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gene co‑expression network, machine learning 
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Abstract 

Background:  Ulcerative colitis (UC) refers to an intractable intestinal inflammatory disease. Its increasing inci-
dence rate imposes a huge burden on patients and society. The UC etiology has not been determined, so screening 
potential biomarkers is critical to preventing disease progression and selecting optimal therapeutic strategies more 
effectively.

Methods:  The microarray datasets of intestinal mucosal biopsy of UC patients were selected from the GEO database, 
and integrated with R language to screen differentially expressed genes and draw proteins interaction network dia-
grams. GO, KEGG, DO and GSEA enrichment analyses were performed to explore their biological functions. Through 
machine learning and WGCNA analysis, targets that can be used as UC potential biomarkers are screened out. ROC 
curves were drawn to verify the reliability of the results and predicted the mechanism of marker genes from the 
aspects of immune cell infiltration, co-expression analysis, and competitive endogenous network (ceRNA).

Results:  Two datasets GSE75214 and GSE87466 were integrated for screening, and a total of 107 differentially 
expressed genes were obtained. They were mainly related to biological functions such as humoral immune response 
and inflammatory response. Further screened out five marker genes, and found that they were associated with M0 
macrophages, quiescent mast cells, M2 macrophages, and activated NK cells in terms of immune cell infiltration. 
The co-expression network found significant co-expression relationships between 54 miRNAs and 5 marker genes. 
According to the ceRNA hypothesis, NEAT1-miR-342-3p/miR-650-SLC6A14, NEAT1-miR-650-IRAK3, and XIST-miR-342-
3p-IRAK3 axes were found as potential regulatory pathways in UC.

Conclusion:  This study screened out five biomarkers that can be used for the diagnosis and treatment of UC, namely 
SLC6A14, TIMP1, IRAK3, HMGCS2, and APOBEC3B. Confirmed that they play a role in the occurrence and development of 
UC at the level of immune infiltration, and proposed a potential RNA regulatory pathway that controls the progression 
of UC.
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Introduction
Ulcerative colitis (UC) and Crohn’s disease belong to 
inflammatory bowel diseases (IBD), as a refractory intes-
tinal inflammatory disease. UC has the characteristics of 
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continuous, inversion, and non-specificity. The involved 
sites are mainly the colonic mucosa and submucosa, and 
the disease site can extend from the rectum to the proxi-
mal colon [1]. According to statistics, the incidence of 
UC in Asia has gradually increased in recent years, from 
7.6/100,000 to 14.3/100,000, and the prevalence rate has 
also increased from 2.3/100,000 to 63.6/100,000 [2, 3]. 
Based on its large population, China has become one of 
the regions with the fastest growth rate of UC incidence 
and the heaviest burden of UC, with the number of cases 
rising to 3.08 times that of 1981–1990 in 1991–2000 
alone [4]. The etiology of UC is unclear, but it is closely 
related to autoimmune dysfunction. The onset of UC is 
very insidious, and the early clinical manifestations are 
mainly abdominal pain, diarrhea, and even pus and blood 
in the stool, which is easily confused with other diseases 
such as infectious colitis and hemorrhoids. Clinical treat-
ment is mainly based on long-term and dynamic moni-
toring of objective inflammation, and corresponding 
symptomatic treatment is made according to the patient’s 
condition. Although intestinal endoscopy is a key method 
for diagnosing and monitoring the disease, due to the 
invasiveness and inconvenience of this method, it is not 
easy to accept for some UC patients and potential disease 
populations. Therefore, it is necessary to search for new 
UC marker genes to optimize the diagnosis, monitor-
ing and treatment of UC. In addition, new marker genes 
can deepen the understanding of UC disease and pro-
vide new directions for elucidating disease mechanism 
research and developing new drugs.

Predictive, preventive, and personalized medicine 
programs will be the general trend of medical develop-
ment in the future. As a new means, machine learning 
can help us integrate information from multiple data-
sets and screen out biomarkers with clinical diagnostic 
and therapeutic value to help clarify the pathogenesis of 
diseases. Competitive endogenous network (ceRNA) is 
a mechanism hypothesis that has attracted much atten-
tion in recent years, which reveals the competitive rela-
tionship between a kind of RNA, such as messenger RNA 
(mRNA), long non-coding RNA (lncRNA), and micro-
RNA (miRNA). Research on ceRNA networks in the field 
of IBD is emerging. Liu, Li et  al., by studying lncRNA 
expression in mouse intestinal epithelial cells, proposed 
that lncRNA NONMMUT143162.1 and LncRNA ENS-
MUST00000128026 could regulate the expression of 
TNFAIP3-interacting protein 3 (Tnip3) and Dynamin-
binding protein (Dnmbp), respectively, by competitively 
binding mmu-miR-6899-3p [5]. Nie, Zhao et al. explored 
the ceRNA network relationship between Lnc-ITSN1–2 
and interleukin 23R (IL-23R), and elucidated their role 
in promoting CD4+ T cell activation, proliferation and 
Th1/Th17 cell differentiation [6].

