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a b s t r a c t

The world has been undergoing the most ever unprecedented circumstances caused by the coronavirus
pandemic, which is having a devastating global effect in different aspects of life. Since there are not
effective antiviral treatments for Covid-19 yet, it is crucial to early detect and monitor the progression
of the disease, thereby helping to reduce mortality. While different measures are being used to
combat the virus, medical imaging techniques have been examined to support doctors in diagnosing
the disease. In this paper, we present a practical solution for the detection of Covid-19 from chest
X-ray (CXR) and lung computed tomography (LCT) images, exploiting cutting-edge Machine Learning
techniques. As the main classification engine, we make use of EfficientNet and MixNet, two recently
developed families of deep neural networks. Furthermore, to make the training more effective and
efficient, we apply three transfer learning algorithms. The ultimate aim is to build a reliable expert
system to detect Covid-19 from different sources of images, making it be a multi-purpose AI diagnosing
system. We validated our proposed approach using four real-world datasets. The first two are CXR
datasets consist of 15,000 and 17,905 images, respectively. The other two are LCT datasets with 2,482
and 411,528 images, respectively. The five-fold cross-validation methodology was used to evaluate the
approach, where the dataset is split into five parts, and accordingly the evaluation is conducted in five
rounds. By each evaluation, four parts are combined to form the training data, and the remaining one
is used for testing. We obtained an encouraging prediction performance for all the considered datasets.
In all the configurations, the obtained accuracy is always larger than 95.0%. Compared to various
existing studies, our approach yields a substantial performance gain. Moreover, such an improvement
is statistically significant.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Covid-19 is a coronavirus-induced infection that can be asso-
iated with a coagulopathy and infection-induced inflammatory
hanges [1]. The disease poses a serious threat to public health,
nd thus in March 2020, the World Health Organization (WHO)
eclared Covid-19 a pandemic. At the time of writing, the virus
as infected more than four hundreds millions of people, and has
laimed over six million peoples’ lives worldwide.1 The clinical
pectrum of the disease is very wide, ranging from fever, dry
ough and diarrhea, but can be combined with mild pneumo-
ia and mild dyspnoea. In some cases, the infection can evolve
o severe pneumonia, causing approximately 5% of the infected
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1 https://www.worldometers.info/coronavirus/.
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patients to severe lung dysfunction. Given the circumstances,
patients need ventilation as they are highly exposed to multiple
extra pulmonary organ failure.

Since so far there have been no effective antiviral vaccines for
Covid-19, it is crucial to reduce mortality by early detecting and
monitoring the progression of the disease [2], so as to effectively
personalize patient’s treatment. Radiology is part of a fundamen-
tal process to detect whether or not the radiological outcomes are
consistent with the infection and radiologists should expedite as
much as possible the exploration, and provide accurate reports of
their findings. Chest X-ray (CXR) and lung computed tomography
(LCT) images of Covid-19 patients usually show multifocal, bilat-
eral and peripheral lesions, but in the early phase of the disease
they may present a unifocal lesion, most commonly located in
the inferior lobe of the right lung. Considering the fact that the
number of false positives obtained by swab results is considerably
large, an expert system able to provide doctors with a preliminary
diagnosis by automated recognition of Covid-19 from CXR or LCT

images would be of crucial importance.
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The proliferation of disruptive Machine Learning (ML) and
especially Deep Learning (DL) algorithms in recent years has
enabled a plethora of applications across several domains [3,4].
Such techniques work on the basis of complex artificial neural
networks, which are capable of effectively learning from data
by means of a large number of hyper-parameters distributed in
different network layers. In this way, they are able to simulate
humans’ cognitive functions, aiming to acquire real-world knowl-
edge autonomously [5]. In a nutshell, ML/DL techniques are an
advanced paradigm that brings in substantial improvement in
performance compared to conventional learning algorithms. In
the Health care sector, the potential of ML/DL to allow for rapid
diagnosis of diseases has also been proven by various research
work [6].

Aiming to assist the clinical care, this paper presents a prac-
tical solution for the detection of Covid-19 from CXR and LCT
images exploiting two cutting-edge deep neural network families,
i.e., EfficientNet [7] and MixNet [8]. Moreover, we empower the
learning process by means of three different transfer learning
strategies, namely ImageNet [9], AdvProp [10] and Noisy Stu-
dent [11]. The evaluation on four large CXR and LCT images
datasets demonstrate that our proposed models obtain a superior
performance compared to the existing studies that we are aware
of. In this respect, our work makes the following contributions:

• A system for detection of Covid-19 from CXR and LCT images
exploiting cutting-edge deep learning algorithms;

• A successful empirical evaluation on four large datasets
consisting of CXR and LCT images;

• A software prototype in the form of a mobile app ready to
be downloaded.

The paper is structured as follows. Section 2 briefly introduces
EfficientNet and MixNet as well as the transfer learning methods.
In Section 3, we present the dataset and metrics used for our
evaluation, while in Section 4 we analyze the experimental re-
sults. The related work is reviewed in Section 5. Finally, Section 6
discusses future work and concludes the paper.

2. Background

As a base for our presentation, Section 2.1 provides a back-
ground on two families of deep neural networks, i.e., EfficientNet
and MixNet, which are used as the classification engine in our
work. Afterwards, a brief introduction to transfer learning is given
in Section 2.2.

2.1. EfficientNet and MixNet

Based on the observation that a better accuracy and efficiency
can be obtained by imposing a balance between all network
dimensions, EfficientNet [7] has been proposed by scaling in
three dimensions, i.e., width, depth, and resolution, using a set
of fixed scaling coefficients that meet some specific constraints.
By the most compact configuration, i.e., EfficientNet-B0, there are
18 convolution layers in total, i.e., D = 18, and each layer is
equipped with a kernel k(3,3) or k(5,5). The input image con-
tains three color channels R, G, B, each of size 224 × 224. The
next layers are scaled down in resolution to reduce the feature
map size, but scaled up in width to increase accuracy. For in-
stance, the second convolution layer consists of W = 16 filters,
and the number of filters in the next convolution layer is W =

24. The maximum number of filters is D = 1280 in correspon-
dence of the last layer, which is fed to the final fully connected
layer. The other configurations of the EfficientNet family are
generated from EfficientNet-B0 by means of different scaling val-
ues [7]. EfficientNet-B7 outperforms a CNN by achieving a better

accuracy, while considerably reducing the number of parameters.

2

Generally, kernels of size k(3,3) [12,13], k(5,5) [14], or k(7,7)
[15] are used as filters for deep neural networks. However, larger
kernels can potentially improve a model’s accuracy and effi-
ciency. Furthermore, large kernels help to capture high-resolution
patterns, while small kernels allow us to better extract low-
resolution ones. To maintain a balance between accuracy and
efficiency, the MixNet [8] family has been built based on the
MobileNets architectures [13,16]. This network family also aims
to reduce the number of parameters as well as FLOPs, i.e., the
metric used to measure the computational complexity counted
as the number of float-point operations (in billions). The most
simple architecture of the MixNet family is MixNet-Small, which
consists of a large number of layers and channels. Furthermore,
the size of the filters varies depending on the layers. Similar
to the EfficientNet family, other configurations of the MixNet
family, such as MixNet-Medium or MixNet-Large, are derived
from MixNet-S with different scaling values.

2.2. Transfer learning

To fine tune the hyper-parameters, i.e., the internal weights
and biases, deep neural networks need a huge number of la-
beled data. Moreover, the deeper/wider a network is, the more
parameters it possesses. As a result, deeper/wider networks re-
quire more data to guide the learning, with the aim of avoiding
overfitting and being effective. Thus, it is crucial to train them
with enough data, in order to facilitate the learning. Nevertheless,
such a requirement is hard to come by in real-world settings,
since the labeling process usually is done manually, thus being
time consuming and subject to error [17]. To this end, transfer
learning has been conceptualized as an effective way to extract
and transfer the knowledge from a well-defined source domain
to a novice target domain [18,19]. In other words, transfer learn-
ing facilitates the export of existing convolution weights from a
model trained using large datasets to create new accurate models
exploiting a relatively lower number of labeled images. As it has
been shown in various studies [20,21], transfer learning remains
helpful even when the target domain is quite different from the
one in which the original weights have been obtained. In this
work, we consider the following learning methods:

• ImageNet [9]: The ImageNet dataset has been widely ex-
ploited to apply transfer learning by several studies, since
it contains more than 14 million images, covering miscella-
neous categories;

• AdvProp [10]: adversarial propagation has been proposed
as an improved training scheme, with the ultimate aim of
avoiding overfitting. The method treats adversarial exam-
ples as additional examples, and uses a separate auxiliary
batch norm for adversarial examples;

• NS [11]: the Noisy Student learning method attempts to
improve ImageNet classification Noisy Student Training by:
(i) enlarging the trainee/student equal to or larger than the
trainer/teacher, aiming to make the trainee learn better on
a large dataset, and (ii) adding noise to the student, thus
forcing him to learn more.

