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Alzheimer’s disease (AD) is an insidious disease. Its distinctive pathology

forms over a considerable length of time without symptoms. There is a

need to detect this disease, before even subtle changes occur in cognition.

Hallmark AD biomarkers, tau and amyloid-β, have shown promising results

in CSF and blood. However, detecting early changes in these biomarkers

and others will involve screening a wide group of healthy, asymptomatic

individuals. Saliva is a feasible alternative. Sample collection is economical,

non-invasive and saliva is an abundant source of proteins including tau and

amyloid-β. This work sought to extend an earlier promising untargeted mass

spectrometry study in saliva from individuals with mild cognitive impairment

(MCI) or AD with age- and gender-matched cognitively normal from the

South Australian Neurodegenerative Disease cohort. Five proteins, with key

roles in inflammation, were chosen from this study and measured by ELISA

from individuals with AD (n = 16), MCI (n = 15) and cognitively normal (n

= 29). The concentrations of Cystatin-C, Interleukin-1 receptor antagonist,

Stratifin, Matrix metalloproteinase 9 and Haptoglobin proteins had altered

abundance in saliva from AD and MCI, consistent with the earlier study.

Receiver operating characteristic analysis showed that combinations of these

proteins demonstrated excellent diagnostic accuracy for distinguishing both
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MCI (area under curve = 0.97) and AD (area under curve = 0.97) from

cognitively normal. These results provide evidence for saliva being a valuable

source of biomarkers for early detection of cognitive impairment in individuals

on the AD continuum and potentially other neurodegenerative diseases.
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saliva, dementia, Alzheimer’s disease, cognitive impairment, inflammation, biomarker

Introduction

Alzheimer’s disease is a mostly sporadic, terminal
neurodegenerative disease. The pathology of AD in the
brain is distinctive. Plaques form outside neurons from
accumulated deposition of insoluble, fibrillar amyloid-ß
protein. Inside neurons, abnormal hyper-phosphorylated tau
protein forms insoluble neurofibrillary tangles. Both tangles
(Johnson et al., 2016) and plaques (Klunk et al., 2004) can
be seen in vivo by positron emission tomography imaging
and at post-mortem examination of the AD brain (Braak
and Braak, 1991). This pathology forms over a considerable
length of time (Jansen et al., 2015; McDade et al., 2018) with
subjective cognitive decline often the first reported symptom
(Albert et al., 2011). A key challenge is to detect this disease in
the early pre-clinical stage before subtle changes in cognition
occur.

Considerable progress has been made in the last 10 years
in identifying AD-specific biomarkers in CSF and blood,
with the focus being mainly on hallmark proteins, tau and
amyloid-ß. However, early detection of AD biomarkers will
require screening a wide group of healthy, asymptomatic
individuals. Sample collection will need to be non-invasive,
simple, and economical and saliva fits these criteria. Saliva
can be self-collected and sampled repeatedly, as is evident
with the success of the rapid antigen devices for coronavirus
disease 2019 (COVID-19) with such tools likely to become
more common with recent advances in biosensors (Goldoni
et al., 2022). Saliva and the oral microbiome have the potential
to be a rich source of biomarkers, containing over 5,000
proteins (Grassl et al., 2016) with promising results in the
detection of colorectal (Lázaro-Sánchez et al., 2020), oral
(Carnielli et al., 2018; Banavar et al., 2021) and prostate
(Khan et al., 2018) cancers as well as systolic heart failure
(Zhang et al., 2019).

Both AD biomarkers, tau and amyloid-β, have been found
in saliva. Total tau protein is not altered in saliva of AD
individuals (Lau et al., 2015; Ashton et al., 2018; Tvarijonaviciute
et al., 2020) but more promisingly, the ratios of specific
phosphorylated tau residues to total tau are reported to be
significantly higher in AD saliva (Shi et al., 2011; Pekeles
et al., 2019). Interestingly, levels of the amyloid-β (1−42)

peptide have been shown to increase in AD saliva (Bermejo-
Pareja et al., 2010; Kim et al., 2014; Lee et al., 2017; Sabbagh
et al., 2018; Katsipis et al., 2021), in contrast to the pattern
of reduced levels observed in AD blood (Nakamura et al.,
2018). Other promising AD biomarkers detected in saliva
include glial fibrillary acidic protein (Katsipis et al., 2021),
lactoferrin (Carro et al., 2017; González-Sánchez et al., 2020;
Gleerup et al., 2021a; Reseco et al., 2021) and neuronal
damage marker, neurofilament light chain (Gleerup et al., 2021b;
Monroe et al., 2022).

