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Abstract: Sexually transmitted infections (STIs), such as Chlamydia trachomatis (Ct) infection, have
serious consequences for sexual and reproductive health worldwide. Ct is one of the most common
sexually transmitted bacterial infections in the world, with approximately 129 million new cases per
year. C. trachomatis is an obligate intracellular Gram-negative bacterium. The infection is usually
asymptomatic, notwithstanding, it could also be associated with severe sequels and complications,
such as chronic pain, infertility, and gynecologic cancers, and thus there is an urgent need to ade-
quately treat these cases in a timely manner. Consequently, beyond its individual effects, the infection
also impacts the economy of the countries where it is prevalent, generating a need to consider the
hypothesis of implementing Chlamydia Screening Programs, a decision that, although it is expensive
to execute, is a necessary investment that unequivocally will bring financial and social long-term
advantages worldwide. To detect Ct infection, there are different methodologies available. Nucleic
acid amplification tests, with their high sensitivity and specificity, are currently the first-line tests
for the detection of Ct. When replaced by other detection methods, there are more false negative
tests, leading to underreported cases and a subsequent underestimation of Ct infection’s prevalence.
Ct treatment is based on antibiotic prescription, which is highly associated with drug resistance.
Therefore, currently, there have been efforts in line with the development of alternative strategies
to effectively treat this infection, using a drug repurposing method, as well as a natural treatment
approach. In addition, researchers have also made some progress in the Ct vaccine development
over the years, despite the fact that it also necessitates more studies in order to finally establish
a vaccination plan. In this review, we have focused on the therapeutic options for treating Ct in-
fection, expert recommendations, and major difficulties, while also exploring the possible avenues
through which to face this issue, with novel approaches beyond those proposed by the guidelines of
Health Organizations.

Keywords: Chlamydia trachomatis; genital infection; treatment guidelines; drug resistance; screening;
antibiotics; vaccines; infertility; carcinogenesis

1. Introduction

Sexually transmitted infections (STIs) have a huge impact on communities; they are
associated with individuals’ morbidity and mortality, and also with increased public health
expenses through their direct effect on fertility, pregnancy process, and carcinogenesis [1,2].
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Chlamydial infection is among the most common curable STIs worldwide, caused by
Chlamydia trachomatis (Ct) [3]. This bacterium is an obligate intracellular microorganism
that preferentially infects epithelial cells, however, it can also infect phagocytes present in
the genital tract, such as macrophages [4,5]. It has a life cycle comprised of two distinct
forms, the elementary body (EB), which is the infectious form, and the reticulate body (RB),
a non-infectious form that is metabolically active [3,6]. The infectious process begins with
the contact between the EB and the host cell for the Ct invasion. This contact is established
through the major outer membrane protein (MOMP) of the bacterium, triggering molecular
pathways that subsequently drive the EB internalization into the host cell [7–9]. When
in the cytoplasm of the host cell, the bacterium reproductive cycle can start with the EBs
conversion into RBs, allowing pathogen replication through binary fission [10]. Finally,
RBs differentiate again into the EBs form, to allow their release into the extracellular mi-
croenvironment by cell lysis or extrusion [7,11]. Therefore, this immunogenic environment
establishment and the biphasic life cycle of Ct seem to facilitate the therapeutic intervention.
Nevertheless, Ct has some immune escape evasion mechanisms, interfering with the host’s
natural elimination and making infection treatment difficult [12–14].

Indeed, the fact that the chlamydial infection is mainly asymptomatic (in more than
60% of men and women), contributes to the frequency of patients being undiagnosed and
consequent undertreatment. Consequently, it could be associated with complications and
sequels, and the risk of infection transmission rises [15]. Beyond genital infection, it can also
cause rectal, oropharyngeal, and ophthalmologic infections [16]. Moreover, an increased
risk of co-infection with human papillomavirus (HPV) [17], Neisseria gonorrhoeae [18], and
Mycoplasma genitalium has been reported [19].