Therefore, this study used the means of bioinformat-
ics and machine learning to integrate the biopsy samples 
published in the Gene Expression Omnibus (GEO) public 
database to obtain differentially expressed genes (DEGs) 
related to the pathogenesis of UC. Screening of marker 
genes was carried out by means of machine learning and 
weighted gene co-expression network (WGCNA). Data 
sets from multiple countries were selected for valida-
tion to demonstrate that the differential expression of 
these marker genes is not an accidental result. Finally, the 
analysis of immune cell infiltration and the establishment 
of ceRNA network elucidate the potential mechanism of 
action of these marker genes affecting UC disease.

Materials and methods
Selection and download of the UC matrix dataset
The matrix files of normal human intestinal mucosal tis-
sue and UC patient intestinal mucosal tissue samples 
were obtained from the GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/). The screening criteria are as fol-
lows: (1) Homo sapiens array expression profile; (2) Intes-
tinal mucosal tissue biopsied from healthy people and UC 
patients; (3) The disease course is active; (4) The intesti-
nal mucosal biopsy site is the colon; (5) The dataset con-
tains more than 6 samples; (6) All included samples were 
not treated with drugs; (7) The dataset contains complete 
information about the sample. Finally, we selected two 
datasets for research: GSE75214 GPL6244 and GSE87466 
GPL13158, with a total of 32 healthy human sam-
ples (control group) and 161 UC samples (treat group). 
In addition, the GSE37283 GPL13158, GSE134025 
GPL13158, GSE160804 GPL20115, GSE38713 GPL570 
and GSE179285 GPL6480 data sets were selected as the 
later validation data sets, including 47 healthy human 
colon samples and 48 UC colon samples, as shown in 
Table 1. Data from the GEO is publicly available and open 
to access. Therefore, no local ethics committee approval 
is required.

Con, Control group. UC Ulcerative colitis.

Correction and screening of differentially expressed genes
The matrix files and platform files downloaded from the 
GEO database were organized and annotated using Perl 
language, and the matrix of probes was converted into 
the expression matrix of genes. The batch correction was 
performed using the ComBat function in the sva pack-
age in R language (version 4.1.2) to remove batch effects. 
DEGs were obtained by filtering the sample data using 
the R language limma package (http://​www.​bioco​nduct​
or.​org/​packa​ges/​relea​se/​bioc/​html/​limma.​html). The 
screening criterion was |LogFC| > 2, and the p-value was 
corrected by controlling the false discovery rate (FDR), 
taking the adjusted p-value (Q value) < 0.05.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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Visualization of differentially expressed genes
To more intuitively show which DEGs are up-regulated 
or down-regulated, the selected DEGs were visualized 
and analyzed, and heat maps and volcano maps were 
drawn.

Construction of protein‑protein interaction network
Import the DEGs into the String database (https://​string-​
db.​org/), select the Homo sapiens race, and obtain the 
protein-protein interaction network (PPI). Import PPI 
into Cytoscape 3.8.2 software for processing [7], and 
use the Minimal Common Oncology Data Elements 
(MCODE) tool in the software for cluster analysis (filter-
ing criteria: degree cutoff = 2, node score cutoff = 0.2, k 
core = 2, maximum depth = 100) [8].

Enrichment analysis
Various enrichment analyses were performed using the 
clusterProfiler package [9]. Gene ontology (GO) analy-
sis can enrich the biological process (BP), cellular com-
ponent (CC), and molecular function (MF) involved 
in these DEGs. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis surveyed pathway enrich-
ment. Disease Ontology (DO) analysis can identify dis-
eases associated with these DEGs. Gene Set Enrichment 
Analysis (GSEA) evaluates the distribution trend of all 
genes and pathways in the sample based on the expres-
sion of all genes and pathways in the control and experi-
mental groups and finds active genes and pathways to 
retain those expression changes in small but functionally 
important genes [10].

Machine learning to screen disease genes
The obtained DEGs were further screened using machine 
learning methods to find genes associated with UC accu-
racy. Two machine learning algorithms, the Least abso-
lute shrinkage and selection operator (LASSO) [11] and 
support vector machine-recursive feature elimination 
(SVM-RFE) [12], were used to screen disease potential 

biomarkers from DEGs. Weighted Gene Correlation Net-
work Analysis (WGCNA) [13] enables significant associ-
ation analysis of all genes to identify potential biomarkers 
or therapeutic targets.