A recent shotgun liquid chromatography-mass
spectrometry (LC-MS) study reported alterations in proteins
from multiple cellular pathways in saliva from individuals
diagnosed with mild cognitive impairment (MCI) or AD
(François et al., 2021). The aim of this work was to extend
these promising findings by determining if the differences
in these biomarkers in saliva could distinguish persons with
MCI or AD from cognitively normal. Five proteins with key
roles in inflammation, a pathway shown to be significantly
altered in AD (François et al., 2021), were chosen for this
work. The concentrations of Cystatin-C (CST-C), Interleukin-
1 receptor antagonist (IL-1RN), Stratifin (SFN), Matrix
metalloproteinase 9 (MMP-9) and Haptoglobin (HP) proteins
were measured in saliva by enzyme-linked immunosorbent
assay (ELISA). Receiver operating characteristic (ROC) analysis
was used to show these proteins in saliva had the power to
discriminate both AD and MCI from cognitively normal
individuals.

Methods

Participants in South Australian
neurodegenerative disease cohort

CSIRO, in collaboration with South Australian hospitals and
clinicians, established the South Australian Neurodegenerative
Disease cohort (SAND) database of saliva samples. Collection
of patient saliva was approved by the Human Research Ethics
Committee (CSIRO Ref 09/11). All participants were aged
over 55 years and provided written informed consent before
participating in this study. Saliva samples for this study were
split into three cohorts; individuals clinically diagnosed with
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MCI (n = 15), individuals clinically diagnosed with AD (n = 16)
and age and gender-matched cognitively normal (CN) controls
(n = 29). Clinicians diagnosed patients based on criteria outlined
by the National Institute on Aging-Alzheimer’s Association
workgroups for AD (McKhann et al., 2011) and MCI (Albert
et al., 2011) as reported previously (François et al., 2021).
Patients with significant cognitive co-morbidities including
head trauma, alcoholism, learning disability or Parkinson’s
disease were excluded from the study.

Saliva collection

All SANDs participants were asked to avoid eating
and drinking before saliva collection. Saliva was collected
using a collection device (RNAPro•SAL, Oasis Diagnostics
Corporation R©, Vancouver, WA, USA) following the
manufacturer’s protocol. Briefly, an absorbent pad was placed
in the participant’s mouth until the sample volume adequacy
indicator fully changed color. The pad was then compressed
by plunger into two collection tubes with a protein stabilizing
solution (Oasis Diagnostics Corporation R©, #PSS-001) added.
All samples were stored at −80◦C until assay completion.

Total protein concentration in South
Australian neurodegenerative disease
cohorts saliva

The concentration of total salivary protein was measured by
Bradford (Bio-Rad #5000006) and BCA (Thermofisher Pierce
BCA #23227) assays following the manufacturers’ protocol. For
both assays, three serial dilutions of each sample were measured.
A pooled quality control saliva, protein standards and blanks
were included on every 96-well plate.

Mass spectrometry analysis of South
Australian neurodegenerative disease
cohorts saliva

The method for saliva preparation and shotgun LC-MS
analysis of SANDs cohort samples has been previously described
(François et al., 2021).

Apolipoprotein E genotyping of South
Australian neurodegenerative disease
cohorts

Genotyping for APOE alleles ε2, ε3, ε4 in the SANDs blood
samples used Real-Time PCR and TaqMan probes as previously
described (François et al., 2021).