To assist doctors in early detecting Covid-19 from CXR and
LCT images, we develop an expert system that makes use of
EfficientNet and MixNet as the classification engine. Moreover, in
order to accelerate the learning process and to achieve a higher
accuracy, we propose the three different learning strategies for
obtaining network weights mentioned above, i.e., ImageNet, Ad-
vProp, and NS. The succeeding section introduces the evaluation
settings used to study the performance of our approach.
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Table 1
Chest X-ray datasets.
Dataset Type Categories Total

Covid-19 Normal Pneumonia

D1

Train 98 7,966 5,447 13,511
Test 10 885 594 1,489
Total 108 8,851 6,041 15,000

D2

Train 261 8,154 5,909 14,324
Test 66 2,038 1,477 3,581
Total 327 10,192 7,386 17,905

3. Evaluation

We explain in detail the datasets and methods used to study
he performance of our proposed solution. Four real-world
atasets have been used in the evaluation. Moreover, we make
se of recent implementations2 of EfficientNet and MixNet, which

have been built atop the PyTorch framework.3 We imported pre-
rained weights from various sources to speed up the training.
e publish the tool developed through this paper in GitHub to

acilitate future research.4

.1. Research objectives

Given an automated classifier, it is of crucial importance to get
ccurate predictions with respect to various quality metrics. In
he evaluation, we focus on the following performance charac-
eristics: (i) We identify which neural network family obtains the
best prediction performance for the CXR datasets; (ii) Afterwards,
we determine which deep neural network is the most suitable
one for classifying LCT images; (iii) We ascertain which transfer
earning method among ImageNet, AdvProp, and NS is beneficial
o EfficientNet or MixNet; (iv) We measure the average recogni-
ion speed to see if the proposed model is feasible in practice in
erms of timing efficiency; Finally, (v) A comparison with well-
stablished baselines is performed to validate if our approach
rings advancements in the field.

.2. Datasets

To investigate the performance of our approach, with CXR we
xploited two datasets used in some previous studies [22,23].
heir characteristics are summarized in Tables 1 and 2. In all of
hem, except D3, there are three categories, i.e., Covid-19, Normal,
nd Pneumonia. Only the category Normal exhibits no symp-
oms, while the other two categories, Covid-19 and Pneumonia,
orrespond to different levels of infection-induced inflammatory
hanges.
Dataset D1 consists of 13,511 images for training and 1489

mages for testing. It can be seen that there is an imbalance
mong the categories. In particular, both categories Normal and
neumonia contain a large number of images, while there are only

108 images in the Covid-19 category. We use D1 as a means to
compare the performance of our approach with some existing
studies that exploited D1 in their evaluation [22,23]. Compared to
D1, D2 is newly updated with more data for training and testing.
This means that there are overlaps between the two datasets. In
particular, D2 consists of 14,324 and 3581 images for training
and testing, respectively. We made use of D2 to validate the
performance of our approach on a larger amount of data, proving
its feasibility in real-world settings.

2 https://github.com/rwightman/gen-efficientnet-pytorch.
3 https://pytorch.org.
4 https://github.com/linhduongtuan/Covid-19_Xray_Classifier/.
3

Table 2
Lung CT datasets.
Dataset Type Categories Total

Covid-19 Normal Pneumonia

D3 [24]
Train 1,001 – 984 1,985
Test 125 – 123 248
Validation 126 – 123 249
Total 1,252 – 1,230 2,482

D4 [25]
Train 109,250 67,029 111,791 288,070
Test 23,410 14,364 23,955 61,729
Validation 23,411 14,364 23,955 61,730
Total 156,071 95,756 159,702 411,528

Table 3
Hardware and software configurations.
Name Description

RAM 24 GB
CPU Intel

®
Core™ i5-2400 CPU @ 3.10 GHz ×4

GPU GeForce GTX 1080 Ti
OS Ubuntu 18.04
Python 3.7.5
Pytorch 1.5
Torchvision 0.5.0
Numpy 1.15.4
Git 2.0
Timm 0.1.26

Table 2 summarizes the two LCT datasets used in our eval-
uation. Dataset D3 contains a small number of images in two
categories, i.e., Covid-19 and Pneumonia. Finally, D4 is much larger
with 156,017 images for the Covid-19 category. In total, D4 sums
up to 411,528 images for training and testing. We believe that
such a large dataset resembles a real scenario, and thus the
evaluation on it helps to shed light on the performance of the
approach in practice.

Concerning the settings, at the beginning of all experiments
the datasets were randomly split using a random seeds function
of the Python numpy library. With respect to the strategy it
ensures that the test sets are independent and all the same for
the other evaluations of each architecture. In other words, we
can measure and compare prediction performance on the same
criterion. This is done by following many existing studies [4,26–
28], which measured the prediction performance on independent
test sets.

Figs. 1 and 2 give examples of CXR and LCT images for the
three categories mentioned above. By plain eyes, it is quite dif-
ficult to notice the difference between them, especially for non-
expert users. In this respect, we assume that the application of
deep learning will facilitate the recognition and effectively assist
doctors in diagnosing the disease.

3.3. Settings

Deep neural networks such as EfficientNet and MixNet require
a platform with powerful computational performance. To perform
the evaluation, we used a server with the hardware and software
configurations listed in Table 3.

By means of an empirical study, we found out that two config-
urations, EfficientNet-B0 and EfficientNet-B3, are more effective
than the others for the EfficientNet family, and thus we selected
them for our evaluation. Weights for EfficientNet are obtained by
all the transfer learning techniques mentioned in Section 2.2. In
the MixNet family, we considered four different configurations,
i.e., MixNet-Small, MixNet-Medium, MixNet-Large and MixNet-
XL. We obtained weights coming from the available ImageNet
dataset. At the end, by combining two network families with

https://github.com/rwightman/gen-efficientnet-pytorch
https://pytorch.org
https://github.com/linhduongtuan/Covid-19_Xray_Classifier/
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Fig. 1. Examples of CXR images.
Fig. 2. Examples of LCT images.
Table 4
Experimental configurations.
Conf. Network Batch size # of Params Learning method Size (MB)

C1 EfficientNet-B0 110 7,919,391 ImageNet 53.1
C2 EfficientNet-B0 110 7,919,391 AdvProp 53.1
C3 EfficientNet-B0 110 7,919,391 NS 53.1
C4 EfficientNet-B3 64 14,352,075 ImageNet 106.9
C5 EfficientNet-B3 64 14,352,075 AdvProp 106.9
C6 EfficientNet-B3 64 14,352,075 NS 106.9
C7 MixNet-Small 110 6,253,449 ImageNet 41.8
C8 MixNet-Medium 90 7,133,225 ImageNet 48.9
C9 MixNet-Large 60 9,448,095 ImageNet 67.5
C10 MixNet-XL 60 14,015,611 ImageNet 104.2
i

s

F

three learning strategies mentioned in Section 2.2, we got 10
experimental configurations C1, . . . , C10, as shown in Table 4. Batch
size corresponds to the number of items used for each training
step; # of Params specifies the number of parameters used by
each network; and finally Size is the file size needed to store
the parameters. It is evident that EfficientNet-B3 is the largest
network with respect to the number of parameters as well as the
file size to store them. To be concrete, i.e., C4, C5, and C6 have
ore than 14 millions of parameters, accounting for more than
00MB of storage space each. In the evaluation, we employed the
ive-fold cross-validation methodology on the datasets. Namely,
ach dataset is split into five equal parts, and in each validation
ound one part is used for testing and the other four ones for the
raining.