Data set to verify the characteristic expression genes 
of the disease
The GSE37283, GSE134025, GSE160804, GSE38713, and 
GSE179285 datasets were included as validation sets to 
verify whether the obtained UC signature genes also had 
significant differential expression in the validation set 
samples to prove that this was not an accidental result. 
Boxplots were drawn for validation analysis using the 
limma, ggplot2, and ggpubr packages in R.

ROC curves of potential biomarkers in the test group 
and the validation group
Refers to the receiver operator characteristic curve 
(ROC), which is a comprehensive indicator that reflects 
the trade-off relationship between the sensitivity and 
specificity of continuous variables [14]. It can be used to 
verify the accuracy of the obtained genes as UC poten-
tial biomarkers. The area under the curve is infinitely 
close to 1, which means that the gene is more accurate 
as a disease potential biomarker. The ROC curves of the 
screened disease marker genes in the test group and the 
validation group were drawn respectively, so as to com-
prehensively determine the potential biomarker of the 
disease.

Correlation analysis of potential biomarkers and immune 
cell infiltration
Using the R language, the correlation between UC and 
22 types of immune cells was analyzed by the method of 
Cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT). Calculate the correla-
tion coefficient and visualize the degree of immune cell 
infiltration, p value< 0.05. We chose to use the spear-
man coefficient to further study the correlation between 

Table 1  Information for selected microarray datasets

GEO accession Platform Samples Source tissue Country Attribute

Con UC

GSE75214 GPL6244 11 74 colon Belgium Test set

GSE87466 GPL13158 21 87 colon USA Test set

GSE37283 GPL13158 5 4 colon China Validation set

GSE134025 GPL20115 3 3 colon Validation set

GSE160804 GPL20115 3 3 colon Validation set

GSE38713 GPL570 13 15 colon Spain Validation set

GSE179285 GPL6480 23 23 colon USA Validation set

https://string-db.org/
https://string-db.org/
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marker genes and immune cells, to identify which 
immune cells they were significantly associated with, and 
to explore how marker genes play a role in UC by regulat-
ing immune cell infiltration.

miRNA co‑expression network and ceRNA network 
construction of signature genes
The ENCORI database (http://​starb​ase.​sysu.​edu.​cn/​
index.​php) is a database [15] to study the interaction 
between RNAs, which integrates information from 7 
public RNA databases such as TargetScan, microT, miR-
map, and PITA. The database not only contains data 
based on predictions, but also provides experimen-
tal data support for co-immunoprecipitation, which is 
highly credible. By searching the ENCORI database and 
literature, the micro RNAs (miRNAs) of these five poten-
tial biomarkers were found for co-expression analysis, 
and appropriate miRNAs and long non-coding RNAs 

(lncRNAs) were selected according to the co-expression 
results to construct the ceRNA network.

Research results
Results of differentially expressed genes
Fig. 1 Illustrates the workflow of this study. We included 
32 healthy human intestinal mucosal biopsy samples 
(con group) and 161 UC patients’ active colonic mucosal 
tissue samples (treat group) from the GSE75214 and 
GSE87466 datasets. A total of 107 DEGs were screened, 
including 70 up-regulated genes and 37 down-regulated 
genes. (Fig. 2A-B)

PPI network analysis and MCODE cluster modules
The 107 DEGs obtained by screening were imported into 
the String database to obtain the PPI network. Among 
them, cytoplasmic β-glucosidase (GBA3) could not be 
identified by the String database, so after querying the 

Fig. 1  The flowchart of the analysis process

http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
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Fig. 2  The heatmap and a volcano plots. A The heatmap of DEGs distribution in GSE75214 and GSE87466; B The volcano plots of DEGs. Red 
represented a high expression of DEG, while blue represented a low expression of DEG.
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uniport database, it was replaced with the synonymous 
name CBG of this target. Finally we obtain a PPI network 
composed of 107 nodes and 370 edges. The average node 
degree of this network is 6.92, (Fig. 3A). In this network, 
we identified five modules based on filtering criteria. 
Cluster 1 had the highest cluster score (score 10.000, 15 
nodes, 70 edges), Cluster 2 (score 7.778, 10 nodes, 35 
edges), Cluster 3 (score 5.000, 5 nodes, 10 edges), clus-
ter 4 (score 4.000, 4 nodes, 6 edges) and cluster 5 (score 
3.000, 3 nodes, 3 edges), and cluster 5 (score 3.000, 3 
nodes, 3 edges) (Fig. 3B-F).