Biomarker enzyme-linked
immunosorbent assays

For the SFN ELISA, 96-well plates were incubated overnight
at 4◦C with capture antibody rabbit polyclonal to SFN (80 µL,
3 µg/mL, Biosensis, R-2115-100) in coating buffer pH 9.6.
After washing, plates were blocked overnight at 4◦C and air-
dried before being vacuum sealed and stored at 4◦C. On the
day of use, a standard curve with seven points ranging from
50 ng/mL to 0.78 ng/mL was prepared using a full-length
recombinant human SFN (ProSpec, #pka-357) in triplicate in
sample buffer. Dilution linearity was achieved for SFN in saliva
using a buffer containing two detergents, Triton-X (2%) and
sodium deoxycholate (3%). Plates with standards and samples
were incubated for 3 h. After washing, detection antibody mouse
monoclonal to SFN clone 5D7 (100 µL, 250 ng/mL, Santa Cruz
Biotechnology, sc-100638) was added and the plate incubated
for 1 h. Following washing, horseradish peroxidase conjugated
donkey anti-mouse IgG antibody (Jackson ImmunoResearch
711-035-151, 400 ng/mL) was added and incubated for 2 h
before substrate was added.

MMP-9 was measured in saliva using a commercial ELISA
kit (Biosensis, BEK-2073) following the manufacturer’s
protocols with minor modifications. ELISA assays for
measuring CST-C, IL-1RN and HP in saliva were developed
using commercial antibody pairs (Human Cystatin C ELISA,
Biosensis, BES-4010, Human IL-1RA ELISA, Biosensis,
BES-4020 and Human Haptoglobin DuoSet ELISA R&D
Systems, DY8465-05) as per the manufacturer’s instructions
with some modifications. All assays were tested for dilution
linearity in saliva and optimal dilution range before assaying
patient samples.

On the day of use, plates and reagents were brought to room
temperature. Saliva samples were randomly assigned to 96-well
plates. Two serial dilutions of each saliva (two replicates) were
measured. Standards, blank wells, and quality control saliva
samples dilutions were included on every 96-well plate.

Statistical methodology

The concentration of target in each sample was interpolated
using 5-parameter logistic (5-PL) analysis. For the BCA assay,
concentrations were interpolated using second-order quadratic
regression analysis. Only saliva samples with coefficient of
variation (CV) < 20% were included. To pass inter-assay
variation requirements, only plates having quality control
samples with CVs ≤ 10% were included in the analysis.

Biomarker data was log transformed prior to analyses.
Outliers were removed using the Inter Quartile Range method
and imputed with median values (no more than 2 per
biomarker). Statistical comparisons of mean biomarker values
per clinical group were performed using generalized linear
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models both uncorrected and corrected for gender, age
and APOEε4 allele status. Performance of target biomarkers
to distinguish clinical groups was evaluated using receiver
operating characteristic (ROC) curve analyses. Performance
of an optimal multivariate panel of markers including age,
gender and APOEε4 allele status to predict clinical status,
was compared with the performance of the base model
(including age, gender and APOEε4 allele status only) using
the DeLong’s method (DeLong et al., 1988). To determine the
degree of association between the ELISA and MS assays, Lin’s
concordance correlation coefficients (Lin, 1989), Bland-Altman
plots and Spearman rank Correlation tests were calculated.
A Bonferroni corrected p-value < 0.001 (0.05/44 [number
of tested performed]) was used for all comparisons. Where
p-values were between the nominal significance level of 0.05 and
the Bonferroni corrected significance level at <0.001, associated
were classed as nominally significant. All calculations were
carried out using SIMCA (version 16, Sartorius Stedim Biotech,
Umeå, Sweden), the R Statistical Environment (Version 4.0.4)
and GraphPad Prism (Version 9.0.0).

Results

Biomarker levels in saliva

Demographic information for participants from the SANDs
cohort are summarized in Table 1 and Supplementary Table 1.
Five proteins, CST-C, IL-1RN, SFN, MMP-9 and HP were
chosen for further investigation from an earlier MS study
because they were detected in all SAND cohort samples with
significant differences in their relative abundance between
the CN controls and AD and MCI cohorts (Supplementary
Figure 1). In this work, all five targets were successfully detected
by ELISA in all saliva samples with quality control performance
data shown in Supplementary Table 2.