.4. Evaluation metrics

Each image in all the datasets has been manually labeled, i.e.,
ither Normal or Pneumonia or Covid-19, resulting in three inde-
endent groups, i.e., G = (G1,G2,G3), called ground-truth data.
sing either EfficientNet or MixNet as the classifier on a test set,
hree predicted sets, i.e., S = (S1, S2, S3) of images are obtained.
e measured the classification performance by evaluating the

imilarity of the classified categories with the ground-truth ones.
o this end, three metrics, namely accuracy, precision and recall,
nd F score are used [21]. We selected these metrics for the
1

4

following reason: precision, recall and F1 are useful, given that the
number of positive images accounts for a very small percentage of
all the items in the dataset. In fact, in this case a classifier always
providing a negative prediction would have a very high accuracy.

True positive TPi = |Gi ∩ Si|, i = 1, 2, 3 is defined as the
number of items that appear both in the results and ground-truth
data of class i. The metrics are defined as follows.

Accuracy: It is the fraction of correctly classified items with
respect to the total number of images in the test set.

accuracy =

∑3
i TPi∑3
i |Gi|

× 100% (1)

Precision and Recall: Precision is the fraction of classified
mages for Si being found in the ground-truth data Gi, while Recall
the fraction of true positives being found in the ground-truth
data.

precisioni =
TPi
|Si|

(2)

recalli =
TPi
|Gi|

(3)

F1 score (F-Measure): It is calculated as the average of preci-
ion and recall using the following formula:

1 =
2 · precisioni · recalli (4)

precisioni + recalli
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Table 5
Experimental results on dataset D1 .
Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Accuracy (%) 95.64 95.77 95.30 96.17 96.64 95.90 95.30 95.98 96.11 96.37

Precision
Covid-19 1.000 1.000 1.000 1.000 0.875 0.857 1.000 1.000 1.000 1.000
Normal 0.952 0.960 0.950 0.957 0.968 0.957 0.953 0.966 0.961 0.964
Pneu. 0.961 0.954 0.956 0.968 0.964 0.963 0.951 0.950 0.960 0.962

Recall
Covid-19 0.300 0.300 0.300 0.300 0.700 0.600 0.300 0.400 0.400 0.600
Normal 0.981 0.975 0.977 0.985 0.978 0.978 0.974 0.971 0.978 0.978
Pneu. 0.929 0.942 0.927 0.937 0.952 0.936 0.932 0.951 0.944 0.947

F1-score
Covid-19 0.461 0.461 0.461 0.461 0.778 0.705 0.461 0.571 0.571 0.750
Normal 0.967 0.967 0.963 0.971 0.973 0.967 0.963 0.969 0.969 0.971
Pneu. 0.945 0.948 0.941 0.953 0.958 0.949 0.942 0.954 0.952 0.955
While accuracy is important, we are also interested in effi-
iency, considering the fact that the model needs to have a high
ecognition speed in practice.

Speed: The system presented in Table 3 is used to benchmark
the processing time, i.e., the average number of predicted items
in a second.

In the next section, we present in detail the experimental
esults by referring to the research questions introduced in Sec-
ion 3.1.

. Results

This section reports and analyzes the results obtained from
he conducted experiments by referring to the research objectives
resented in Section 3.1.

.1. Performance on the CXR datasets

The results obtained by performing the experiments on D1 are
hown in Table 5. The accuracy for all configurations is always
arger than 95%, and the maximum accuracy is 96.64% obtained by
5, i.e., EfficientNet-B3 using pre-trained weights with AdvProp.
ith respect to Precision, eight among ten configurations get
.000 as precision for the Covid-19 category. This means that all
mages classified as Covid-19 by the classifiers are actually Covid-
19. For the other two categories, i.e., Normal and Pneumonia, the
maximum precision is 0.968, achieved also by C5 for Category
Normal, and by C4 for Category Pneumonia. Altogether, we see
that all the classifiers are able to recognize the testing images,
obtaining high precision.

Concerning recall, all the configurations get a considerably low
score for the Covid-19 category: the highest recall is 0.700, ob-
tained by C5. This means that the models are not able to retrieve
all the items in the ground-truth data, though they can yield good
predictions for the category. We assume that this happens due
to the limited data available in the training set. Referring back
to Table 1, for the Covid-19 category there are only 98 images
and 10 images for training and testing, respectively. Meanwhile,
for other two image categories, the recall scores are substantially
improved. The best performance is seen by category Normal, i.e.,
0.985; while by Pneumonia, recall is 0.952. As depicted in Table 1,
these categories consist of a larger number of training and testing
images compared to the Covid-19.

For what concerns the F1 scores, for the Covid-19 category the
maximum F1 is 0.778, obtained by C5. The classifiers obtain a
low F1 in the other configurations, and this happens due to the
low recall scores as shown above. For the other two categories
Normal and Pneumonia, the F1 scores are improved considerably
compared to Covid-19. C5 is the most suitable configuration as it
obtains the best F1 scores for all the categories, i.e., also 0.973 for
Normal and 0.958 for Pneumonia.
5

Similarly, let us analyze the results on dataset D2 presented
in Table 6 to ascertain the best network configuration. It is ev-
ident that C1 achieves most of the best scores with respect to
various metrics as well as categories. For instance, C1 get 95.82%
as accuracy, together with C8, which is the best over all the
configurations.

Altogether, through Tables 5 and 6 we can see that C1 and
C5 are the configurations among the others that bring the best
prediction performance.

Compared to existing work that performs evaluation on the
same dataset [22,29], our approach achieves a better performance
with respect to accuracy, precision, recall, and F1-score. For in-
stance, the work by Wang et al. [22], the maximum accuracy
is 93.0% with similar experimental settings. In this respect, we
conclude that application of the two network families EfficientNet
and MixNet as well as the different transfer learning techniques
brings a good prediction performance on the considered dataset.

We conclude that EfficientNet and MixNet can successfully
predict Covid-19 from CXR images, obtaining a high accuracy and
precision. Among others, EfficientNet yields the best prediction
performance.

4.2. Performance on the LCT datasets

The experimental results for the two LCT datasets, i.e., D3 and
D4 are shown in Tables 7 and 8, respectively. Table 7 demon-
strates that EfficientNet-B0 trained with ImageNet is the most ef-
fective configuration, i.e., it obtains 97.99% as accuracy. Moreover,
this configuration also gets the best F1 score for both categories.

Concerning D4, the dataset consists of a large number of im-
ages (cf. Table 2). This resembles a real-world scenario where
images are collected and fed to the system on a daily basis,
resulting in a big database. We see that both network families
get a high performance with respect to different metrics. All the
configurations obtain an accuracy larger than 98% with 99.66% as
maximum accuracy.

In comparison to existing studies that performed evaluation
on same datasets, we can see that our proposed framework
achieves a better performance. For instance, He et al. [30] obtain
87.93% as maximum accuracy, while we get 97.99% and 99.66%
for D3 and D4, respectively.

On the LCT datasets, EfficientNet is also the network family
that helps to obtain the best prediction performance.

4.3. The benefit of transfer learning

We conducted experiments following the five-fold cross-
validation technique. Moreover, to further investigate the appli-
cability of the proposed approach, we made use of D2 and D4,
which contain more images than D1 and D3 (cf. Table 1). Figs. 3(a),
3(b), and 3(c) depict the confusion matrices for EfficientNet-B0

using the three different transfer learning techniques mentioned
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Table 6
Experimental results on dataset D2 .
Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Accuracy (%) 95.82 94.39 93.30 95.05 95.59 95.00 95.79 95.82 95.68 95.53

Precision
Covid-19 0.968 0.948 0.889 0.950 0.968 0.978 0.982 0.966 0.983 0.967
Normal 0.958 0.942 0.932 0.942 0.955 0.953 0.957 0.957 0.951 0.951
Pneu. 0.957 0.946 0.935 0.964 0.955 0.944 0.958 0.959 0.963 0.960

Recall
Covid-19 0.924 0.560 0.363 0.863 0.924 0.667 0.833 0.863 0.909 0.909
Normal 0.958 0.942 0.932 0.942 0.955 0.944 0.974 0.973 0.975 0.960
Pneu. 0.942 0.922 0.906 0.912 0.939 0.937 0.941 0.941 0.933 0.932