According to the World Health Organization (WHO) bulletin on Ct infection preva-
lence, comparing the 2012 and 2016 available numbers, there was a global decrease in
the prevalence of these infections [20]. Notwithstanding, the estimated numbers are still
concerning: the WHO anticipated 129 million new Ct infections in 2020 [21]. Therefore,
the implementation of Chlamydia Screening Programs, testing asymptomatic women and
men, could be one of the key strategies to eradicate this infection [22]. The diagnostic tools
available are diverse and are associated with different sensitivities and specificities. In
detail, Ct can be detected by culture (not recommended due to the lack of sensibility and
the consequent higher incidence of false negative results), enzyme-linked immunosorbent
assays (ELISAs), direct immunofluorescence assays, and nucleic acid amplification tests
(NAATs). NAATs are the most accurate tests, with specificities and sensitivities higher
than 98%, for the genital samples (when non-genital specimens are used, these percentages
drop) [23–26]. Briefly, NAATs must be the gold standard for Ct diagnosis, because the
other tests are associated with less sensibility and could result in false negative results,
increasing the probability of new infections because of these misdiagnosed cases. Further-
more, NAATs’ methodologies bring an advantage; they can be used with non-invasive test
specimens, such as urine and self-collected vaginal swabs, which allied with new, rapid
point-of-care diagnostic methods, can diagnose the individuals in around 15 min with a
higher rate of accuracy, enabling a “test and treat strategy”; this could be a turning point
for controlling Ct infections [27–30]. In line with this, Herbst de Cortina et al. accomplished
a systematic review regarding the performance of these Ct diagnostic tools in order to
confront all of these methods and understand which one best fits each country/national
health system [31].

Herein, we expose the current state-of-the-art and future treatments in Ct infections,
with a particular focus on the standard treatment recommendation guidelines for antibi-
otics use given by distinct organizations and the potential new therapeutical approaches.
Additionally, we discuss the possible mechanisms of antibiotic resistance developed by
the bacterium, as well as some strategies to overcome this resistance, using novel drugs
development, natural compounds, nanoparticles, and other molecules further detailed in
this paper (such as cyclic peptomers, cyclic peptomers, peptide-based inhibitors). Finally,
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we investigate the promising future directions of this health problem control concerning
future vaccination strategies.

2. Clinical Presentation of Chlamydial Infection

In the majority of cases, chlamydial infection is asymptomatic [32]. Nevertheless,
symptoms could be felt in distinct anatomical regions with different intensities, depending
on the bacterium serovar, which is determined based on the specific epitopes of the MOMP
encoded by ompA [33–35]. Particularly, serovars A, B, Ba, and C are associated with a
chronic ophthalmologic disease, designated as trachoma, and blindness; serovars D, Da,
E, F, G, Ga, H, I, Ia, J, and K, infect mainly the urogenital tract, resulting in cervicitis in
women and urethritis in men and women, or other more complicated outcomes; serovars
L1, L2, L2a, and L3, are related with lymphogranuloma venereum (LGV) [6,33,35,36].
The latter are considered the most invasive ones, and if untreated, can lead to rectal
fistula or stricture [34]. Indeed, several studies have reported the association between
the Ct genotype and the pathogenicity and severity of the infection [36–38]. Chen and
colleagues have shown that patients with genotype D, the most prevalent in their study,
have a low risk of co-infection with other pathogens, as well as a lower association with
cervical cancer. On the other hand, genotype F of Ct is mostly associated with bacterial
co-infections. Additionally, individuals infected with serovar G share this risk of co-
infections. Furthermore, genotype G is associated with mucopurulent cervicitis and cervical
dysplasia [39]. Of note, serovar E is commonly associated with co-infection with HPV, a
prerequisite for cervical tumorigenesis [40]. Of note, comprehensive studies regarding Ct
serovars prevalence revealed distinct geographical distributions, depending on the region
studied, the individual’s gender, ethnicity, and sexual orientation [29,36,41–43].