Overall, the total protein content of saliva from individuals,
with either MCI or AD, was significantly higher compared to CN
controls (Table 2). In a subset of SANDs samples (n = 36), levels
of total protein were measured by an alternate method, BCA
assay (Supplementary Table 3 and Supplementary Figure 2).
Protein estimates from both Bradford and BCA assays closely
agreed with a concordance coefficient of 0.97 [95% CI 0.95–
0.99], confirming that protein was indeed significantly higher in
the saliva of individuals with MCI or AD as measured by two
protein assays with differing chemistry.

In this study, the concentrations of targets measured
by ELISA were adjusted for total salivary protein so that
comparisons were comparable with the earlier MS data. Overall,
three targets, CST-C, IL-1RN and SFN, showed a pattern of
reduced abundance in MCI and AD saliva whereas levels
of MMP-9 and HP increased (Figure 1 and Supplementary
Table 4). In saliva from participants with MCI, absolute levels

of all five targets were nominally significantly different from
saliva of the CN controls although this significance dropped
when adjusted for total protein (Table 2). In saliva from
individuals diagnosed with AD, four out of five targets as
a proportion of total protein showed a significant difference
compared to age and sex matched CN controls with two targets
remaining statistically significant after post correction for
multiple comparisons (P < 0.001) (Table 2). In the comparison
between controls and cognitive impairment overall (CN vs.
MCI/AD), all five targets were nominally significantly altered
(Table 2) with two targets remaining statistically significant
after post correction for multiple comparisons, supporting the
finding that the abundance of these proteins were altered by
disease progression. Post hoc power analysis (using sample size,
two-tailed alpha = 0.05) shows that both CST-C and MMP-9,
adjusted for total protein, had greater than 90% power to detect
statistically significant differences between CN and AD. Similar
analysis shows that total salivary protein had 98% power to
detect a significant difference between CN and MCI and targets,
HP and CST-C, had 80% power.

To evaluate the agreement between the earlier MS data
and the concentrations measured by ELISA, concordance
correlation coefficients were calculated for each target. Four
of the targets demonstrated good agreement between the two
assays [MMP9 0.75 (95% CI 0.62–0.85), CST-C 0.78 (95% CI
0.66–0.87), IL-1RN 0.87 (95% CI 0.79–0.92), HP 0.84 (95% CI
0.84–0.90)]. SFN was the exception with only a weak agreement
[0.21 (95% CI -0.044 to 0.44)]. Bland-Altman plots graphically
show the agreement between two assays with the bias close
to zero and no obvious trends in data points above or below
(Supplementary Figure 3). Similarly, Spearman correlations
found strong agreement for four targets and slightly weaker for
SFN (Supplementary Figure 4).

Saliva biomarkers as predictors of mild
cognitive impairment and Alzheimer’s
disease

ROC analysis (Figure 2) showed that for the comparison
between CN controls and MCI participants, a combined model
of SFN (µg/mL), total protein (µg/mL) and the base model
confounders age, gender and APOE ε4 allele status showed
excellent sensitivity and specificity with an AUC of 0.97 (95%CI
0.93–1.00), a significant improvement (p < 0.0001) on the base
model alone with an AUC of 0.75 (95%CI 0.60–0.91). The
combination of base model with CST-C (total protein ratio) and
IL-1RN (total protein ratio) also showed excellent performance
in predicting those participants with AD compared with CN
controls [AUC = 0.97, (95%CI 0.92–1.00)]. Overall, a panel of
markers that includes the base model and CST-C (total protein
ratio), IL-1RN (total protein ratio), MMP-9 (total protein ratio)
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TABLE 1 Demographic data of SANDs cohort.

Total AD MCI CN P-value

N (%) 60 16 (27%) 15 (25%) 29 (48%)

Gender, M/F 32/28 10/6 7/8 15/14 0.662†

APOE ε4 carrier, N (%) 24 (40%) 9 (56%) 9 (60%) 6 (21%) 0.013†

Mean age (SD) 76 (7) 79 (6) 76 (6) 74 (8) 0.029‡

MMSE, median (MAD) 28 (3) 22 (3.7) 28 (1.5) 29 (1.5) <0.0001*

†Chi-square test.
‡Ordinary ANOVA.
*Kruskal-Wallis ANOVA.
AD, Alzheimer’s disease; CN, Cognitively Normal; F, Female; MAD, Median absolute deviation; MCI, Mild cognitive impairment; MMSE, Mini-mental state examination; M, Male.