F1-score
Covid-19 0.945 0.704 0.616 0.905 0.945 0.792 0.901 0.922 0.945 0.937
Normal 0.644 0.956 0.951 0.959 0.962 0.960 0.965 0.965 0.963 0.962
Pneu. 0.950 0.934 0.920 0.940 0.947 0.940 0.950 0.950 0.947 0.946
Table 7
Experimental results on dataset D3 .
Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Accuracy (%) 97.99 96.24 94.09 97.31 97.58 97.31 96.77 97.31 96.51 97.81

Prec. Covid-19 0.991 0.972 0.982 0.978 0.994 0.973 0.973 0.978 0.978 0.957
Pneu. 0.968 0.952 0.905 0.967 0.991 0.973 0.962 0.967 0.958 0.957

Rec. Covid-19 0.968 0.951 0.898 0.967 0.958 0.972 0.962 0.967 0.951 0.978
Pneu. 0.991 0.973 0.983 0.978 0.994 0.973 0.973 0.978 0.978 0.967

F1
Covid-19 0.979 0.962 0.938 0.973 0.975 0.973 0.967 0.973 0.964 0.967
Pneu. 0.979 0.962 0.943 0.973 0.975 0.973 0.967 0.973 0.965 0.967
Table 8
Experimental results on dataset D4 .
Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Accuracy (%) 99.66 99.52 98.85 99.59 99.62 99.47 99.52 98.41 99.59 99.53

Precision
Covid-19 0.997 0.995 0.991 0.997 0.996 0.995 0.994 0.990 0.996 0.996
Normal 0.990 0.989 0.977 0.988 0.989 0.987 0.990 0.962 0.989 0.986
Pneu. 0.999 0.998 0.992 0.999 0.999 0.998 0.999 0.991 0.999 0.998

Recall
Covid-19 0.994 0.994 0.988 0.993 0.994 0.992 0.994 0.983 0.994 0.992
Normal 0.996 0.991 0.983 0.995 0.995 0.991 0.990 0.978 0.994 0.995
Pneu. 0.992 0.998 0.991 0.999 0.998 0.998 0.998 0.988 0.998 0.999

F1-score
Covid-19 0.995 0.994 0.989 0.995 0.995 0.994 0.994 0.986 0.995 0.994
Normal 0.993 0.990 0.980 0.991 0.992 0.989 0.990 0.970 0.991 0.990
Pneu. 0.999 0.998 0.992 0.999 0.999 0.998 0.998 0.989 0.999 0.998
c
a
w
o
T
n
i
T
B
w
c
S
s

F
I
o
a
1
N
t
p

t

in Section 2.2. The metrics for all the confusion matrices are
shown in Table 6.

As we can see, each transfer learning method may have dif-
erent effects on the different categories. For example, using
fficientNet-B0 with weights pre-trained by ImageNet is benefi-
ial to Covid-19 and Pneumonia, but not to Normal. As shown in
ig. 3(a), 61 out of 66 images in Covid-19 are correctly classified,

while for Pneumonia 1,392 out of 1,477. However, for the Normal
ategory, only 1978 images are correctly classified over a total of
,038 images, accounting for 97.05%. On the other hand, transfer
earning with AdvProp (cf. Fig. 3(b)) induces a better performance
or Normal, i.e., 1,981 among 2,038 images are classified to the
orrect categories. In Fig. 3(c), we see that compared to the other
earning methods, NS has an adverse effect on the recognition
f all the categories. Altogether, we come to the conclusion that
raining EfficientNet-B0 with weights from ImageNet yields the
est prediction performance.
For EfficientNet-B3, we see that weights pre-trained with Im-

geNet are beneficial to the Normal category (cf. Fig. 3(d)). At
he same time, AdvProp is the transfer learning method that is
uitable for recognition of Pneumonia, i.e., it helps to detect 1,388
ut of 1,477 pneumonia images, which is the best among the
thers.
Among the configurations, C9 is the best one for the Pneumonia

ategory. Other MixNet configurations do not outperform the
nes of EfficientNet-B0 and EfficientNet-B3. MixNet-XL obtains a
onsiderably good performance with Category Normal, correctly
 m

6

lassifying 1,984 images among 2,038 images, while it suffers of
low precision and recall for the other categories. For instance,
ith Pneumonia, only 1,377 out of 1,477 images are properly rec-
gnized by MixNet-XL with weights pre-trained with ImageNet.
he experimental results demonstrate that, depending on the
etwork family, each transfer learning technique has a diverse
nfluence on the final outcomes. By considering the results in
able 6, it is evident C1, corresponding to training EfficientNet-
0 with weights by ImageNet, is the most effective configuration
ith respect to accuracy, precision, recall, and F1 for almost all
ategories. Moreover, together with the results obtained from
ection 4.1, we conclude that ImageNet is the best transfer learning
trategy for both network families on the two datasets D1 and D2.

Next, we consider the results obtained for the LCT dataset in
igs. 4(a)–4(j). In general, training the deep neural networks with
mageNet helps to obtain a better performance compared to the
ther transfer learning techniques in all the three categories. As
n example, with C1 we get 23,281 correctly classified Covid-
9 images, while the corresponding numbers for AdvProp and
S are 23,270 and 23,137, respectively. For other categories,
raining EfficientNet-B0 with ImageNet weights also gets a good
erformance.
The experimental results show that weights pre-trained from

he ImageNet dataset contribute to the best prediction perfor-
ance on all the CXR and LCT datasets.
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Fig. 3. Confusion matrices of EfficientNet and MixNet using different transfer learning techniques on D2 .

Fig. 4. Confusion matrices of EfficientNet-B0 and EfficientNet-B3 using different transfer learning techniques on D4 .
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Fig. 5. Recognition speed for the configurations on dataset D2 and D4 .
.4. Timing efficiency

We investigate whether the model is feasible in practice by
easuring the time efficiency. The system presented in Table 3 is
sed to benchmark the processing time, i.e., the average number
f predicted items in a second for the cross-validation experi-
ents. For these experiments, D2 and D4 have been selected as

hey contain a larger number of images compared to D1 and D3.
e counted the number of predictions returned by the classifiers

n a second for the two datasets. The results are depicted in Fig. 5.
Concerning D2, from the figure it is clear that the considered

onfigurations have a comparable recognition speed. For instance,
1, C2, C3, and C7 corresponding to using EfficientNet-B0 and

MixNet-S as the classification engine, are the most efficient con-
figurations, as they return 206 and 235 images per second in
average. EfficientNet-B3 also yields a good time performance, i.e.,
using C4, C5, or C6 as the experimental configuration, the system
generates 165 and 183 predictions per second.

The recognition speed is improved a lot by D4, i.e., on the
LCT dataset with more images for training, compared to D2. The
maximum speed is 965 images per second and reached by C1, C2,
i.e., using EfficientNet-B0 together with ImageNet and AdvProp.
Among the MixNet configurations, MixNet-S is the most efficient
one, as it classifies 921 images per second, which is much higher
compared to 664, 510 and 367 by MixNet-M, MixNet-L, and
MixNet-XL, respectively.

Together with the results obtained from Section 4.1 and Sec-
tion 4.2, the results demonstrate that the proposed framework is
feasible in real-world settings, i.e., it can be used to effectively and
efficiently predict Covid-19 from CXR and LCT images. Moreover,
EfficientNet-B0 is the most efficient model on both datasets,
while the MixNet family yields a low timing efficiency.

4.5. Comparison with a baseline

ResNet is a modern deep neural network, and it has been
widely used in different classification tasks [31]. For the detection
of Covid, ResNet50 has been applied in various work [32,33],
obtaining a promising prediction performance. In this section, we
run experiments to compare our approach with two baselines
built on top of the ResNet50 architecture. For the comparison,
we use the larger dataset among either the Chest X-ray and Lung
8

Table 9
Results obtained with ResNet50.
Configuration D2 D4

Accuracy (%) 87.53 91.93

Precision
Covid-19 0.880 0.909
Normal 0.843 0.922
Pneu. 0.900 0.923

Recall
Covid-19 0.846 0.926
Normal 0.902 0.813
Pneu. 0.874 0.952

F1-score
Covid-19 0.863 0.918
Normal 0.872 0.864
Pneu. 0.887 0.938

Computed Tomography categories, i.e., D2 and D4, aiming to study
the generalizability.

The experimental results obtained using ResNet50 are shown
in Table 9. The approach gets an accuracy of 87.53% and 91.93%
on D2 and D4, respectively. ResNet50 performs the best on the
Pneumonia, i.e., it always gets a maximum value for all the three
metrics (Precision, Recall, and F1-score). Concerning Precision,
ResNet50 gets the maximum value of 0.923 by the Pneumonia
category on D4. The corresponding scores for Recall and F1-score
are 0.952 and 0.938, respectively.

