Skip to main content
. 2022 Nov 8;7(46):42482–42488. doi: 10.1021/acsomega.2c05701

Table 3. Thermodynamic Cycles Used to Calculate Formation Enthalpies (ΔH°f.ox) of MLi2Ti6O14 at 25 °C.

reaction ΔH (kJ/mol)
MLi2Ti6O14(S,25°C) → MO(soln,25°C) + Li2O(soln,25°C) + 6TiO2(soln,25°C) ΔH1 = ΔHds (MLi2Ti6O14)
Li2O(S,25°C) → Li2O(soln,25°C) ΔH2 = −77.21 ± 2.4423
Na2O(S,25°C) → Na2O(soln,25°C) ΔH4 = −195.90 ± 4.2327
TiO2(S,25°C) → TiO2(soln,25°C) ΔH3 = 73.70 ± 0.3928
SrO(s,25°C) → SrO(soln,800°C) ΔH5 = −127.48 ± 1.84a
BaO(s,25°C) → BaO(soln,800°C) ΔH6 = −181.22 ± 2.32a
PbO(s,25°C) → PbO(soln,25°C) ΔH7 = −14.34 ± 0.38a
MO(s,25°C) + Li2O(s,25°C) + 6TiO2(s,25°C) → MLi2Ti6O14(s,25°C) ΔH8 = ΔH°f,ox (MLi2Ti6O14)
ΔH8 = ΔH°f(Na2Li2Ti6O14) = −ΔH1 + ΔH2 + 6ΔH3 + ΔH4
ΔH8 = ΔH°f(SrLi2Ti6O14) = −ΔH1 + ΔH2 + 6ΔH3 + ΔH5
ΔH8 = ΔH°f(BaLi2Ti6O14) = −ΔH1 + ΔH2 + 6ΔH3 + ΔH6
ΔH8 = ΔH°f(PbLi2Ti6O14) = −ΔH1 + ΔH2 + 6ΔH3 + ΔH7
a

This work.