Enrichment analysis
GO enrichment analysis showed that DEGs in BP were 
mainly involved in the body’s response to molecules of 
bacterial origin, humoral immune response, antibacterial 
humoral response, and response to lipopolysaccharide. In 
addition, it also has a significant impact on the involve-
ment of neutrophils in mediating immune responses. 
In terms of MF, DEGs are mainly involved in receptor-
ligand activity, activation of signaling receptor activators, 
activation of cytokines, and binding of glycosamino-
glycans. Then, in terms of CC, it was shown that DEGs 
were mainly distributed in the secretory granule lumen, 
cytoplasmic vesicle lumen, and vesicle lumen (Fig.  4A). 
KEGG pathway enrichment analysis showed that DEGs 
were enriched in the IL-17 pathway, tumor necrosis fac-
tor α (TNF-α) pathway, NF-κB signaling pathway, and 
Toll-like receptor signaling pathway (Fig.  4B). The DO 
enrichment analysis can be seen in Fig. 4(C), from which 
diseases related to these DEGs can be found, such as 
hypersensitivity reaction type IV disease, lung disease, 
and sarcoidosis. This provides support for finding inter-
actions between active UC and other diseases.

In the GSEA enrichment analysis, we found 5 genes or 
pathways that were most significantly enriched between 
the con group and the treat group. The results were cell 
adhesion molecules (CAMs), chemokine signaling Path-
way, complement and coagulation cascades, cytokine-
cytokine receptor interaction, and Hematopoietic cell 
lineage (Fig. 4D-E).

Machine learning to screen potential biomarkers
The LASSO logistic regression algorithm and the SVM-
RFE algorithm each identified 8 genes that could be 
used as biomarkers for UC (Fig. 5A-B). WGCNA analy-
sis divides genes into different modules with similar 
biological functions. In a total of 6 key modules, 2640 
genes were identified that were significantly associ-
ated with UC (Fig.  5C-D). To improve the accuracy 
of machine learning screening results, 5 genes identi-
fied under the two algorithms and WGCNA analy-
sis were selected as disease signature genes. They are 

sodium- and chloride-dependent neutral and basic 
amino acid transporter B (SLC6A14), metalloprotein-
ase inhibitor (TIMP1), DNA dC- > dU editing enzyme 
(APOBEC3B), interleukin-1 receptor-associated kinase 
3 (IRAK3) and hydroxymethylglutaryl-CoA synthase 
(HMGCS2) (Fig. 5E).

Validation of disease signature expressed genes
In order to verify the reliability of our screening results, 
we selected datasets from the Americas, Europe and 
Asia for validation, which are Validation set 1: a merged 
dataset of three small-sample datasets from China 
(GSE37283, GSE134025, GSE160804); Validation set 2: a 
dataset from Spain (GSE38713); Validation set 3: a data-
set from the United States (GSE179285), see Table  1. 
Boxplots were drawn to show the expression results of 
these eigengenes in different datasets. The results showed 
that these five marker genes were significantly differ-
entially expressed in the validation set (p value< 0.05). 
SLC6A14, TIMP1, and IRAK3 were up-regulated in the 
validation set, while HMGCS2 and APOBEC3B were 
down-regulated. This is consistent with the conclusions 
obtained in the test set (Fig. 6A). Both ROC curves and 
AUC indicated that these 5 potential UC biomarkers had 
high confidence in both test and validation sets (Fig. 6B).

Infiltration of immune cells results
Using the CIBERSORT algorithm, a summary analy-
sis was first performed on 32 normal human sam-
ples and 161 UC patient biopsy samples in the test set. 
Through the correlation heat map, it can be seen that 
among the 22 immune cells, neutrophils and activated 
mast cells, follicular helper T cells and naive B cells, M2 
macrophages, and resting mast cells were significantly 
positively correlated. There was a significant negative 
correlation between resting mast cells and activated mast 
cells, T cell CD4 and activated mast cells, and neutro-
phils and T cell CD4 (Fig.  7A). Compared with normal 
samples, the distribution of immune cells in the intes-
tinal mucosa of UC patients changed significantly, the 
infiltration of neutrophils significantly increased, the 
M0 and M1 macrophages were relatively increased, and 
the M2 macrophages were relatively decreased (Fig. 7B). 
Seventeen types of immune cells were significantly dif-
ferent between the two groups by drawing a violin plot 
(p < 0.05). Among them, the infiltration of neutrophils, 
M0 macrophages, M1 macrophages, activated Dendritic 
cells (DC), and activated memory T cells CD4 was signif-
icantly increased. While Infiltration of regulatory T cells 
(Tregs), M2 macrophages, activated mast cells, and rest-
ing DC cells was significantly reduced (Fig. 7C).
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Fig. 3  PPI network of DEGs and five cluster modules extracted by MCODE. A The interaction network between proteins coded by DEGs was 
comprised of 107 nodes and 370 edges. The closer the color is to blue, the more complex the relationship between the proteins in the network is, 
while the yellower the color, the simpler the relationship. B-E Five cluster modules were extracted by MCODE
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Fig. 4  GO, KEGG pathway, DO, and GSEA enrichment analyses of DEGs. A The bubble plot shows the top 10 enriched results of DEGs from three 
aspects of BP, CC, and MF; B The barplot shows the most enriched KEGG pathways of DEGs; C The barplot of DO enrichment analysis; D-E GSEA 
plots depicting the five significant genes or pathways
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Fig. 5  Screening of potential biomarkers by machine learning. A LASSO logistic regression algorithm to screen disease potential biomarkers; 
B Based on SVM-RFE algorithm to screen disease potential biomarkers; C UC module clustering dendrogram based on a dissimilarity measure 
(1-TOM); D Heatmap of the correlation between module eigengenes and active UC; E The intersection of the results of the two algorithms and 
WGCNA analysis
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Correlation analysis between disease potential biomarkers 
and immune cells
The correlation analysis of marker genes and 22 kinds of 
immune cells can help us speculate how these genes par-
ticipate in the course of UC by regulating the infiltration of 
immune cells. The up-regulated marker genes SLC6A14, 
IRAK3, and TIMP1 in UC are positively correlated with 
neutrophils, activated mast cells, activated memory T cells, 
M0 and M1 macrophages; with T cells CD8, resting mast 
cells, activated NK cells, M2 macrophages, and regulatory 
T cells (Tregs) were negatively correlated (Fig. 8A-C). The 
down-regulated HMGCS2 and APOBEC3B in UC were 
positively correlated with M2 macrophages, T cell CD8, 
resting DC cells, resting mast cells, activated NK cells, 
and regulatory T cells (Tregs); and neutrophils, M0 mac-
rophages, activated mast cells, activated dendritic cells, 
memory T cells CD4 were negatively correlated (Fig. 9A-B).

