEP Reports 2022
enzyme UBE2L6, pSTAT1, STAT1, and stage markers in iPSC, DEs,
HBs, and HLCs during differentiation. UBE1L protein expression
was highest in HLCs (Fig 3A). Interestingly, there was no signif-
icant increase in UBE1L mRNA levels following IFN treatment at
any stage of differentiation (Fig 3B-top panel). Analysis of
UBE2L6 protein levels demonstrated weak expression in the iPSC
and DEs with expression increasing in the latter stages (HB and
HLC) of differentiation following IFN treatment (Fig. 3A). This
was supported by UBE2L6 mRNA levels increasing (>5-fold)
following IFN treatment in HBs and HLCs (Fig. 3B- bottom panel).
Likewise, there was no statistically significant increase in UBE2L6
mRNA expression upon IFN treatment in iPSCs or DEs. Impor-
tantly, as UBE2L6 was minimally induced following IFN stimu-
lation, pSTAT1 expression remained low, and ISGylation was not
detected in iPSCs (Fig. 3A).

To determine if undetectable ISGylation in iPSCs is a conse-
quence of the lack of induced UBE2L6 expression, we preformed
targeted mechanistic studies utilizing plasmid overexpression
and small-interfering RNA (siRNA) knockdown of UBE2L6 in
iPSCs and HLCs, respectively. HLCs were treated with non-
targeting control siRNA (siCtrl) or UBE2L6-targeted siRNA (siU-
BE2L6) for 48 h and subsequently treated with IFNa for an
additional 24 h. As expected, our results demonstrated that
siRNA knockdown of UBE2L6 decreased ISGylation to undetect-
able levels (Fig. 3C). qPCR revealed a 98.6% knockdown of UBE2L6
mRNA expression at 72 h post siRNA treatment (Fig. 3D). Similar
results were obtained for siRNA knockdown of ISG15 (Fig. S2A) In
iPSCs, UBE2L6 was overexpressed through plasmid transfection
(P-E2) either alone or in combination with a UBE1L expression
plasmid (P-E1), or in combination with both UBE1L (P-E1) and
ISG15 expression plasmids (P-ISG15) (Fig. 3E). Our results
demonstrated that ISGylation occurred when UBE1L and UBE2L6
expression was increased, while the addition of ISG15 further
increased ISGylation slightly in iPSCs, suggesting that the
expression levels of UBE1L and UBE2L6 are not sufficient to
facilitate the highest levels of ISGylation. This was confirmed in a
different iPSC line, IMR90 (Fig. S2B).

We next assessed the expression of ISGylation target proteins
to confirm that the lack of ISGylation in iPSCs was not due to an
absence of the protein substrates of ISGylation. A well charac-
terized protein that is covalently modified through attachment of
15 kDa ISG15 is the 88 kDa STAT1 protein. To demonstrate the
ISGylation of STAT1, we observed the presence of a 15 kDa larger
STAT1 protein band, through immunoblot analysis, in IFN-
treated HepaRG cells that suggests that ISG15 is covalently
conjugated to STAT1. Furthermore, we observed this larger band
when immunoblotting for pSTAT1, suggesting that ISG15 is also
conjugated to activated pSTAT1 following IFN treatment (Fig. 3F-
left panel). To confirm the specific ISGylation of STAT1, ISG15
immunoprecipitation was performed on untreated and IFNa-
treated HepaRG cells followed by immunoblotting for STAT1 and
ISG15. Importantly, we were able to detect STAT1 in the
concentrated pool of proteins covalently linked to ISG15 (Fig. 3F-
right panel). In addition, when probed with an anti-ISG15 anti-
body, we found a broad smear confirming ISG15-conjugated
proteins, which was further confirmed utilizing siRNA targeted
to ISG15 in HLCs (Fig. S2A). Taken together, these results
demonstrated that although iPSCs upregulated ISG15 following
IFN treatment, these cells did not have detectable ISGylation. In
contrast, HLCs demonstrated robust ISGylation, and STAT1 was
ISGylated in HepaRG cells. Furthermore, we observed lower
pSTAT1 expression in iPSCs suggesting that these cells have an
6vol. 4 j 100592
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attenuated response to IFN and this attenuation may underlie
the lack of detectable ISGylation in iPSCs. Overall, our results
revealed that the lack of ISGylation in iPSCs is correlated to the
lack of IFN-induced expression of UBE2L6 and STAT1 activation.
In addition, the expression of UBE1L, which is not regulated by
IFN signaling in iPSCs, is not high enough at baseline to
contribute to ISGylation.
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Baseline SOCS1 expression decreases as ISGylation increases
during the differentiation of iPSCs to HLCs
To follow-up on the observation of low pSTAT1 levels following
IFNa treatment in iPSCs, we next investigated inhibitors of IFN
signaling. Initially, we tested kinase inhibitors in IFN-treated
HepaRG cells (Fig. S2C–D). Utilizing a specific Janus kinase
(JAK)1/2 inhibitor, we observed decreased ISGylation, ISG15, and
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STAT1 activation (Fig. S2C). However, when we treated cells with
the broad tyrosine kinase inhibitor, ruxolitinib, we saw a com-
plete downregulation of ISGylation, ISG15, STAT1 and pSTAT1
expression to baseline levels (Fig. S2D). This suggested that not
only JAKs are involved in activating STAT1 and subsequently
increasing ISG15 (and ISGylation), but that other tyrosine kinases
are also involved in regulating STAT1 activation.

