Skip to main content
. 2022 Nov 10;12:1019009. doi: 10.3389/fonc.2022.1019009

Table 2.

Comparison of recurrence prediction results of ensemble learning models using different feature representations.

Feature representation Acc Recall Prec F1 score
Personal and 0.6062 0.6164 0.6019 0.6039
clinical indicators ± 0.0877 ± 0.1429 ± 0.0930 ± 0.1027
AP 0.7224 0.6946 0.7528 0.7156
± 0.0834 ± 0.0944 ± 0.1231 ± 0.0804
PVP 0.6438 0.6782 0.6409 0.6570
± 0.1117 ± 0.1122 ± 0.1019 ± 0.1014
DP 0.6343 0.6909 0.6331 0.6560
± 0.0690 ± 0.0413 ± 0.0872 ± 0.0520
AP+ 0.7495 0.7673 0.7402 0.7502
other indicators ± 0.0629 ± 0.1051 ± 0.0525 ± 0.0710
PVP+ 0.6824 0.6927 0.6844 0.6846
other indicators ± 0.0783 ± 0.0941 ± 0.0780 ± 0.0771
DP+ 0.6819 0.6309 0.7168 0.6630
other indicators ± 0.0659 ± 0.0912 ± 0.1273 ± 0.0756

Each result is represented by the mean of 5 experiments and 95% CI.