Construction of miRNA co‑expression network and ceRNA 
network of potential biomarkers
The ENCORI database was used to search for miRNAs 
related to marker genes. The mRNA-miRNA results were 
as follows: 202 related to SLC6A14, 22 related to TIMP1, 37 
related to IRAK3, 40 related to HMGCS2, and 3 related to 
APOBEC3B. The results were drawn into a co-expression 
network by Cytoscape software, and the co-expression 
relationship between miRNA and mRNA was marked with 
different graphs (Fig.  10A). In the miRNA co-expression 
network, we found 54 target miRNAs with broad correla-
tions among the marker genes (S1 Table). Taking these 
miRNAs as the object of our further research, we imported 
them into the ENCORI database to search for lncRNAs 
that interacted with them. The screening criteria were: 
mammalian, human h19 genome, strict stringency (> = 5) 
of CLIP-Data, with or without degradome data and suc-
cessful retrieval in at least two public databases. Ultimately, 
we selected lncRNAs that were prevalent in most miRNAs 
prediction results for inclusion in our study. Ultimately, we 
selected lncRNAs that were prevalent in most miRNAs 
prediction results for inclusion in our study. They are non-
coding RNA activated by DNA damage (NORAD), OIP5 
antisense RNA1 (OIP5-AS1), X inactive specific transcript 
(XIST), metastasis-associated lung adenocarcinoma tran-
script  1 (MALAT1), and nuclear paraspeckle assembly 
transcript 1 (NEAT1). According to the ceRNA hypothesis, 
the screened miRNAs, lncRNAs, and mRNAs were con-
structed into a network (S2 Table and Fig. 10B).

Through the node statistics of the network, we found that 
NEAT1 and XIST were lncRNAs that were closely related 
to these five disease marker genes. Then, we further per-
formed a literature search and selected 2 miRNAs (miR-
342-3p/miR-650) and 2 lncRNAs (NEAT1/XIST) that with 
related reports in UC or UC-related colorectal cancer. We 
make a bold inference that NEAT1/miR-342-3p-SLC6A14, 
NEAT1/miR-650/SLC6A14, NEAT1/miR-650/IRAK3, 
XIST/miR-342-3p/IRAK3 may serve as the novel regula-
tory pathway in the pathogenesis of UC (Fig. 10C).

Discussion
Ulcerative colitis is a chronic non-specific intestinal inflam-
matory disease. Most patients have a slow onset, and the 
severity of the disease varies. In the early onset, the main 
manifestations are abdominal pain, diarrhea, mucus stool, 
and bloody stool. The clinical diagnosis is mainly colonos-
copy. Since the etiology and pathogenesis of the disease 
are not yet clear, clinical diagnosis and treatment methods 
are still based on dynamic monitoring of objective inflam-
mation and symptomatic treatment. The search for new 
potential biomarkers is of great significance in deepening 
the research on the pathogenesis of UC, optimizing the 
diagnosis and treatment methods, and developing new 
drugs.