As mentioned previously, Hong et al.27 demonstrated that
iPSCs have an attenuated IFN response due to high intrinsic
expression of the SOCS1 protein, which is an inhibitor of
STAT1 phosphorylation attributed to blocking JAK1 and tyro-
sine kinase 2 activation. To determine the role of SOCS1 in
regulating ISGylation, we directly compared iPSCs and HLCs
for protein and mRNA expression of SOCS1 following 8 and
24 h of IFN stimulation. Constitutive SOCS1 mRNA and protein
expression was detected both at baseline and upon IFN stim-
ulation in iPSCs at 8 and 24 h. Baseline SOCS1 expression was
not detected in HLCs and IFN treatment elicited only a mini-
mal increase in SOCS1 protein expression compared to the
levels seen in iPSCs (Fig. 4A). This suggests that SOCS1, in
HLCs, is differentially regulated. During hepatocyte differen-
tiation, we observed a gradual decrease in baseline SOCS1
mRNA expression (Fig. 4B). UBE1L mRNA and protein
expression was strikingly higher (>100-fold) in HLCs at both
baseline and upon IFNa treatment (Fig. 4C). Overall, there is
significantly higher mRNA expression of ISG15, UBE1L, UBE2L6,
and STAT1 following 8 h of IFN treatment in HLCs compared to
iPSCs. Importantly, we observed a correlation between the
baseline expression level of SOCS1, the degree of ISGylation,
UBE2L6 expression, and STAT1 activation. Specifically, as
baseline SOCS1 expression decreased, IFN-induced STAT1
activation, UBE2L6 expression, and ISGylation increased (Fig. 4
and Fig. S3B-C). This highlights the importance of baseline
SOCS1 levels, prior to stimulation with IFN, suggesting that
high baseline SOCS1 expression negatively regulates STAT1
activation and the subsequent increases in UBE2L6 expression
needed to facilitate ISGylation. These results were further
confirmed through a 48-hour IFNa time course experiment in
iPSCs, HLCs, HepaRG cells, and mature hepatocytes (Fig. S4A-
C). The protein and mRNA expression of the ISGylation-
deconjugating enzyme USP18 was not correlated with ISGy-
lation during hepatocyte differentiation. Specifically, USP18
mRNA expression at baseline was similar between iPSCs and
HLCs and significantly lower in DEs and HBs (Fig. S3A-B). This
data suggests that USP18 and its ISGylation-deconjugating
activity are not major factors in the inhibition of ISGylation
in iPSCs and DEs.

To determine the effects of modulating SOCS1 expression on
ISGylation levels, we first utilized HepaRG cells that were
transfected with the SOCS1 expression vector (P-SOCS1) or an
empty vector control (P-Ctrl). Forty-eight hours post trans-
fection, the cells were stimulated with IFNa for 24 h. Although
the level of ISGylation was increased upon IFN treatment in the
control vector-treated cells, possibly through DNA sensing
mechanisms,29 there was no apparent increase in ISGylation in
the SOCS1-expressing cells after IFN treatment (Fig. 4D).
Furthermore, increased SOCS1 expression prevented IFN-
induced UBE2L6 protein expression and decreased mRNA
expression two-fold when compared to control vector (Fig. 4D-
JHEP Reports 2022
E). IFN-induced UBE1L expression decreased by two-fold
(Fig. 4E). These data revealed that the overexpression of SOCS1
resulted in an impairment in IFN-induced ISGylation by
decreasing UBE2L6 and UBE1L levels.

