Skip to main content
. 2022 Nov 10;12:1019009. doi: 10.3389/fonc.2022.1019009

Table 4.

5-fold cross-validation results for recurrence prediction using different ensemble learning models.

Model Acc Recall Prec F1 score
LightGBM 0.7600 0.7673 0.7733 0.7553
± 0.0579 ± 0.1311 ± 0.0771 ± 0.0716
CatBoost 0.6833 0.6164 0.7107 0.6511
± 0.0543 ± 0.1313 ± 0.0397 ± 0.0879
XGBoost 0.7224 0.6346 0.8032 0.6936
± 0.0834 ± 0.1154 ± 0.1521 ± 0.0978
GBDT 0.6543 0.6382 0.6600 0.6387
± 0.0463 ± 0.1328 ± 0.0286 ± 0.0828

Each model was evaluated employing the mean of each fold result and corresponding 95% CI.