According to bioinformatics analysis, we screened 107 
DEGs in 193 samples. In the enrichment analysis, it was 
found that these DEGs were closely related to the body’s 
humoral immune function, inflammatory response, and 
antibacterial humoral response. In the enrichment analy-
sis, it was found that these DEGs were closely related to the 
body’s humoral immune function, inflammatory response, 
and antibacterial humoral response. GSEA enrichment 
analysis additionally revealed that these DEGs were most 
closely associated with CAMs, chemokine signaling path-
ways, complement and coagulation cascades, cytokine-
cytokine receptor interactions, and hematopoietic cell 
lineage pathways.

CAMs are glycoproteins that play key roles in bio-
logical processes such as hemostasis, immune response, 
and inflammation [16]. For example, leukocyte-binding 
mucosal addressin cell adhesion molecule (MADCAM), 
its blockade can attenuate the transfer of lymphocytes to 
the intestinal mucosa of UC patients [17, 18]. Chemokines 
induce cell-directed chemotaxis that recruits leukocytes to 
critical sites of inflammation after local injury [19], such 
as C-C motif chemokine ligand 20 (CCL20). CCL20 can 
be induced by pro-inflammatory signals such as TNF-α 

Fig. 6  Expression of potential biomarkers and ROC validation. A Expression of marker genes in the intestinal mucosa of healthy and active UC 
patients in the validation dataset. Blue represents the con group, and red represents the treat group; B ROC curve plot of marker genes in test set 
and validation set. Validation set 1 is the result from a merged dataset of GSE37283, GSE160804, and GSE134025, validation set 2 is the result from 
GSE38713, and dataset 3 is the result from the GSE179285 dataset

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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or TLR, bind CCR6 and induce the recruitment of B cells 
with high CCL6 expression into intestinal epithelial cells of 
patients with inflammatory bowel disease in response to 
inflammatory stimuli [20–22]. Complement is an impor-
tant mediator in the innate immune response, involved 
in the recruitment of inflammatory and immune-com-
petent cells, and is of great significance for the detection, 
regulation, and elimination of foreign pathogens as well 
as self-apoptotic or malignant cells [23]. Sünderhauf et al. 
observed that when intestinal mucosal injury and inflam-
mation are active in IBD patients, complement C3 expres-
sion is increased, and local C3a production is increased, 
that in turn propagates pro-in-flammatory cytokine 
secretion by innate lymphocytes [24]. Thrombin gener-
ated during blood coagulation can activate members of 
G protein-coupled receptors such as protease-activated 
receptors (PAR), which can mediate the process of the 
innate immune system, thereby affecting the inflamma-
tory response [25]. Cytokines are proteins that participate 
in biological processes such as innate and adaptive inflam-
matory responses, host defense, and so on, and aim to 
restore the balance of the microenvironment in the body. 
The interleukin family, tumor necrosis factor TNF-α, inter-
feron, etc. it contains are considered to be the key pathways 
regulating the progression of IBD disease [26, 27]. Biolog-
ics made based on TNF-α, such as Infliximab and Adali-
mumab, are widely used in the induction and maintenance 
of remission in IBD. Hematopoietic stem cells differentiate 
into leukocytes and their lymphoid lineages—NK cells, T 
lymphocytes, and B lymphocytes, which affect immune 
and inflammatory processes [28].

It is well known that immune homeostasis depends on 
immune cells and immune molecules. Innate immune 
cells such as M1 macrophages, NK cells, immunogenic 
DC cells, and adaptive immune cells such as CD4+ and 
CD8+ cells play a role in promoting mucosal immune 
and inflammatory responses in UC [29–31]; While M2 
macrophages, regulatory NK cells, regulatory DC cells in 
innate immune cells, and Tregs cells in adaptive immune 
cells can release a variety of anti-inflammatory factors to 
play an antagonistic role in reducing intestinal damage 
in UC [32–34]. After immune cell correlation analysis 
of novel marker genes, we found that SLC6A14, TIMP1, 
and IRAK3, whose expression were up-regulated in UC, 
also increased the pro-immune and pro-inflammatory 
cells they affected; While the down-regulated expression 
of HMGCS2 and ABOPEC3B also reduced the propor-
tion of immune cells with the anti-immune response and 

anti-inflammatory effects. Such results provide immuno-
logical support for their role in UC development.

Further review of relevant literature and research, we 
found that these five potential biomarkers play an impor-
tant role in biological processes such as tumor develop-
ment and metastasis, the immune function of the body, 
the development of inflammation, and maintenance 
of the intestinal barrier. However, there is not much 
research and discussion on them and IBD by researchers.

As a sodium (Na+) and chloride (Cl−) dependent amino 
acid transporter, SLC6A14 is mainly involved in the 
transmembrane transport of amino acids and Na+-Cl− 
[35, 36]. In addition to playing an important nutritional 
support role in the development of cancer [37], SLC6A14 
also effectively antagonizes toxins produced by a variety 
of infectious bacteria, and improves the reabsorption of 
Na + by intestinal cells, relieves diarrhea symptoms, and 
maintains homeostasis [38]. The expression changes 
of SLC6A14 can suggest the pathogenic ability of gut 
microbes in UC and can be used to monitor the changes 
in the microbial community in the course of UC [39, 40]. 
This suggests that the index of SLC6A14 can provide cer-
tain guidelines for the use of antibiotics and probiotics 
during the treatment of IBD.