ISGylation observed with STAT1- dependent induced
expression of UBE2L6 in iPSCs following SOCS1 siRNA
knockdown
To further assess the inhibitory effect of SOCS1 on ISGylation, we
examined the impact of siRNA-mediated silencing of SOCS1 in
iPSCs. iPSCs were treated with either non-targeting control
siRNA (siCtrl) or siRNA targeting SOCS1 (siSOCS1) for 96 h (4
days) prior to treating cells with IFN. Samples were collected at
either 6 or 24 h post IFNa treatment. At 6 h post IFNa treatment,
ISGylation was not observed and there was no apparent differ-
ence in protein expression for UBE1L or UBE2L6 between siCtrl
and siSOCS1 treatment conditions. However, higher ISG15, STAT1
and pSTAT1 protein expression levels were observed in the
SOCS1-silenced cells following IFN treatment (Fig. 5A). At 24 h
post IFN treatment, there was an elevation in ISG15, UBE2L6,
pSTAT1, and STAT1 protein expression in the SOCS1-silenced
cells treated with IFNa compared to the control siRNA-treated
cells treated with IFNa (Fig. 5B). Importantly, ISGylation was
enriched in the SOCS1-silenced cells treated with IFN. Further-
more, the mRNA expression for ISG15, UBE1L, and STAT1 was
significantly higher in the IFN-treated SOCS1 condition when
compared to the IFN-treated siCtrl control condition at both the
6 h and 24 h time points post IFNa treatment (Fig 5C). Impor-
tantly, UBE2L6mRNA expression was significantly higher (4-fold)
in the IFN-treated SOCS1 condition when compared to the IFN-
treated siCtrl control condition at 24 h. The efficiency of SOCS1
knockdown was determined to be approximately 74% (Fig. 5C).
These data demonstrated that downregulating SOCS1 expression
resulted in the restoration of STAT1-dependent ISGylation. This
was through the increased expression of UBE2L6 and pSTAT1 in
siSOCS1 treated cells. There is a delay in UBE2L6 upregulation
and STAT1 activation, in SOCS1 expressing iPSCs, that persisted
over the 24 h of IFN treatment. This delayed increase in UBE2L6
expression following STAT1 activation was demonstrated in our
IFN time course experiment (Fig. S4). With greater SOCS1
knockdown, we would expect a greater increase in IFN-induced
expression in UBE2L6 and increased ISGylation.

High SOCS1 expression in iPSCs attributed to epigenetic
regulation
To study the mechanisms underlying the dynamic regulation of
SOCS1 during differentiation, we utilized online genome data-
bases including the University of California Santa Cruz (UCSC)
Genome Browser33 and data from the ENCODE project.34 Using
the UCSC Genome Browser, we identified the genomic region of
the SOCS1 gene, its promoter and enhancer regions, and CpG
island (CpG202) (Fig. 6A). Using our own samples from iPSCs and
HepaRG cells we confirmed that SOCS1 levels were elevated (55-
fold) in stem cells compared to hepatocytes (Fig. 6B). ENCODE
data from H1 embryonic stem cell (ESC) lines and normal human
liver cells confirmed the higher mRNA expression and genomic
structural data were analyzed to identify the transcriptional
regulatory structure of the SOCS1 gene. This analysis revealed the
presence of active promoter regions (pink, brown) surrounding
9vol. 4 j 100592
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the transcription start site (red) in the H1 ESCs that were not
found in the primary liver samples. In addition, active enhancer
elements (yellow) and transcription reported regions (light and
dark green) were found in the H1 ESCs towards the 3’ end of the
SOCS1 gene that were not found in primary liver samples
(Fig. 6C).