TABLE 2 Univariate model analysis of biomarkers in SAND cohort saliva.

Biomarker CN vs. MCI CN vs. AD MCI vs. AD CN vs. MCI/AD

Total protein (µg/mL)† < 0.0001 0.02 0.1 < 0.0001

CST-C (µg/mL)† 0.02 0.26 0.01 0.50

CST-C/total protein ratio† 0.07 0.002 0.28 0.0008

IL-1RN (µg/mL)† 0.01 0.63 0.02 0.32

IL-1RN/total protein ratio† 0.30 0.01 0.17 0.03

SFN (µg/mL)† 0.03 0.55 0.03 0.48

SFN/total protein ratio† 0.10 0.04 0.67 0.02

MMP-9 (µg/mL)† 0.04 0.0002 0.50 0.0003

MMP-9/total protein ratio† 0.44 0.002 0.11 0.02

Hp (µg/mL)† 0.003 0.02 0.51 0.0007

Hp/total protein ratio† 0.21 0.08 0.41 0.06

†Unadjusted p-values shown from log transformed data of absolute concentrations and their ratio to total protein.
AD, Alzheimer’s disease; CN, Cognitively Normal; CST-C, Cystatin-C; Hp, Haptoglobin; IL-1RN, Interleukin-1 receptor antagonist protein; Matrix metalloproteinase 9, MMP-9; MCI,
Mild cognitive impairment; SFN, Stratifin; vs., versus.

and total protein (µg/mL) could distinguish either MCI or AD
from the CN controls with an AUC = 0.97 (95%CI 0.94–1.00).

Discussion

This work sought to extend the promising findings of a
recent MS study in saliva from individuals diagnosed with MCI
or AD and CN. Pathway analysis in the previous work showed
that levels of inflammatory markers were significantly altered in
AD (François et al., 2021). All five proteins chosen in this study
have key roles in inflammation pathways. IL-1RN is a member
of the interleukin-1 family of signaling cytokines. It plays an
anti-inflammatory role by inhibiting the activity of major pro-
inflammatory cytokines (interleukin-1 α/β) by binding to the IL-
1 receptor thereby blocking further signaling and dampening IL-
1 mediated inflammation (Dripps et al., 1991). SFN, also known
as 14-3-3 sigma, is a member of the highly conserved 14-3-3
family with important roles in DNA damage repair, cell-cycle
arrest, apoptosis (Hermeking, 2003) and inflammation (Munier
et al., 2021). SFN and IL-1RN are expressed in the squamous
epithelial cells of the oral mucosa, the mucous membrane lining

the mouth (Uhlen et al., 2015).1 Both SFN (Hu et al., 2005;
Fang et al., 2007; Denny et al., 2008; Giusti et al., 2010; Krief
et al., 2012, 2019; Salazar et al., 2013) and IL-1RN (Denny et al.,
2008; Rao et al., 2009; Salazar et al., 2013; Dominy et al., 2014;
Aziz et al., 2015; Twal et al., 2016; Xiao et al., 2016; Murr et al.,
2017) proteins have been detected in saliva studies previously.

The multiple functions of CST-C include inhibition of
cysteine proteases, host defense against pathogens, apoptosis,
as well as roles in inflammatory diseases such as rheumatoid
arthritis (Zi and Xu, 2018). CST-C is highly expressed by
the salivary glands (Paraoan et al., 2010), in particular the
submandibular and parotid glands (Saitou et al., 2020) and has
been reported in numerous studies in saliva (Denny et al., 2008;
Rao et al., 2009; Salazar et al., 2013; Ngounou Wetie et al.,
2015). MMP-9 is a gelatinase in the matrix metalloproteinase
family, essential proteolytic enzymes in wound healing and
bone remodeling. MMP-9 is found in the major salivary glands,
sublingual and submandibular (Saitou et al., 2020), secreted by
immune cells such as neutrophils in response to inflammation
(Song et al., 2013) and has also been detected in many saliva