Importantly, the authors also indicate that, when not adequately diagnosed and treated,
patients may face serious symptoms and consequences, such as pelvic inflammatory disease,
ectopic pregnancy, tubal factor infertility, neonatal complications, and other symptoms
in different body regions, as shown in Table 1. In fact, persistent Ct infection is also a
risk factor for genital tract tumors, demonstrating the urgent need for the screening of
asymptomatic sexually active women [36,40,44].

Table 1. The most common symptoms of Ct infection according to gender, condition, and anatomical
region infected [34].

Genital Tract Symptoms

Uncomplicated infection

Female Abnormal vaginal discharge; dysuria; post-coital and
intermenstrual bleeding

Male Urethral discharge; dysuria; testicular pain
Persistent infection

Female Pelvic inflammatory disease; ectopic pregnancy;
salpingitis; tubal factor infertility

Male Epididymitis

Non-genital Tract
Rectal infection Rectal discharge; rectal pain; blood in the stools

Oropharyngeal infection Pharyngitis and mild sore throat

Pregnancy complications Preterm birth and low birth weight

Perinatal transmission Neonatal conjunctivitis and/or nasopharyngeal infection;
ocular discharge and swollen eyelids

3. Current Therapeutic Options

Ct treatment is based on antibiotics prescription. Table 2 presents the drugs recom-
mended by WHO, characterizing their ADME (Absorption, Distribution, Metabolism, and
Excretion) profile, mechanism of action, and chemical structure.
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Table 2. ADME profile, mechanism of action, and chemical structure of the most common drugs used
in the Ct infection treatment [45–52].

Drug Chemical Structure Main Information

Azithromycin
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Route of elimination: It is excreted in the urine (30%) and
feces (20–60%) at high concentrations in its biologically

active form.
Half-life: 6–12 h.
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Table 2. Cont.

Drug Chemical Structure Main Information

Erythromycin
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1.26 L.kg−1 after an orally administered dose.
Metabolism: Levofloxacin metabolism in humans occurs by

demethylation and oxidation originating the metabolites:
desmethyl-levofloxacin and levofloxacin-N-oxide.

Route of elimination: After oral administration,
approximately 87% is excreted in urine and less than

4% in feces.
Half-life: 6–8 h.
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Mechanism of action: It inhibits penicillin-binding proteins,
which are responsible for glycosyltransferase and

transpeptidase reactions that lead to cross-linking of
D-alanine and D-aspartic acid in bacterial cell walls. This

affects the formation and repair of the cell wall, resulting in
cell lysis.

Absorption: A 250 mg of oral dose reaches peak plasma
concentrations of 3.93 mg.L−1 after 1.31 h. Bioavailability is

approximately 60%.
Distribution: Distribution into liver, lungs, prostate, muscle,

and bone is reported in several studies. Vd has been
measured to be 27.7 L.

Metabolism: It has several metabolic pathways, from
hydroxylation, oxidative deamination to decarboxylation.

Route of elimination: 70–78% of the drug is eliminated
in the urine.

Half-life: 1 h.
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Table 2. Cont.

Drug Chemical Structure Main Information
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Mechanism of action: It binds to the L16 protein of the 50S
ribosomal subunit, preventing the transfer of amino acids to
growing peptide chains and subsequent protein synthesis.

Absorption: Topical application to the eye may also be
intraocular and little systemic absorption.

Distribution: It has no volume of distribution.
Metabolism: It is not metabolized.

Route of elimination: Not very clear information.
Half-life: 1.5–3.5 h.
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Mechanism of action: It is a complex that gradually releases
free iodine at the application site. Free iodine penetrates the
cell wall, resulting in disruption of protein and nucleic acid

structure and synthesis.
Absorption: Topical application; it is not absorbed.

Distribution: It has no volume of distribution.
Metabolism: It is not metabolized.

Route of elimination: It is not eliminated.
Half-life: Not applicable.
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Pharmacokinetics information is not available.