Reduced representation bisulfate sequencing revealed very
little difference in DNAmethylation status at the SOCS1 promoter
region in iPSCs and HepaRG cells (Fig. 6D). However, there were
notable differences in the methylation status in the enhancer
regions found at the 3’ end of the SOCS1 gene in iPSCs compared
to HepaRG cells (Fig. 6D). Specifically, the 3’ enhancer region,
associated with the CpG island 202 and exon 2 of the SOCS1 gene,
contained primarily unmethylated DNA in iPSCs (associated with
active transcription, blue color). This same region contained
methylated DNA in HepaRG cells (associated with transcriptional
repression, red color). Data from SOCS1-targeted chromatin co-
immunoprecipitation qPCR revealed that the histone modifica-
tions H3K4me1, H3K4me3, and H3K27ac (associated with active
promoters and/or enhancers) were enriched (>6-fold) in the
SOCS1 gene enhancer region in iPSCs compared to HepaRG cells
(Fig. 6E). Furthermore, these significant differences in histone
modifications and DNA methylation occurred within the same
genomic region of the SOCS1 gene (11,348,500-11,349,500 base
pair range). Taken together, analysis of the transcriptional reg-
ulatory structure, DNA methylation status, and histone modifi-
cations of SOCS1 implicate epigenetic regulation in the
downregulation of SOCS1 expression during hepatocyte
differentiation.

Due to the observation of a significant gradual increase in
baseline UBE1L expression as stem cells differentiated to hepa-
tocytes (Fig. S5A-B), we also compared UBE1L gene regulatory
regions in H1 ESCs to primary hepatocytes using data from
ENCODE. In this case, the transcribed region (green) and tran-
scription start site region (red-orange) were observed at the 5’
end of the UBA7 (UBE1L) gene in primary hepatocytes and not
ESCs, suggesting epigenetic regulation is occurring to the 5’
promoter and/or gene body region of UBA7 (Fig. S5C). Utilizing
the CpG Methylation by Methyl 450K Bead Arrays track on the
UCSC genome browser, we observed methylation marks (orange)
in ESCs and unmethylated marks in hepatocytes (blue) at the
promoter region and within exon 24, further suggesting epige-
netics also regulates baseline expression of UBE1L during hepa-
tocyte differentiation (Fig. S5D).

Overall, based on these series of experiments and in silico data
for SOCS1, high baseline SOCS1 expression in iPSCs inhibits IFN-
induced ISGylation by blocking STAT1 activation and subsequent
upregulation of ISGs like UBE2L6. Furthermore, low baseline
SOCS1 expression in hepatocytes facilitates IFN-induced STAT1-
dependent ISGylation. ISG15 expression is regulated by STAT1-
independent IFN signaling, UBE2L6 expression is regulated by
STAT1-dependent IFN signaling (that is negatively regulated by
11,348,373bp. Region 2: 11,348,390-11,348,889bp. Region 3: 11,348,920-11,349,4
repeated experiments in triplicate were averaged and are expressed as mean and s
with Welch’s correction used to determine the p values. A p value <0.05 was c
ENCODE integrative analysis (PMID: 22955616; PMCID: PMC3439153) ENCODE
sionURL(SOCS1):http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&lastVirtMod
nonVirtPosition=&position=chr16%3A11347831%2D11350479&hgsid=1280379467
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SOCS1) and UBE1L expression is regulated through epigenetic
mechanisms.
High SOCS1 expression is observed in the HepG2- and Huh
7.5.1-transformed hepatoma cell lines
In mature human hepatocytes, we demonstrated a correlation
between increased ISGylation and decreased HCV replication
(Fig. 1A) at a very early time point. Although these cells are an
optimal model for in vitro modeling of HCV infection, immor-
talized hepatoma cell lines have been frequently utilized to study
HCV infection. In addition, they have been used to propagate
virus as these transformed cells are highly permissive to HCV
infection in part due to dysregulated antiviral responses.
Intriguingly, when we investigated ISGylation in the Huh 7.5.1
and HepG2 cell lines, we observed minimal ISGylation following
IFN stimulation (Fig. 7A). When we evaluated SOCS1 protein
expression in these transformed cell lines, we detected higher
baseline SOCS1 protein expression when compared to HepaRG
cells that are not transformed but only immortalized. When
compared to iPSCs, baseline mRNA expression revealed no sig-
nificant difference when compared to levels seen in HepG2 cells
(Fig. 7B). Similar to iPSCs, ISGylation was not detected after IFN
treatment in HepG2 cells. SOCS1 mRNA expression in Huh 7.5.1
was lower than in iPSCs and HepG2 cells but higher than in
HepaRG cells (Fig. 7B). This coincided with observably lower
ISGylation in response to IFN treatment in Huh 7.5.1 cells
compared to HepaRG cells. This data further supports our finding
that SOCS1 represses ISGylation.