While ResNet50 obtains a good prediction, compared to our
approach, its performance is considerably lower. For instance, as
shown in Table 8, on the D4 dataset, with Configuration C1 our ap-
proach gets 99.66% as accuracy. The maximum Precision, Recall,
and F1 scores are 0.999, 0992, and 0.999, respectively. Finally, we
investigate if the gain in performance is statistically significant.
To this end, we perform a Wilcoxon signed-rank test [34] with
a significance level of α = 5% on the obtained Precision, Recall,
and F1 scores from both approaches. The final p-value is 1.903×

10−7, which means that the difference is statistically significant.
Altogether, this demonstrates that compared to the baselines, we
always achieve a better performance.

The original EfficientNet-B0 configuration contains 5.29M
params, 385.89 MMac, and it obtains an accuracy of 76.3% on
the ImageNet-1K dataset [9]. However, we noticed that it cannot
distinguish well between Covid-19 with other pneumonia. Thus,
we attempted to improve this by modifying the original config-
uration by adding 12 layers to boost up the prediction accuracy
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or the medical image classification for Sars-CoV-2 based on Chest
-ray (CXR) and Computed Tomography (CT). The new proposed
odel EfficientNet-B0 contains 7.92 M params, but still keeps

he same number of MMac, i.e., 385.89 MMac. In summary, the
odification of the original backbones is our key contribution for

he classification task.

.6. Threats to validity

We discuss the threats that may affect the internal, external,
onstruct, and conclusion validity of our findings.
nternal validity. This concerns the internal factors that might
ave an adverse influence on the findings. A possible threat here
ould come from the results for the Covid-19 category, since they
are obtained with a considerably low number of items for training
and testing, i.e., D1 with 98 and 10 images and D2 with 327 and
8 images for training and testing, respectively. This threat is
itigated by the other two categories in the datasets, as they
ontain a considerably large number of items. To the best of our
nowledge, there exists no CXR dataset with more images for
he Covid-19 category. As a matter of fact, research in medical
maging on Covid-19 suffers a general lack of data. For this reason,
nfortunately we are not able to study the models on a larger
cale.
xternal validity. The main threat to external validity is due to
he factors that might hamper the generalizability of our results
o other scenarios outside the scope of this work, e.g., in prac-
ice we may encounter a limited amount of training data. The
hreat is moderated by evaluating EfficientNet and MixNet using
he experimental settings following the five-fold cross-validation
ethodology. In particular, the dataset is split into five parts, and
ccordingly the evaluation is conducted in five rounds. By each
ound, four parts are combined to form the training data, and the
emaining one is used for testing.
onstruction validity. This is related to the experimental settings
resented in the paper, concerning the simulation performed to
valuate the system. To mitigate the threat, the evaluation has
een conducted on a training set and a test set, attempting to
imulate a real usage where training data is already available for
eeding the system, while testing data is the part that needs to
e predicted. Depending on the given settings, we ran several
ounds of training/testing, to make sure that the final results are
eneralizable, i.e., they are not obtained by chance. In the paper,
e reported the most stable experimental results.
onclusion validity. This is related to the factors that might
ave an impact on the obtained outcome. The evaluation metrics
ccuracy, precision, recall, F1 and execution time might induce a
onclusion threat. To face the issue, we adopted such measures
s recommended by the previous scientific literature related to
ur setting, and employed the same metrics for evaluating all the
lassifiers.

. Related work

The recent months have witnessed a large number of studies
elated to the topic Covid-19 and Machine Learning, and multiple
ovid-19/ML applications have been proposed. We summarize
n Table 10 some of the most notable research, providing the
umber of considered images for each category as well as the pre-
iction accuracy. In this work, since we support the recognition
f Covid-19 from CXR and LCT images, in the remaining of this
ection we concentrate on analyzing these studies.
Deep learning techniques have been exploited to predict which

urrent antivirals might be more effective in patients infected
ith coronavirus [48,49]. Similarly, a specific model has been de-

eloped to forecast if a Covid-19 patient has the chance to survive

9

based on his personal data as well as other risk factors [50]. Jiang
et al. [51] propose an approach to the identification of clinical
characteristics of Covid-19, and develop an AI tool to recognize
patients at risk of a more severe impact of the disease.

Ozturk et al. [52] proposed an approach to deliver accurate
diagnostics for binary classification, i.e., Covid-19 vs. No-Findings
and multi-nominal classification, i.e., Covid-19 and No-Findings
and Pneumonia. The DarkNet model has been exploited as the
classification engine, consisting of 17 convolutional layers and a
different filtering in each layer. The proposed model has a predic-
tion accuracy of 98.08% and 87.02% for binary and multi-nominal
classification, respectively.

Various studies have demonstrated the usefulness of CXR ex-
ams in detecting Covid-19. Hall et al. [53] analyzed 135 CXR im-
ages confirmed as Covid-19 and 320 images of viral and bacterial
pneumonia. A Resnet50 DNN was trained on 102 Covid-19 and
102 pneumonia cases by means of the ten-fold cross-validation
technique. The experimental results showed an overall accuracy
of 89.2% with a Covid-19 true positive rate of 0.804 and an area
under the curve (AUC) of 0.95. As a matter of fact, the dataset used
by Hall et al. [53] is quite small, and it is necessary to investigate
the proposed model on a larger amount of data to see if it still
achieves such a good performance.

Narin et al. [37] developed a system for the detection of
coronavirus patients from CXR images. Three different CNN-
based models have been exploited, i.e., ResNet50, InceptionV3
and Inception-ResNetV2. The results show that the ResNet50
model achieves the best prediction performance with 98.0% as
the final accuracy. Although the approach obtains a good classi-
fication performance, it has been studied on a considerably small
dataset. It is our belief that performance may substantially change
on larger datasets like the ones used in our evaluation.

Apostolopoulos et al. [38] evaluated their solution to auto-
matic detection of Covid-19, making use of a dataset of CXR
images from patients with common bacterial pneumonia, con-
firmed Covid-19, and normal incidents. The datasets consists of
1427 CXR images including 224 images with confirmed Covid-19
cases, 700 images with common bacterial pneumonia, and 504
images of normal situations. The experimental outcomes demon-
strate that deep neural networks can be exploited to extract
important biomarkers related Covid-19. Nevertheless, like some
other existing studies et al. [37], again the approach has been
studied by means of a small amount of data. It is our assumption
that such a good performance might considerably change with
larger datasets.

COVID-Net [54] is a deep convolutional neural network design
tailored for the detection of Covid-19 cases from CXR images.
COVID-Net achieves an accuracy of 93.3%, with 98.9% positive
predictive values that is related to the detection of false positives.

A deep learning model has been proposed [55] to detect Covid-
19 and differentiate it from common acquired pneumonia and
other lung diseases. The analyzed dataset consists of 4356 chest
CT exams collected from 3322 patients. The per-exam sensitivity
and specificity for detecting COVID-19 in the independent test set
was 114 of 127 (90.0%) and 294 of 307 (96.0%), respectively, with
an area under the receiver operating characteristic curve (AUC) of
0.96 (p-value < 0.001). The per-exam sensitivity and specificity
for detecting community acquired pneumonia in the independent
test set was 87% (152 of 175) and 92% (239 of 259), respectively.