Azithromycin is a semisynthetic molecule with antibacterial activity, which is derived
from erythromycin [53]. It is a prescribed antibiotic, approved by the Food Drug Adminis-
tration (FDA) for the treatment of a wide variety of bacterial infections, including Ct. In
fact, the WHO recommends azithromycin, as well as doxycycline, as first-line drugs for
the treatment of Ct. This molecule can be administered orally, locally (ophthalmological
solution), and occasionally, parenterally, depending on the clinical indication. It is highly
stable at low pH, increasing its concentration in tissues for long periods of time, compared
to erythromycin. The antibiotic activity of azithromycin guarantees that bacterial growth is
blocked due to its affinity for the bacterial ribosomes. Specifically, this molecule can infil-
trate into the intracellular milieu, binding to the 23S rRNA of the 50S ribosomal subunit of
the Ct and inhibiting the assembly of the 50S ribosomal subunit and the translocation step of
protein synthesis [54]. Thus, the process of protein synthesis (mRNA, messenger ribonucleic
acid, translation) is impeded [55]. Additionally, azithromycin has an immunomodulatory
effect that controls the inflammatory process. Drug delivery is mainly at the inflamed
tissues, as well as penetrating the phagocytes (leukocytes, monocytes, macrophages, and
fibroblasts) allowing it to be effective against Ct [4,5,54].

Doxycycline is part of the class of tetracycline antibiotics, which show biological
activity against bacteria through the inhibition of protein synthesis by binding to the
16S rRNA section of the ribosome, inhibiting the binding of tRNA to the 30S bacterial
ribosomal subunit. Its administration could be oral or parenteral, depending on the
clinical indication. Moreover, there is a reported hepatotoxicity of this drug use [56].
Importantly, following the International Union Against Sexually Transmitted Infections
(IUSTI) guidelines, azithromycin is being used as the first-line therapy for this infection
in addition to doxycycline. Despite this choice, doxycycline is associated with higher
efficacy, and Centers for Disease Control and Prevention (CDC) guidelines recommend a
doxycycline regimen as the first treatment, with some exceptions, as detailed further in this
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section [57–60]. Reveneau et al. proposed that the different forms of the bacterium, RB and
EB, could be responsible for the differences between the drug’s efficacies. In detail, they
argue that azithromycin has a better efficacy against the EB form, responsible for persistent
infections, whereas doxycycline is more appropriate against the RB form, present in acute
infections [60,61].

Erythromycin is an antibiotic of the macrolide class. Its anti-bacterial activity is similar
to that of azithromycin [62]. Despite both drugs having the same efficacy against Ct
infection, the advantage of erythromycin is its low cost. Nevertheless, it is less safe to use
on pregnant women [63].

Tetracycline is a broad-spectrum antibiotic that acts by inhibiting the cell translation
process by binding to the 30S bacterium ribosomal subunit. In addition, it can interfere
with the cytoplasmic membrane of Ct, affecting the leakage of intracellular content into
the extracellular medium. Clinicians must consider that this molecule can cause adverse
effects in asthmatic patients [64].

Levofloxacin is a fluoroquinolone antibiotic that can be administered orally. In terms of
biological action, its bactericidal activity is through interference with the DNA replication
by binding to the key enzyme’s DNA gyrase and topoisomerase IV. Rarely, it has been
associated with liver injury [65].

Amoxicillin is an antibiotic whose mode of action is through the inhibition of cell wall
biosynthesis, leading to bacterial lysis. This pharmacological compost formulation can
be used orally or parenterally. In cases of overdose, individuals can develop hematuria,
oliguria, abdominal pain, acute renal failure, vomiting, diarrhea, rash, hyperactivity, and
drowsiness [66,67]. In pregnant women, amoxicillin was shown to be a better option than
azithromycin in terms of side effects [68]. Moreover, it was verified that it has high efficacy
in Ct infection treatment [69].