Since ISGylation occurs following HCV infection of mature
hepatocytes, we investigated the effects of modulating SOCS1
expression on ISGylation, using siRNA during HCV infection, in
Huh 7.5.1 cells. Huh 7.5.1 cells have a defect in RIG-I associated
viral RNA sensing and subsequent IRF3 activation 35; therefore,
HCV infection does not stimulate IFN signaling and ISGylation
was not observed following 48 h HCV infection alone. Concur-
rently, HCV core protein was highly expressed (Fig. 7C). With the
addition of IFNa treatment, ISGylation was observed, and HCV
core protein was not detected at this early time point. The
addition of siRNA targeting SOCS1 with IFN treatment and HCV
infection increased ISGylation compared to the siRNA control
condition. Low SOCS1 protein expression was detected with
siRNA knockdown. We achieved a 78% knockdown efficiency of
SOCS1 mRNA (Fig. 7D). Compared to the control siRNA condition,
we observed a significant increase (2.5-fold difference) in ISG15
mRNA following SOCS1 knockdown (Fig. 7D). Despite the
downregulation of HCV intracellular RNA (HCV icRNA) (340-fold
decrease) following IFN treatment without decreased SOCS1
expression, we observed a greater significant decrease (addi-
tional 3.5-fold decrease and 3,350-fold difference from HCV only
condition) in HCV icRNA with SOCS1 mRNA knockdown. With
greater SOCS1 mRNA knockdown efficiency, we would expect a
further increase in ISGylation and greater downregulation of
HCV icRNA. Taken together, this data demonstrated that
44bp in comparison to data using a negative (Neg) control primer. Data from
tandard deviation values (error bar) presented with an unpaired Student’s t test
onsidered significant. *p <0.05, **p <0.001, ***p <0.0001, n.s., non-significant.
portal (PMID: 29126249; PMCID: PMC5753278). UCSC Genome Browser Ses-
eType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&
_j7ViSdKoDWUyqakJN2IuPyL2H5Yz.
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Fig. 7. Increased baseline SOCS1 expression observed in the transformed HepG2 and Huh 7.5.1 hepatoma cell lines. (A) Western blot analysis comparing
protein expression for ISG15, ISGylation, SOCS1, and b-actin in HepG2, Huh 7.5.1 and HepaRG cells. Cells were treated with 1,000 U/ml of IFNa or 500 ng of
transfected poly(I:C)=(t)pIC for 24 h. (B) qPCR analysis of mRNA expression for SOCS1 at baseline in HepG2, Huh 7.5.1, and HepaRG cells compared to iPSCs. Data
from repeated experiments in triplicate were averaged and are expressed as mean and standard deviation values (error bar) presented with an unpaired Student’s
t test with Welch’s correction used to determine the p values. A p value <0.05 was considered significant. *p <0.05, **p <0.001, ***p <0.0001, n.s., non-significant.
(C) Western blot analysis for ISG15, SOCS1 and HCV Core protein expression. (D) qPCR analysis of mRNA expression for SOCS1 siRNA knockdown efficiency, mRNA
expression for ISG15 and intracellular HCV viral RNA. (C-D) Cells were treated with 50 lM of non-targeting siRNA control or siRNA targeting SOCS1 for two days
prior to retreating cells with 50 lM siRNA control or SOCS1 in addition to HCV infection (MOI = 1) alone, or HCV and 1,000 U/ml of IFNa concomitantly for 48 h.
Data from repeated experiments in triplicate were averaged and are expressed as mean and standard deviation values (error bar) presented with an unpaired
Student’s t test with Welch’s correction used to determine the p values. A p value <0.05 was considered significant. *p <0.05, **p <0.001, ***p <0.0001, n.s., non-
significant. (E) Graphs plotting DNA methylation percentages at the 3’ genomic region of the SOCS1 gene vs. mRNA expression of SOCS1 based on RNA sequencing
in Log2 scale. R value and p value determined by best fit line from 371 primary HCC solid tumor samples. (t)pIC, transfected poly(I:C).
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decreased SOCS1 expression increases the antiviral effect of IFN
and increases levels of ISGylation.