Abbas et al. [36] introduced Decompose, Transfer, and Com-
pose (DeTraC), a deep neural network for automated recognition
of Covid-19 from CXR images. An accuracy of 95% was achieved
in the detection of Covid-19 CXR images from normal, and severe
acute respiratory syndrome cases. COVID-CAPS [56] is a capsule
Network-based Framework for Identification of Covid-19 cases
from CXR Images. The approach yielded a good accuracy when
working with small datasets.
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Table 10
A summary of the related studies on CXR datasets.
Study Number of images Network Acc. (%)

Covid-19 Normal Pneumonia

Ghoshal et al. [35] 68 1583 2786 ResNet 89.82
Abbas et al. [36] 105 80 11 DeTraC based on ResNet-18 95.12
Nari et al. [37] 50 50 – ResNet-50 98.00
Apostolopous et al. [38] 224 504 700 VGG19 93.48
Luz et al. [39] 183 – – EfficientNet-B3 93.90
Zhang et al. [40] 100 1431 1531 ResNet18 96.00
Hemdan et al. [41] 25 25 – VGG19, DenseNet121 90.00
Table 11
A summary of the related studies on LCT datasets.
Study Number of images Network Acc. (%)

Covid-19 Normal Pneumonia

Rahimzadeh et al. [42] 465 7878 – ResNet50V2 98.49
Anwar et al. [43] 98 – 105 EfficientNet 89.70
Gunraj et al. [44] 4346 9450 7395 COVID-Net-CT 99.10
Mobiny et al. [45] 47 58 – DECAPS 87.60
He et al. [30] 25,442 14,471 28,160 ResNet3D34 95.90
Ardakanu et al. [46] 510 510 – ResNet-101 99.63
Bai et al. [47] 5030 – 9152 EfficientNet-B4 96.00
Concerning LCT datasets, we review the most relevant studies
o our work in Table 11. Overall, most of the studies use a small
ataset for their evaluation. Only Gunraj et al. [44] made use of a
onsiderably large dataset, however the obtained performance is
uch lower than our proposed approach, i.e., 95.90% compared to
9.66%. In this respect, we conclude that by combining different
eep neural networks with transfer learning strategies, we can
btain a high prediction accuracy even on a very large dataset.
To the best of our knowledge, compared to different existing

tudies [36,38], our work is the first one that deals with big
atasets. In particular, for the CXR datasets, there are 15,000 and
7,905 images in D1 and D2, respectively [57]. While for the

LCT datasets, especially with D4, there are more than 400K of
images. This suggests that with the proposed model we can work
with a huge number of images and still obtain a good timing
efficiency. More importantly, the application of the two deep
neural network families, i.e., EfficientNet and MixNet, allows us
to build an expert system being capable of working with images
coming from different sources.

6. Conclusions

We presented a workable solution for the detection of Covid-
19 from chest X-ray and lung computed tomography images. We
designed and implemented the models based on two building
blocks: EfficientNet and MixNet as the prediction engine and
effective transfer learning algorithms. The proposed models have
been studied by means of four datasets which have been widely
used in various papers. The experimental results show that our
proposed approach obtains a better prediction performance com-
pared to some relevant previous studies. To the best of our
knowledge, our work is the first one that deals with images com-
ing from different sources. As future work, we are going to refine
and evaluate the approach by taking into consideration more
datasets and tuning other deep neural network configurations.

CRediT authorship contribution statement

Linh T. Duong: Conceptualization, Software, Writing – original
draft. Phuong T. Nguyen: Conceptualization, Methodology, Writ-
ing – original draft, Writing – review & editing. Ludovico Iovino:
Validation, Visualization, Writing – review & editing. Michele

lammini: Writing – review & editing, Supervision.

10
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

References

[1] J.M. Connors, J.H. Levy, COVID-19 and its implications for thrombosis and
anticoagulation, Blood J. Am. Soc. Hematol. 135 (23) (2020) 2033–2040.

[2] Q. Sun, H. Qiu, M. Huang, Y. Yang, Lower mortality of COVID-19 by
early recognition and intervention: experience from Jiangsu Province, Ann.
Intensive Care 10 (1) (2020) 1–4.

[3] L. Iovino, P.T. Nguyen, A.D. Salle, F. Gallo, M. Flammini, Unavailable transit
feed specification: Making it available with recurrent neural networks, IEEE
Trans. Intell. Transp. Syst. 22 (4) (2021) 2111–2122, http://dx.doi.org/10.
1109/TITS.2021.3053373.

[4] L.T. Duong, N.H. Le, T.B. Tran, V.M. Ngo, P.T. Nguyen, Detection of
tuberculosis from chest X-ray images: Boosting the performance with
vision transformer and transfer learning, Expert Syst. Appl. 184 (2021)
115519, http://dx.doi.org/10.1016/j.eswa.2021.115519, URL https://www.
sciencedirect.com/science/article/pii/S0957417421009295.

[5] I. Portugal, P. Alencar, D. Cowan, The use of machine learning algorithms
in recommender systems: A systematic review, Expert Syst. Appl. 97
(2018) 205–227, http://dx.doi.org/10.1016/j.eswa.2017.12.020, URL http:
//www.sciencedirect.com/science/article/pii/S0957417417308333.

[6] X. Mei, H.-C. Lee, K.-y. Diao, M. Huang, B. Lin, C. Liu, Z. Xie, Y. Ma, P.
Robson, M. Chung, A. Bernheim, V. Mani, C. Calcagno, K. Li, S. Li, H. Shan, J.
Lv, T. Zhao, J. Xia, Y. Yang, Artificial intelligence–enabled rapid diagnosis of
patients with COVID-19, Nat. Med. (2020) 1–5, http://dx.doi.org/10.1038/
s41591-020-0931-3.

[7] M. Tan, Q. Le, EfficientNet: Rethinking model scaling for convolutional
neural networks, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of
the 36th International Conference on Machine Learning, in: Proceedings
of Machine Learning Research, vol. 97, PMLR, Long Beach, California, USA,
2019, pp. 6105–6114, URL http://proceedings.mlr.press/v97/tan19a.html.

[8] M. Tan, Q.V. Le, MixConv: Mixed depthwise convolutional kernels, 2019,
CoRR abs/1907.09595. arXiv:1907.09595. URL http://arxiv.org/abs/1907.
09595.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale
visual recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252,
http://dx.doi.org/10.1007/s11263-015-0816-y.

[10] C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille, Q.V. Le, Adversarial examples
improve image recognition, 2019, arXiv e-prints arXiv:1911.09665.

http://refhub.elsevier.com/S1568-4946(22)00900-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb2
http://dx.doi.org/10.1109/TITS.2021.3053373
http://dx.doi.org/10.1109/TITS.2021.3053373
http://dx.doi.org/10.1109/TITS.2021.3053373
http://dx.doi.org/10.1016/j.eswa.2021.115519
https://www.sciencedirect.com/science/article/pii/S0957417421009295
https://www.sciencedirect.com/science/article/pii/S0957417421009295
https://www.sciencedirect.com/science/article/pii/S0957417421009295
http://dx.doi.org/10.1016/j.eswa.2017.12.020
http://www.sciencedirect.com/science/article/pii/S0957417417308333
http://www.sciencedirect.com/science/article/pii/S0957417417308333
http://www.sciencedirect.com/science/article/pii/S0957417417308333
http://dx.doi.org/10.1038/s41591-020-0931-3
http://dx.doi.org/10.1038/s41591-020-0931-3
http://dx.doi.org/10.1038/s41591-020-0931-3
http://proceedings.mlr.press/v97/tan19a.html
http://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1911.09665


L.T. Duong, P.T. Nguyen, L. Iovino et al. Applied Soft Computing 132 (2023) 109851
[11] Q. Xie, E. Hovy, M.-T. Luong, Q.V. Le, Self-training with Noisy Student
improves ImageNet classification, 2019, cite arxiv:1911.04252. URL http:
//arxiv.org/abs/1911.04252.

[12] F. Chollet, Xception: Deep learning with depthwise separable convolutions,
2016, cite arxiv:1610.02357. URL http://arxiv.org/abs/1610.02357.

[13] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks
for mobile vision applications, 2017, cite arxiv:1704.04861. URL http:
//arxiv.org/abs/1704.04861.

[14] M. Tan, B. Chen, R. Pang, V. Vasudevan, Q.V. Le, MnasNet: Platform-
aware neural architecture search for mobile, 2018, CoRR abs/1807.11626.
arXiv:1807.11626. URL http://arxiv.org/abs/1807.11626.

[15] H. Cai, L. Zhu, S. Han, ProxylessNAS: Direct neural architecture
search on target task and hardware, in: International Conference on
Learning Representations, 2019, URL https://openreview.net/forum?id=
HylVB3AqYm.

[16] M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, L. Chen, Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and
segmentation, 2018, CoRR abs/1801.04381. arXiv:1801.04381. URL http:
//arxiv.org/abs/1801.04381.

[17] A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: A survey,
Comput. Electron. Agric. 147 (2018) 70–90, http://dx.doi.org/10.1016/j.
compag.2018.02.016.

[18] K. Weiss, T. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big
Data 3 (2016) http://dx.doi.org/10.1186/s40537-016-0043-6.

