Skip to main content
. 2022 Nov 10;13:1047479. doi: 10.3389/fpls.2022.1047479

Table 2.

Evaluation indicators of MF combined with five classification models for the classification results of peanut seed samples.

Models Train-accuracy Test-accuracy Log loss Hamming loss Time(s)
RAW-XGBoost 88.70% 87.42% 7151.59 0.125758 0.6133
RAW-LightGBM 89.81% 88.48% 6909.82 0.115152 0.1326
RAW-CatBoost 88.24% 87.57% 7117.05 0.124242 0.7431
RAW-GBDT 88.44% 87.27% 7186.13 0.127273 0.3471
RAW-SEL 91.94% 90.75% 6391.74 0.092424 1.3045
MF-XGBoost 96.29% 95.91% 5217.42 0.040909 0.5593
MF-LightGBM 96.94% 96.36% 5113.80 0.036364 0.1316
MF-CatBoost 97.66% 96.51% 5079.27 0.034848 0.9736
MF-GBDT 95.58% 95.30% 5355.58 0.04697 0.3071
MF-SEL 98.57% 97.27% 4906.57 0.027273 1.2678