Lastly, the silencing of SOCS1 expression observed in hepa-
tocytes compared to stem cells (Fig. 6) has also been observed
through changes in DNA methylation in tumor cells. Therefore,
we utilized The Cancer Genome Atlas database to obtain relevant
data on SOCS1 mRNA expression and DNA methylation patterns
in the similar SOCS1 genomic regions, studied in Fig. 6D, in
patient-derived liver tumor samples.36 When we analyzed RNA
data from primary human HCC tumors, we observed varying
levels of SOCS1 mRNA expression (Fig. 7E). Importantly, this data
supported the previously mentioned hypothesis that SOCS1
expression levels are inversely correlated with DNA methylation
levels in the SOCS1 gene 3’ enhancer region. Importantly, we
were able to observe a moderate correlation (R = -0.37 to -0.55)
between high DNA methylation and decreased SOCS1 mRNA
expression in HCC. Considering the p values (p <10-13 to 10-16)
obtained from this data, this negative correlation is statistically
significant.
Discussion
In this manuscript, we explored the regulation of ISGylation,
which is an important component of host defense responses to
viral infection.17,37 We demonstrated that ISGylation is a primary
component of the hepatocyte response to HCV infection (Fig. 1).
Furthermore, we revealed a correlation between increased
ISGylation and decreased HCV core protein and viral RNA levels.
This observation can possibly be attributed to ISGylation of HCV
viral protein NS5A as previously reported.23 Through character-
ization of protein and mRNA expression for ISG15, UBE1L,
UBE2L6, STAT1, and pSTAT1 during iPSC differentiation to he-
patocytes, we determined that ISGylation was undetectable in
iPSCs (Figs. 2 and 3). Furthermore, we demonstrated a lack of
IFN-induced UBE2L6 expression and low levels of IFN-stimulated
pSTAT1 in iPSCs. In addition, baseline expression of UBE1L was
significantly lower in iPSCs compared to HLCs (Fig. 4). We
demonstrated that targeted siRNA knockdown of UBE2L6 mRNA
inhibited ISGylation in HepaRG cells and HLCs while over-
expression of UBE1L and UBE2L6 facilitated ISGylation in iPSCs
(Fig. 3 and Fig. S2). Through targeted mechanistic studies, we
demonstrated that high baseline expression of SOCS1 negatively
regulates STAT1 activation and subsequently expression of
UBE2L6 (Figs. 4-5, Fig. S3-4, S6). Specifically, overexpression of
SOCS1 diminished ISGylation, UBE2L6, and pSTAT1 levels in
HepaRG cells (Fig. 4) while SOCS1 mRNA knockdown facilitated
STAT1 activationwhich subsequently led to detectable ISGylation
in iPSCs (Fig. 5). We successfully differentiated iPSCs to HLCs and
obtained similar results when characterizing the IFN response
and ISGylation during hepatocyte differentiation in a different
iPSC cell line, IMR90 (Fig. S6).

Given the dramatic difference in SOCS1 and UBE1L baseline
mRNA expression between iPSCs and HLCs, we explored mech-
anisms governing SOCS1 transcription. The SOCS1 gene in Hep-
aRG cells was methylated at CpG sites within the 3’ gene body
region which is indicative of repressed transcription (Fig 6). The
UBE1L (UBA7) gene in iPSCs was methylated at the promoter
region and within exon 24 of the gene body which is indicative of
repressed transcription (Fig. S5). Studies have previously
demonstrated that epigenetic regulation of an intragenic region
(or “gene body”) containing a CpG island can vary based on cell
type. Specifically, a gene may contain a methylated CpG island in
JHEP Reports 2022
one cell type and an unmethylated CpG island in another cell
type. It is important to note that genes containing a CpG Island
within their gene body, like SOCS1, have been implicated in
differential regulation during differentiation.38 Based on our
data, during hepatocyte differentiation, the differences in DNA
methylation status of the intragenic CpG sites or CpG sites within
the promoter region contribute to the differential expression of
SOCS1 and UBE1L, respectively. In addition, there are other pre-
and post-transcriptional factors that can affect baseline mRNA
expression such as microRNAs that inhibit expression39 and
transcription factors that promote expression.40 Overall, this
study demonstrates, for the first time, that SOCS1 negatively
regulates ISGylation in a STAT1-UBE2L6-dependent manner. In
stem cells, baseline SOCS1 mRNA expression levels are increased
(Fig. 4B) due, in large part, to epigenetic regulation (Fig. 6).