Carcinogenesis is one of the most serious complica-
tions of UC, and long-term UC has a higher risk of pro-
gression to CRC [41]. HMGCS2 is an enzyme involved 
in catalyzing ketosis in mitochondria, which not only 
determines the ketogenic ability of the colon, but also 
provides lipid-derived energy for tumor cells, and affects 
tumor development and migration [40]. It can also syn-
ergize with butyrate to promote mitochondrial oxida-
tion, enhance oxidative stress response [42], and inhibit 
human endothelial cell growth and angiogenesis [43]. The 
increase of ketogenic effect can reduce the accumulation 
of immunosuppressive cells in the tumor, increase the 
infiltration of NK cells and cytotoxic T cells, and enhance 
the anticancer effect of PD-1 blockade in CRC [44]. Stud-
ies have found that HMGCS2 is significantly up-regulated 
in the intestinal mucosa of long-term UC patients [40], 
but down-regulated in most colorectal tumors [45]. Some 
researchers believe that HMGCS2 can be used as a moni-
toring indicator for the prognosis of colorectal cancer 
(CRC) and CRC radiotherapy and chemotherapy [44, 46]. 
But whether there is a closer link between this differential 
expression and the carcinogenesis of UC remains unclear.

As one of the metalloproteinase inhibitors, TIMP1 can 
combine with matrix metalloproteinases (MMPs) such 

(See figure on next page.)
Fig. 7  UC immune cell infiltration results. A Heatmap of correlation in 22 types of immune cells. Red represents a positive correlation, and blue 
represents a negative correlation. Darker color implies stronger association.; B Barplot of the proportion of 22 types of immune cells; C Vioplot for 
immune cell infiltration analysis. Blue represents decreased infiltration of this type of immune cells, red represents increased infiltration and black 
represents insignificant differential infiltration
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Fig. 7  (See legend on previous page.)
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Fig. 8  Immune cell correlation analysis panel of up-regulated marker genes. A Lollipop and scatter plots of the correlation between SLC6A14 
and immune cells; B Lollipop and scatter plots of the correlation between TIMP1 and immune cells; C Lollipop and scatter plots of the correlation 
between IRAK3 and immune cells
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as MMP10 and MMP13 to form irreversible complexes 
to inhibit the synthesis and secretion of proteases and 
reduce the destruction of collagen. It plays an important 
role in maintaining the intestinal barrier and regulating 
tumor progression [47, 48]. Compared with healthy peo-
ple, there may be two distinct expressions of TIMP1 in 
the blood of UC patients: low expression due to insuffi-
cient activity or concomitant increase in the regulation of 
matrix metalloproteinases [49, 50]. Colitis mouse studies 

also showed that the expression of TIMP1 was increased 
during the active period of inflammation and decreased 
significantly during the recovery period [51]. This is con-
sistent with our findings. It can be seen in Fig. 3 that in 
addition to TIMP1, MMP1, MMP3, MMP7, and MMP9 
in the matrix metalloproteinase family were signifi-
cantly expressed in the intestinal mucosa of UC patients. 
This may be related to the fact that TIMP 1 antagonizes 
the overexpression of MMPs in UC and inhibits the 

Fig. 9  Immune cell correlation analysis panel of down-regulated marker genes. A Lollipop and scatter plots of the correlation between HMGCS2 
and immune cells; B Lollipop and scatter plots of the correlation between APOBEC3B and immune cells
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Fig. 10  The miRNA co-expression network and ceRNA network of marker genes. A The miRNA co-expression network of five signatures; B The 
ceRNA network of mRNA-miRNA-lncRNA; C Schematic diagram of novel regulatory pathways in the pathogenesis of UC
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involvement of MMPs in the shaping of the inflammatory 
microenvironment in UC [52]. In terms of immune cells, 
Wu believes that TIMP1 is a key gene involved in the 
infiltration of immune cells in thyroid cancer lymphatic 
metastasis [53]. TIMP1 potently inhibits the polarization 
of NK cells toward a decidual-like phenotype [54] and 
increases hepatic neutrophil infiltration [55]. In addition, 
TIMP1 has also been shown to play a role in the prog-
nosis of IBD-related CRC [56]. In conclusion, we specu-
late that TIMP1 can be used to monitor the healing of the 
intestinal mucosal barrier in UC patients.