1 https://www.proteinatlas.org
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FIGURE 1

Levels of total protein and five biomarkers in the SANDs cohort showing reduced abundance of CST-C, IL-1RN, and SFN in MCI and AD and
increased abundance of total protein, MMP-9 and HP in MCI and AD. Scatter dot plots show the mean, standard deviation and all points for
each biomarker adjusted for total protein with AD in orange (n = 16), MCI in blue (n = 15) and CN in black (n = 29) for (A) CST-C (B) IL-1RN
(C) SFN (D) MMP-9 (E) Hp (F) Total protein. ∗Unadjusted p-values shown from log transformed data for cohorts CN vs. AD with ∗P < 0.05 and
∗∗P < 0.01. AD, Alzheimer’s disease; CN, Cognitively Normal; CST-C, Cystatin-C; Hp, Haptoglobin; IL-1RN, Interleukin-1 receptor antagonist
protein; Matrix metalloproteinase 9, MMP-9; MCI, Mild cognitive impairment; SFN, Stratifin.
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studies (Denny et al., 2008; Rao et al., 2009; Jaedicke et al., 2012;
Salazar et al., 2013; Dominy et al., 2014; Costantini et al., 2020;
Bostanci et al., 2021). HP is described as an acute-phase response
protein stimulated by inflammatory cytokines such as TNF-
alpha and interleukins IL-1 and IL-6. HP binds to circulating
hemoglobin thereby avoiding toxicity of free hemoglobin and
has been detected before in saliva (Denny et al., 2008; Rao et al.,
2009; Haigh et al., 2010; Salazar et al., 2013; Ngounou Wetie
et al., 2015; Murr et al., 2017; Tvarijonaviciute et al., 2020) with
significantly higher levels in individuals with oral lichen planus
(Mateo et al., 2019), a chronic oral inflammatory condition.

Only a few studies report total protein in saliva from
individuals with MCI or AD. Three recent studies show a trend
of increasing total protein in saliva from individuals diagnosed
with MCI or AD (Galindez et al., 2021; Gleerup et al., 2021a,b).
Higher levels of salivary protein have also been reported in saliva
from individuals with Parkinson’s disease (PD) (Devic et al.,
2011; Al-Nimer et al., 2014; Kang et al., 2014; Fedorova et al.,
2015; Masters et al., 2015; Galindez et al., 2021) and have been
attributed to reduced saliva flow (Fedorova et al., 2015) and
PD related salivary gland dysfunction (Masters et al., 2015).
Saliva flow rates decline with aging due to reduced secretions
from two major salivary glands (Affoo et al., 2015). As the
controls in this work were age- and gender- matched, age-
related changes to salivary gland function are likely to affect all
samples equally. Reduced saliva flow is associated with declining
cognition (Sørensen et al., 2018; Do et al., 2021) so it is possible
that in the individuals with cognitive impairment, saliva flows
are further reduced leading to a concentration of proteins in
their saliva.

While all five proteins have been found in numerous saliva
studies, only a few shed light on why they may be altered in AD.
CST-C is encoded by the CST3 gene, considered to be a “risk”
gene for AD (Bertram et al., 2007; Wang et al., 2021) with altered
levels of this cystatin reported in both CSF and blood of AD
individuals (Zhong et al., 2013; Wang et al., 2017; Chen et al.,
2022). Abnormal levels of metalloproteinases, including MMP-
9, in plasma have been associated with AD progression (Iturria-
Medina et al., 2016) and increased permeability of the blood-
brain barrier, a driver of cognitive impairment (Montagne et al.,
2020). AD individuals have significantly higher plasma levels of
HP (Zhu et al., 2018; Chen and Xia, 2020) but as yet there are
no reports of altered HP in either MCI or AD saliva. Members
of the 14-3-3 family have been linked to neurodegenerative
diseases such as Parkinson’s (Wang et al., 2018) and sporadic
Creutzfeldt–Jakob (Chohan et al., 2010) disease. The isoform 14-
3-3 gamma is altered in the CSF of AD patients (Sathe et al.,
2019; Falgàs et al., 2020) but there are no published reports of
abnormal levels of 14-3-3 proteins in the saliva of individuals
with AD or MCI. Epigenetic inactivation (hyper-methylation)
of SFN has been associated with cancer (Yi et al., 2009) and
periodontal disease (Wang et al., 2014).