[19] L. Torrey, T. Walker, J. Shavlik, R. Maclin, Using advice to transfer
knowledge acquired in one reinforcement learning task to another, in:
Proceedings of the 16th European Conference on Machine Learning, ECML
’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 412–424, http://dx.doi.
org/10.1007/11564096_40.

[20] Z. Huang, Z. Pan, B. Lei, Transfer learning with deep convolutional neural
network for SAR target classification with limited labeled data, Remote
Sens. 9 (9) (2017) http://dx.doi.org/10.3390/rs9090907.

[21] L.T. Duong, P.T. Nguyen, C. Di Sipio, D. Di Ruscio, Automated fruit
recognition using EfficientNet and MixNet, Comput. Electron. Agric. 171
(2020) 105326, http://dx.doi.org/10.1016/j.compag.2020.105326, URL http:
//www.sciencedirect.com/science/article/pii/S0168169919319787.

[22] Z.Q.L. Linda Wang, A. Wong, COVID-Net: A tailored deep convolutional
neural network design for detection of COVID-19 cases from chest
radiography images, 2020, arXiv:2003.09871.

[23] J.P. Cohen, P. Morrison, L. Dao, COVID-19 image data collection, 2020,
arXiv:2003.11597. URL https://github.com/ieee8023/covid-chestxray-
dataset.

[24] E. Soares, P. Angelov, S. Biaso, M. Higa Froes, D. Kanda Abe, SARS-CoV-2
CT-scan dataset: A large dataset of real patients CT scans for SARS-
CoV-2 identification, MedRxiv (2020) http://dx.doi.org/10.1101/2020.04.24.
20078584, arXiv:https://www.medrxiv.org/content/early/2020/05/14/2020.
04.24.20078584.full.pdf. URL https://www.medrxiv.org/content/early/2020/
05/14/2020.04.24.20078584.

[25] K. Zhang, X. Liu, J. Shen, Z. Li, Y. Sang, X. Wu, Y. Zha, W. Liang, C. Wang, K.
Wang, L. Ye, M. Gao, Z. Zhou, L. Li, J. Wang, Z. Yang, H. Cai, J. Xu, L. Yang,
W. Cai, W. Xu, S. Wu, W. Zhang, S. Jiang, L. Zheng, X. Zhang, L. Wang, L.
Lu, J. Li, H. Yin, W. Wang, O. Li, C. Zhang, L. Liang, T. Wu, R. Deng, K. Wei,
Y. Zhou, T. Chen, J. Lau, M. Fok, J. He, T. Lin, W. Li, G. Wang, Clinically
applicable AI system for accurate diagnosis, quantitative measurements,
and prognosis of COVID-19 pneumonia using computed tomography, Cell
181 (6) (2020) http://dx.doi.org/10.1016/j.cell.2020.04.045.

[26] G. Marques, D. Agarwal, I. de la Torre Díez, Automated medical diagnosis
of COVID-19 through EfficientNet convolutional neural network, Appl. Soft
Comput. 96 (2020) 106691, http://dx.doi.org/10.1016/j.asoc.2020.106691,
URL http://www.sciencedirect.com/science/article/pii/S1568494620306293.

[27] A. Iqbal, M. Usman, Z. Ahmed, An efficient deep learning-based framework
for tuberculosis detection using chest X-ray images, Tuberculosis 136
(2022) 102234, http://dx.doi.org/10.1016/j.tube.2022.102234, URL https:
//www.sciencedirect.com/science/article/pii/S1472979222000713.

[28] A. Saygılı, A new approach for computer-aided detection of coronavirus
(COVID-19) from CT and X-ray images using machine learning meth-
ods, Appl. Soft Comput. 105 (2021) 107323, http://dx.doi.org/10.1016/
j.asoc.2021.107323, URL https://www.sciencedirect.com/science/article/pii/
S1568494621002465.

[29] T. Ozturk, M. Talo, E.A. Yildirim, U.B. Baloglu, O. Yildirim, U.R. Acharya,
Automated detection of COVID-19 cases using deep neural networks with
X-ray images, Comput. Biol. Med. 121 (2020) 103792, http://dx.doi.org/
10.1016/j.compbiomed.2020.103792, URL http://www.sciencedirect.com/
science/article/pii/S0010482520301621.
11
[30] X. He, S. Wang, S. Shi, X. Chu, J. Tang, X. Liu, C. Yan, J. Zhang, G. Ding,
Benchmarking deep learning models and automated model design for
COVID-19 detection with chest CT scans, MedRxiv (2020) http://dx.doi.
org/10.1101/2020.06.08.20125963.

[31] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2016, pp. 770–778, http://dx.doi.org/10.1109/CVPR.2016.90.

[32] M. Elpeltagy, H. Sallam, Automatic prediction of COVID-19 from chest
images using modified ResNet50, Multimedia Tools Appl. 80 (17) (2021)
26451–26463, http://dx.doi.org/10.1007/s11042-021-10783-6.

[33] D. Yang, C. Martinez, L. Visuña, H. Khandhar, C. Bhatt, J. Carretero,
Detection and analysis of COVID-19 in medical images using deep learning
techniques, 11 (1) 19638. http://dx.doi.org/10.1038/s41598-021-99015-3.

[34] F. Wilcoxon, Individual comparisons by ranking methods, in: S. Kotz, N.L.
Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution,
Springer New York, New York, NY, 1992, pp. 196–202, http://dx.doi.org/
10.1007/978-1-4612-4380-9_16.

[35] B. Ghoshal, A. Tucker, Estimating uncertainty and interpretability in deep
learning for coronavirus (COVID-19) detection, 2020, arXiv abs/2003.10769.

[36] A. Abbas, M.M. Abdelsamea, M.M. Gaber, Classification of COVID-19 in
chest X-ray images using DeTraC deep convolutional neural network, 2020,
arXiv preprint arXiv:2003.13815.

[37] A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease
(COVID-19) using X-ray images and deep convolutional neural networks,
2020, arXiv:2003.10849.

[38] I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from x-
ray images utilizing transfer learning with convolutional neural networks,
Phys. Eng. Sci. Med. (2020) 1.

[39] E. Luz, P.L. Silva, R. Silva, G. Moreira, Towards an efficient deep learning
model for covid-19 patterns detection in x-ray images, 2020, arXiv preprint
arXiv:2004.05717.

[40] J. Zhang, Y. Xie, Y. Li, C. Shen, Y. Xia, Covid-19 screening on chest x-ray
images using deep learning based anomaly detection, 2020, arXiv preprint
arXiv:2003.12338.

[41] E.E.-D. Hemdan, M.A. Shouman, M.E. Karar, Covidx-net: A framework of
deep learning classifiers to diagnose covid-19 in x-ray images, 2020, arXiv
preprint arXiv:2003.11055.

[42] M. Rahimzadeh, A. Attar, S.M. Sakhaei, A fully automated deep learning-
based network for detecting COVID-19 from a new and large lung
CT scan dataset, MedRxiv (2020) http://dx.doi.org/10.1101/2020.06.08.
20121541, arXiv:https://www.medrxiv.org/content/early/2020/09/01/2020.
06.08.20121541.full.pdf.

[43] T. Anwar, S. Zakir, Deep learning based diagnosis of COVID-19 using chest
CT-scan images, 2020, http://dx.doi.org/10.36227/techrxiv.12328061.

[44] H. Gunraj, L. Wang, A. Wong, COVIDNet-CT: A tailored deep convolutional
neural network design for detection of COVID-19 cases from chest CT
images, 2020, arXiv:2009.05383.

[45] A. Mobiny, P.A. Cicalese, S. Zare, P. Yuan, M. Abavisani, C.C. Wu, J. Ahuja,
P.M. de Groot, H.V. Nguyen, Radiologist-level COVID-19 detection using CT
scans with detail-oriented capsule networks, 2020, arXiv:2004.07407.

[46] A.A. Ardakani, A.R. Kanafi, U.R. Acharya, N. Khadem, A. Mohammadi,
Application of deep learning technique to manage COVID-19 in routine
clinical practice using CT images: Results of 10 convolutional neu-
ral networks, Comput. Biol. Med. 121 (2020) 103795, http://dx.doi.org/
10.1016/j.compbiomed.2020.103795, URL http://www.sciencedirect.com/
science/article/pii/S0010482520301645.