As the endogenous source of somatic mutations in 
various cancers, the APOBEC family participates in 
and affects the immune response of the body [57]. 
APOBEC3B is not only regulated by TNF-α to affect the 
evolution of cancer cells in the inflammatory microenvi-
ronment [58] but also acts as a DNA dehydrogenase to 
effectively inhibit retroviral replication and retrotrans-
poson migration. Thereby, it has a defensive effect on the 
virus, promotes DNA demethylation, and participates in 
the body’s innate immune response and the conversion of 
cytidine to uridine [59–61]. Wang found that APOBEC3B 
can promote the growth of liver tumor cells through the 
NF-κB signaling pathway, promote the recruitment of 
tumor macrophages, and increase the CD8 + T-express-
ing myeloid-derived suppressor cells and PD1 [62]. 
Therefore, whether APOBEC3B is specifically expressed 
in IBD and related CRC remains to be studied.

IRAK3 (or IRAK-M) is closely related to IL1R, Toll 
receptor signaling, and lipopolysaccharide signaling 
[63]. IRAK3 can inhibit the dissociation of IRAK families 
1 and 4 under the induction of Toll-like receptors and 
can act as a negative feedback regulator to intervene in 
Toll-like receptor signaling and innate immune homeo-
stasis and regulate inflammatory responses [64–66]. It 
controls the inflammatory response magnitude of mac-
rophages to TLR signaling, inhibits lipopolysaccharide-
induced NF-κB activation in macrophages, and reduces 
NK cell abundance [67–70]. In addition, IRAK3 can 
induce DC cells through IL33 to upregulate the expres-
sion of inflammatory factors such as IL6, and increase 
the inflammatory response [71]. Zhang et al. found that 
IRAK3-deficient neutrophils can enhance the ability of 
effector T cell proliferation and activation, effectively 
enhancing anti-tumor immune responses [72]. The study 
found that IRAK3 was significantly up-regulated in the 
intestinal mucosa of UC inactive stage, while the expres-
sion of IRAK3 in the remission stage was similar to that 
of healthy people [73]. We believe that IRAK3 can be 
used to monitor objective inflammation and to assist in 
detecting the degree of inflammatory changes, and its 
close relationship with the TLR receptor signaling path-
way deserves more in-depth study.

After obtaining these potential biomarkers, we also 
predicted their related miRNAs and lncRNAs through 
the database and searched for the relationship between 
them through a literature search. Ultimately, we focused 
our attention on the marker genes SLC6A14 and IRAK3, 
lncRNAs NEAT1 and XIST, miR-342-3p, and miR-650. 
It has been reported that knockdown of XIST can indi-
rectly reduce the expression of transforming protein 
RhoA (RhoA) at the mRNA and protein levels through 
the ceRNA relationship, thereby improving the develop-
ment of inflammatory CRC [74]. NEAT1 is up-regulated 
in the intestinal mucosa of UC and can affect the devel-
opment of UC by affecting TNF-related receptors [75]. 
Studies have shown that the expression of miR-342-3p 
is decreased in the sigmoid colon region of UC patients 
[76], but blocking NEAT1 can improve the expres-
sion of miR-342-3p, thereby reducing cellular inflam-
mation and lipid uptake [77]. In addition, miR-650 was 
also shown to act as an upstream regulator of the LRR 
and PYD domains-containing protein 6 (NLRP6). After 
being overexpressed, miR-650 can effectively inhibit 
NLRP6 and reduce the inflammatory response and 
apoptosis of UC [78]. Through literature research and 
bioinformatics predictions, we propose a bold hypoth-
esis that NEAT1/miR342-3p/SLC6A14、NEAT1/
miR-650/SLC6A14、NEAT1/miR-650/IRAK3、XIST/
miR-342-3p/IRAK3 ceRNA relationship axis plays an 
important role in the occurrence and development of 
UC. Unfortunately, at present, the experimental research 
and related drug development of these 5 potential bio-
markers are very scarce, and it is difficult to combine 
clinical data and experiments to explore more deeply, 
which makes our hypothesis lack of strong support. In 
future studies, we will experimentally validate the find-
ings in vitro and in vivo. It is also necessary to propose 
effective strategies for in-depth clinical validation, such 
as increasing follow-up time to validate the results, using 
methods such as multiple regression modeling to validate 
and improve the specificity and sensitivity of biological 
markers, and so on.

Conclusion
Our work identifies five UC potential biomarkers: 
SLC6A14, TIMP1, IRAK3, HMGCS2, and APOBEC3B 
as potential biomarkers for UC diagnosis and treat-
ment, and boldly predicts their mechanisms of action 
at the immune cell infiltration and transcriptome lev-
els. Furthermore, based on the screening results, we 
propose that NEAT1/miR-342-3p-SLC6A14、NEAT1/
miR-650/SLC6A14、NEAT1/miR-650/IRAK3、XIST/
miR-342-3p/IRAK3 may serve as a potential RNA regula-
tory pathway to monitor and control UC progression.
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