Indeed, peripheral inflammatory diseases such as
periodontitis have been linked with AD (Dioguardi et al.,
2020; Liccardo et al., 2020; Hajishengallis and Chavakis,

FIGURE 2

Receiver operating characteristic curve analyses for the top
three models. In the comparison CN vs. MCI (blue dashed line),
AUC = 0.97 and top model is base model with SFN (µg/mL) and
total protein (µg/mL), accuracy = 91%. For CN vs. AD (orange
solid line), AUC = 0.97 and top model is base model with CST-C
(total protein ratio) and IL-1RN (total protein ratio),
accuracy = 96%. For CN vs. combined MCI/AD (pink dotted
line), AUC = 0.97 and top model is base model with CST-C (total
protein ratio), IL-1RN (total protein ratio), MMP-9 (total protein
ratio) and total protein (µg/mL), accuracy = 92%. AD,
Alzheimer’s disease; CN, Cognitively Normal; CST-C, Cystatin-C;
IL-1RN, Interleukin-1 receptor antagonist protein; Matrix
metalloproteinase 9, MMP-9; MCI, Mild cognitive impairment;
SFN, Stratifin.

2021; Xie et al., 2021). This association has been attributed
to increased systemic inflammation, resulting from both the
infiltration of periodontal pathogens and the inflammatory
process of peripheral diseases like periodontitis, triggering the
neuroinflammation of AD. Whether poor mouth health is a
result of impaired cognition or a causative factor for declining
cognition is not clear. Future saliva studies should record
details on patients’ mouth health, co-morbidities, flow rates and
include an analysis of the microbiome in these saliva samples,
to find possible associations between the targets found in this
study, periodontal disease pathogens and AD.

A limitation of the current study is the small number of
samples tested (n = 60). Small sample sets can inflate the size
of an effect (Button et al., 2013) and so further work is needed
to validate these promising targets in saliva from a much larger
cohort alongside neuroimaging data, conversion to AD from
MCI data, and biofluid measurements of amyloid-β and tau, to
assess the strength of these findings against these well validated
AD biomarkers.

To our knowledge, there have only been two studies
reporting on proteins in saliva from AD individuals using
untargeted MS. In a small sample set (n = 6), Eldem et al.
(2022) also found all five target proteins in their saliva but no
significant difference in abundance was reported. Only CST-
C was reported by Contini et al. (2021) with no difference
in AD saliva compared to controls. Both studies used passive
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unstimulated saliva whereas in the current study, saliva was
collected using a commercial device (RNAPro•SALTM). As the
method of collection can change the protein profile of saliva
(Topkas et al., 2012; Marksteiner et al., 2022), further work is
needed to determine what effect, if any, this particular collection
device had on levels of these targets and others in saliva. This
knowledge would aid in the reproducibility of future studies and
guide best practices for sample collection.

The abundance of proteins in multiple cellular processes and
pathways are altered in the saliva of individuals with MCI or AD
(François et al., 2021). In agreement with this earlier MS study,
this work found five proteins in the saliva of individuals with
MCI or AD had a consistent pattern of altered abundance as
measured by ELISA. All five targets were detected in 100% of
samples highlighting the utility of measuring proteins in saliva
by ELISA. While MS is suited to biomarker discovery, ELISAs
are routinely used in research and clinical settings as a useful
tool for mass screening of samples for a biomarker because they
are simple, economical and accessible. ROC analysis shows that
combinations of these proteins in saliva demonstrate excellent
diagnostic accuracy for detecting both MCI and AD. This is a
significant finding in the quest for early detection in individuals
on the AD continuum and other neurodegenerative diseases.
It is not difficult to foresee a future where asymptomatic
individuals could undertake regular, self-collected saliva testing
and which gave an “early warning” to medical professionals
of declining cognition and neurodegeneration. As a screening
tool in primary care settings, medical professionals could then
direct these individuals toward more specific testing and with
early intervention, opening the possibility of halting and even
reversing disease progression.
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