Tetracycline and povidone iodine are part of the first-line Ct treatment, according
to the WHO guidelines. Tetracycline hydrochloride is a semi-synthetical naphthacene
antibiotic that inhibits protein synthesis through different mechanisms, including: blocking
of the A site of bacteria ribosomes, interruption of the elongation process, inhibition
of oligosaccharide side chains attached to glycoproteins, and misreading of the genetic
code [70]. In turn, povidone iodine (water-based solution) is an anti-septic agent that can
be used locally for ocular prophylaxis immediately after birth [34,71]. Alternatively, silver
nitrate is used, which destroys harmful microorganisms or inhibits their activity [72], or
chloramphenicol eye solutions, which is a broad-spectrum antibiotic can also be used [73].
Furthermore, it is important to know that depending on the type of Ct infection and the
patient’s condition, clinicians must choose an adequate therapeutic strategy in each case.
Table 3 synthesized the current therapy strategies recommended based on WHO, IUSTI,
and CDC guidelines to effectively treat each type of Ct infection [20,57,58].

Table 3. Ct infection treatment options following the guidelines [20,57,58].

Type of Ct Infection Treatment Options

Uncomplicated
genital chlamydia

Doxycycline 100 mg orally twice a day for 7 days
Azithromycin 1 g orally as a single dose

Tetracycline 500 mg orally four times a day for 7 days
Erythromycin 500 mg orally four times a day for 7 days

Levofloxacin 500 mg orally once daily for 7 days

Anorectal chlamydial
infection

Doxycycline 100 mg orally twice a day for 7 days over
Azithromycin 1 g orally as a single dose

Genital chlamydial infection
in pregnant women

Azithromycin 1 g orally as a single dose
Amoxicillin 500 mg orally three times a day for 7 days

Erythromycin 500 mg orally four times a day for 7 days
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Table 3. Cont.

Type of Ct Infection Treatment Options

Lymphogranuloma
venereum (LGV)

Doxycycline 100 mg orally twice daily for 21 days
Azithromycin 1 g orally, weekly for 3 weeks

Erythromycin 500 mg orally four times a day for 21 days

Ophthalmia neonatorum

Conjunctivitis Azithromycin 20 mg/kg/day orally, one dose daily for 3 days
Erythromycin 50 mg/kg/day orally, in four divided doses

daily for 14 days

Ocular prophylaxis

Tetracycline hydrochloride 1% eye ointment
Erythromycin 0.5% eye ointment

Povidone iodine 2.5% solution
Silver nitrate 1% solution

Chloramphenicol 1% eye ointment

Generally, in cases of uncomplicated genital infection, the guidelines highlight that
doxycycline is the treatment with higher efficacy and it must be used as first-line therapy,
the others are alternative options to use in case of drug contra-indication, resistance, or
other reasons [57]. For patients with anorectal infection, they recommend doxycycline
orally twice daily for 7 days. The WHO guidelines suggest pregnant women should use
azithromycin over erythromycin or amoxicillin. Of note, doxycycline and levofloxacin are
contraindicated in pregnancy. For LGV, the recommended treatment is doxycycline; in
case of contraindication, azithromycin may be considered. For ophthalmia neonatorum,
particularly in conjunctivitis, the use of azithromycin over erythromycin is recommended.
Importantly, guidelines recommend topical ocular prophylaxis as an infection prevention
measure for all neonates. There are several options for topical application to both eyes
immediately after birth [20].

It must be highlighted that treatment options, in some countries, are based on asso-
ciated costs, rather than on biological behavior, therefore, adverse events may occur [20].
In order to avoid the adverse outcomes of Ct treatment, the therapeutic agents’ properties
must be explored, as well as the host infection establishment.

Studies regarding the pharmacological interventions for Ct infection, comparing
efficacy and safety of the drugs, are still few and were mainly developed with pregnant
women patients, thus potentially biased and not generalizable.