[47] H.X. Bai, R. Wang, Z. Xiong, B. Hsieh, K. Chang, K. Halsey, T.M.L. Tran, J.W.
Choi, D.-C. Wang, L.-B. Shi, J. Mei, X.-L. Jiang, I. Pan, Q.-H. Zeng, P.-F. Hu,
Y.-H. Li, F.-X. Fu, R.Y. Huang, R. Sebro, Q.-Z. Yu, M.K. Atalay, W.-H. Liao,
Artificial intelligence augmentation of radiologist performance in distin-
guishing COVID-19 from pneumonia of other origin at chest CT, Radiology
296 (3) (2020) E156–E165, http://dx.doi.org/10.1148/radiol.2020201491,
PMID: 32339081. arXiv:https://doi.org/10.1148/radiol.2020201491.

[48] H. Zhang, K.M. Saravanan, Y. Yang, M.T. Hossain, J. Li, X. Ren, Y. Pan, Y.
Wei, Deep learning based drug screening for novel coronavirus 2019-nCov,
Interdiscip. Sci. Comput. Life Sci. (2020) 1.

[49] B.R. Beck, B. Shin, Y. Choi, S. Park, K. Kang, Predicting commercially
available antiviral drugs that may act on the novel coronavirus (SARS-
CoV-2) through a drug-target interaction deep learning model, Comput.
Struct. Biotechnol. J. (2020).

[50] L. Yan, H.-T. Zhang, Y. Xiao, M. Wang, C. Sun, J. Liang, S. Li, M. Zhang, Y.
Guo, Y. Xiao, et al., Prediction of criticality in patients with severe Covid-19
infection using three clinical features: a machine learning-based prognostic
model with clinical data in Wuhan, MedRxiv (2020).

[51] X. Jiang, M. Coffee, A. Bari, J. Wang, X. Jiang, J. Huang, J. Shi, J. Dai, J. Cai, T.
Zhang, et al., Towards an artificial intelligence framework for data-driven
prediction of coronavirus clinical severity, CMC: Comput. Mater. Contin.
63 (2020) 537–551.

[52] T. Ozturk, M. Talo, E.A. Yildirim, U.B. Baloglu, O. Yildirim, U.R. Acharya,
Automated detection of COVID-19 cases using deep neural networks with
X-ray images, Comput. Biol. Med. (2020) 103792.

http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1007/11564096_40
http://dx.doi.org/10.1007/11564096_40
http://dx.doi.org/10.1007/11564096_40
http://dx.doi.org/10.3390/rs9090907
http://dx.doi.org/10.1016/j.compag.2020.105326
http://www.sciencedirect.com/science/article/pii/S0168169919319787
http://www.sciencedirect.com/science/article/pii/S0168169919319787
http://www.sciencedirect.com/science/article/pii/S0168169919319787
http://arxiv.org/abs/2003.09871
http://arxiv.org/abs/2003.11597
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
http://dx.doi.org/10.1101/2020.04.24.20078584
http://dx.doi.org/10.1101/2020.04.24.20078584
http://dx.doi.org/10.1101/2020.04.24.20078584
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584.full.pdf
https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584
https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584
https://www.medrxiv.org/content/early/2020/05/14/2020.04.24.20078584
http://dx.doi.org/10.1016/j.cell.2020.04.045
http://dx.doi.org/10.1016/j.asoc.2020.106691
http://www.sciencedirect.com/science/article/pii/S1568494620306293
http://dx.doi.org/10.1016/j.tube.2022.102234
https://www.sciencedirect.com/science/article/pii/S1472979222000713
https://www.sciencedirect.com/science/article/pii/S1472979222000713
https://www.sciencedirect.com/science/article/pii/S1472979222000713
http://dx.doi.org/10.1016/j.asoc.2021.107323
http://dx.doi.org/10.1016/j.asoc.2021.107323
http://dx.doi.org/10.1016/j.asoc.2021.107323
https://www.sciencedirect.com/science/article/pii/S1568494621002465
https://www.sciencedirect.com/science/article/pii/S1568494621002465
https://www.sciencedirect.com/science/article/pii/S1568494621002465
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://www.sciencedirect.com/science/article/pii/S0010482520301621
http://www.sciencedirect.com/science/article/pii/S0010482520301621
http://www.sciencedirect.com/science/article/pii/S0010482520301621
http://dx.doi.org/10.1101/2020.06.08.20125963
http://dx.doi.org/10.1101/2020.06.08.20125963
http://dx.doi.org/10.1101/2020.06.08.20125963
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1007/s11042-021-10783-6
http://dx.doi.org/10.1038/s41598-021-99015-3
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://arxiv.org/abs/2003.10769
http://arxiv.org/abs/2003.13815
http://arxiv.org/abs/2003.10849
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb38
http://arxiv.org/abs/2004.05717
http://arxiv.org/abs/2003.12338
http://arxiv.org/abs/2003.11055
http://dx.doi.org/10.1101/2020.06.08.20121541
http://dx.doi.org/10.1101/2020.06.08.20121541
http://dx.doi.org/10.1101/2020.06.08.20121541
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/09/01/2020.06.08.20121541.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/09/01/2020.06.08.20121541.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/09/01/2020.06.08.20121541.full.pdf
http://dx.doi.org/10.36227/techrxiv.12328061
http://arxiv.org/abs/2009.05383
http://arxiv.org/abs/2004.07407
http://dx.doi.org/10.1016/j.compbiomed.2020.103795
http://dx.doi.org/10.1016/j.compbiomed.2020.103795
http://dx.doi.org/10.1016/j.compbiomed.2020.103795
http://www.sciencedirect.com/science/article/pii/S0010482520301645
http://www.sciencedirect.com/science/article/pii/S0010482520301645
http://www.sciencedirect.com/science/article/pii/S0010482520301645
http://dx.doi.org/10.1148/radiol.2020201491
https://doi.org/10.1148/radiol.2020201491
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb50
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb51
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb52
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb52
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb52
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb52
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb52


L.T. Duong, P.T. Nguyen, L. Iovino et al. Applied Soft Computing 132 (2023) 109851
[53] L.O. Hall, R. Paul, D.B. Goldgof, G.M. Goldgof, Finding covid-19 from chest
x-rays using deep learning on a small dataset, 2020, arXiv preprint arXiv:
2004.02060.

[54] L. Wang, A. Wong, COVID-net: A tailored deep convolutional neural
network design for detection of COVID-19 cases from chest X-Ray images,
2020, arXiv preprint arXiv:2003.09871.

[55] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, et
al., Artificial intelligence distinguishes COVID-19 from community acquired
pneumonia on chest CT, Radiology (2020) 200905.
12
[56] P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K.N. Plataniotis,
A. Mohammadi, Covid-caps: A capsule network-based framework for
identification of covid-19 cases from x-ray images, 2020, arXiv preprint
arXiv:2004.02696.

[57] L.T. Duong, P.T. Nguyen, L. Iovino, M. Flammini, Deep learning for
automated recognition of Covid-19 from chest X-ray images, MedRxiv
(2020) http://dx.doi.org/10.1101/2020.08.13.20173997, arXiv:https://www.
medrxiv.org/content/early/2020/08/14/2020.08.13.20173997.full.pdf. URL
https://www.medrxiv.org/content/early/2020/08/14/2020.08.13.20173997.

http://arxiv.org/abs/2004.02060
http://arxiv.org/abs/2004.02060
http://arxiv.org/abs/2004.02060
http://arxiv.org/abs/2003.09871
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb55
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb55
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb55
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb55
http://refhub.elsevier.com/S1568-4946(22)00900-0/sb55
http://arxiv.org/abs/2004.02696
http://dx.doi.org/10.1101/2020.08.13.20173997
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/08/14/2020.08.13.20173997.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/08/14/2020.08.13.20173997.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/08/14/2020.08.13.20173997.full.pdf
https://www.medrxiv.org/content/early/2020/08/14/2020.08.13.20173997

	Automatic detection of Covid-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning
	Introduction
	Background
	EfficientNet and MixNet
	Transfer learning

	Evaluation
	Research objectives 
	Datasets
	Settings
	Evaluation Metrics

	Results
	Performance on the CXR datasets
	Performance on the LCT datasets
	The benefit of transfer learning
	Timing efficiency
	Comparison with a baseline
	Threats to Validity

	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