Interestingly, changes in SOCS1 expression through altered
DNA methylation levels in tumor cells are well-characterized;
however, complex phenotypes are observed with these
changes. In the case of the cirrhotic liver, downregulation of
SOCS1 has been associated with dysregulation of IFN signaling
leading to an uncontrolled inflammatory response and to sub-
sequent increased levels of fibrosis. Yoshida et al.41 demonstrated
the correlation between low SOCS1 expression and SOCS1 DNA
hypermethylation in individuals at later stages of HCV-related
cirrhosis, before HCC onset, suggesting that decreased SOCS1
expression may foster a pre-malignant state. In the case of HCC,
the complexity is further illustrated by evidence implicating
SOCS1 as both a tumor suppressor and oncogene based on its
level of expression in tumor cells. These findings demonstrate
that higher expression, as seen in stem cells, is related to onco-
genic function in tumor growth and metastasis through its
negative regulation of cell-autonomous IFNs, which have anti-
cancer (anti-proliferative and pro-apoptotic) effects in tumor
cells.42 Additional studies on SOCS1 expression and the ISGyla-
tion system, in HCC, may clarify the mechanisms underpinning
their roles in the development of liver cancer, which may differ
between the pre-malignant and malignant states.

Our studies investigating the lack of observable or decreased
ISGylation in our transformed cell lines (Fig. 7A) revealed high
SOCS1 expression in this setting. HCV replicates efficiently in
these cell lines and does not on its own induce robust ISGylation
(Fig. 7B).43 In Huh 7.5.1 cells, we demonstrated that treating
these infected cells with IFN induces ISGylation that occurs
concomitantly with a decrease in HCV replication (Fig. 7). This is
interesting as neither treatment alone (IFN or HCV) induce
robust ISGylation in Huh7.5.1 cells. However, ISGylation can be
observed with concomitant stimulation with both HCV and IFN.
Furthermore, siRNA-mediated SOCS1 knockdown further
increased ISGylation levels. Additional studies are needed to
further clarify the regulation of ISGylation and SOCS1 during
both acute and chronic HCV infection in individuals with varying
genetic backgrounds to account for polymorphisms at the type III
IFN locus.44 Moreover, higher baseline SOCS1 expression may be
an indicator of malignant transformation, in some tumors,
arising from a more “stem cell-like” transcriptional program
possibly attributed to epigenetic modifications.45

Intriguingly iPSCs, that have infinite replication potential,
have high levels of SOCS1. This study and others have demon-
strated that stem cells characteristically have attenuated IFN
responses due to high expression of SOCS1. We demonstrated
that SOCS1 is a strong negatively regulator to ISGylation. It is
possible that additional negative regulators of the IFN pathway,
13vol. 4 j 100592
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that are specifically upregulated in stem cells, may also
contribute to the lack of observed ISGylation.

In conclusion, ISGylation plays many roles in cell mainte-
nance, function, and immunity.19,22,37 In the liver, ISGylation
also has functions in metabolism.18 Like IFN signaling, ISGyla-
tion is involved in anti-proliferative activities and apoptotic cell
death during host defense responses attributed to the stabili-
zation of the tumor suppressor gene p53.46–48 The absence
of ISGylation, arising from increased SOCS1 expression in
stem cells, can be a mechanism to maintain their self-renewal
during development. Wu et al.28 reported that stem cells have a
specific set of highly expressed ISGs that facilitate
intrinsic antiviral functions instead of relying on delayed IFN-
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induced responses, as seen in terminally differentiated
epithelial cells including hepatocytes.2,6,14 Furthermore, the
liver undergoes dynamic changes during development. The
fetal liver functions as an immune organ by housing hemato-
poietic stem cells before this reservoir migrates to the bone
marrow.49 Studies have demonstrated that SOCS1 functions to
retain hematopoietic stem cells in their undifferentiated state
while IFN counteracts this activity by promoting differentia-
tion.50 Overall, this study demonstrated that the development
of cell-intrinsic innate immunity during the differentiation of
iPSCs to hepatocytes provides insight into cell type-specific
regulation of host defense responses and related oncogenic
processes.
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