4. Treatment Failure and Novel Approaches

The main reasons for treatment failure are poor compliance with treatment, the test of
the cure performed too early, and the fact that the partner(s) of the infected ones are not
informed and subsequently, not treated, thus they could infect others and re-infect the part-
ner(s) [74]. Additionally, this lack of therapy efficacy can occur due to antibiotic resistance,
triggered by gene mutations in the bacteria, or persistence, which occurs in the case that the
bacteria are not efficiently eliminated due to their natural features becoming tolerant to the
drug [75]. Concerning Ct antibiotic resistance, an in vitro study, including a country with
the greatest consumption of azithromycin in Europe, Croatia, did not find azithromycin and
doxycycline resistance in the 24 studied samples of urogenital isolates of Ct infection [76].
Nevertheless, an experimental study in the UK, comparing azithromycin with doxycycline,
demonstrated a higher treatment failure rate of azithromycin in non-genital infections [77].
Multidrug-resistant Ct serovars may be one of the reasons for azithromycin treatment
inefficiency. In detail, some in vitro studies report that point mutations in the ribosomal
protein of the bacterium genotype L are responsible for azithromycin resistance [60]. In
addition, there is in vitro evidence demonstrating that prior exposure to penicillin could
lead to Ct azithromycin resistance [78]. Mestrovic et al. have reported that azithromycin
resistance, in vitro, could be raised through mutations in Ct 23S rRNA genes [79]. In ad-
dition, tetracycline resistance is developed by tet(M) gene mutations [80]. Benamri and
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colleagues described the fact that fluoroquinolones resistance could be developed via gyrA,
parC, and ygeD gene mutations [81].

Antibiotherapy persistence of Ct occurs due to the life cycle of this bacterium [82]. As
previously detailed, the Ct life cycle has two distinct forms, with RB being the one that can
go through growth arrest in stress cell conditions [6,11,83]. In line with this, several factors
can contribute to this pathogen phase persistence, as reported by Mpiga and Ravaoari-
noro [84]. Specifically, there is evidence that cytokine, tumor necrosis factor (TNF–α), and
interferon gamma (IFN–γ) have an influence in the persistent stage [85,86]; as well as
the bacterium growth in non-permissive cells [87]; nutrient limitation [88]; additionally,
some antibiotics, such as penicillin, ofloxacin, and ciprofloxacin can interfere with the Ct
differentiation stage [78,89,90]. Of note, it must be highlighted that this persistence state
phase or heterotolerance is difficult to surpass due to the difficulty in measuring it [75].

Therefore, based on the evidence, there is a need for the development of novel drugs
in order to successfully combat Ct infection [10]. Some authors have investigated the role
of Corallopyronin A, an antimicrobial compound synthesized by Corallococcus coralloides. It
acts specifically by binding to a domain of the bacterial DNA-dependent RNA polymerase,
inhibiting the growth of Ct [91]. Furthermore, Shima et al. have demonstrated promising
outcomes, suggesting it as a future alternative for Ct therapy [91,92]. Additionally, a
nanoparticle designated PDGFR-β siRNA-PEI-PLGA-PEG NP, developed by Yang et al.,
successfully reduces vaginal Ct infection through autophagy induction in human cells,
concomitantly with the knock-down of a gene coding of an important surface binding
protein of Ct, platelet-derived growth factor receptor beta (PDGFR-β) [93]. Recently, Núñez-
Otero and his team, have developed and uncovered the second-generation 2-pyridone
amide (KSK213) role in Ct infection control, with reduced toxicity for humans without
disturbing the commensal flora. This molecule has revealed its effects in the transcription
inhibition of crucial genes responsible for the differentiation from EB to RB, which could be
a key control phase of Ct infection [94]. Additionally, there have been efforts to develop
natural anti-chlamydial treatments based on extracts. Hamarsheh et al. have investigated
in vitro the effect of Artemisia inculta Delile extract, which was shown to effectively inhibit
Ct infection in HeLa cells [95].

Since 2020, as the antibiotic resistance issue has remained critical, some authors devel-
oped studies with potential non-antibiotic weapons. Lam and colleagues have published
findings regarding cyclic peptomers as inhibitors of Gram-negative bacteria, and they
suggest using 4EpDN cyclic peptomer as a prophylactic treatment against Chlamydia
trachomatis due to the strong inhibitor effect that they found in the type III secretion
system (T3SS), a virulence factor of the bacteria [96]. Additionally, Hwang et al., optimized
peptide-based inhibitors (2-Pyridone-based analogs) in order to better target HtrA serine
protease in Ct, an enzyme essential to several bacterial vital functions, which seems to be
a promising strategy [97]. Finally, Kazakova and colleagues have defended the need for
further research to investigate the promising role ofC-ring oxygen and nitrogen erythrodiol
derivatives against Ct infections [98].

Interestingly, drug repurposing, a strategy commonly investigated for cancer treat-
ment, has also been explored in this field [99,100]. Specifically, Itoh et al. have reported
the potential role of bortezomib, an anticancer drug, to treat Ct infections by apoptosis
induction [100]. Notwithstanding all these new strategies for treating Ct infection, further
comprehensive studies are needed in order to improve the translation of these research
results into clinical practice.

Indeed, the more effective way to control and eradicate Ct infection is through a
vaccination plan that must comprise the individuals before they became sexually active, to
maximize immunity, reducing Ct prevalence, and consequently, eradicating the infection.
However, Ct vaccine development has proven to be a challenge throughout the years [101].
Brunham and Rappuoli have made assertive conclusions about the barriers to vaccine
development, defending the position that there are currently no scientific impediments to
this purpose, highlighting recent advances in modern medicine as positive for progress,
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but also showing that other non-scientific barriers to progress, which do not prioritize
this research, have been a negative influence on vaccine advancement. They also propose
that the secret to vaccine success is the involvement of four different sectors: the public
sector, the clinical sector, industry, and discovery, all working in the same direction [102]. In
detail, researchers have been developing different types of vaccines, among these, (1) first-
generation Ct vaccines, with an associated biological risk due to their bacterial inoculation
origin, (2) the second-generation vaccines, which were designed only using subunits of the
bacterium, and the (3) third-generation, more modern than the others, using the pathogen’s
DNA [101,103]. Firstly, a first-generation vaccine was evaluated in 1960 to treat trachoma;
however, even when adjuvants were used to increase the immune response, immuno-
genicity was not induced at a sufficient level; re-infections still occurred. Additionally, it
was associated with increased inflammation, resulting in the worsening of inflammatory
diseases [7,104–107]. Later, second-generation vaccines were assembled, using subunits
of the pathogen as their expressed surface antigens (MOMP) in order to be more effective
and safer. Interestingly, this generation of vaccines is already capable of promoting cellular
and humoral immunity [108]. Researchers developed oral vaccines using this strategy and
tested them in non-human primates and mice. Human clinical trials followed, demonstrat-
ing immunoglobulin G (IgG) and immunoglobulin A (IgA) stimulation by the vaccine, as
well as other molecules associated with immunity stimulation (IFN-γ). Importantly, these
studies have proved the capacity of these vaccines to stimulate antigen-specific immune
responses in humans [7,109–111]. However, researchers report that it provides limited
protection against Ct infection [7,111]. Therefore, the third generation of vaccines was devel-
oped using DNA techniques and, in some cases, plasmid vectors carrying the foreign gene
of interest. These are more cost-effective and more adequate at triggering humoral and cell-
mediated immune responses [7,101]. However, there are several disadvantages associated
with this type of vaccine, including the possibility of genome integration and the risk of anti-
DNA antibody development [112]. In addition, as Vasilevsky et al. described, even more
vaccine approaches have been developed, yet, despite massive efforts, vaccine effectiveness
is still not at the levels needed, thus some researchers are focusing their attention on compu-
tational strategies [112]. Currently, the efforts are in line with the advances in genomics and
bioinformatic tools, in a multi-omics landscape, allowing for an in silico vaccine design that
now requires in vitro validation [113–115]. Recently, some authors developed a method to
create new candidate vaccines, using the biosoftware AllerTOP (Bioinformatics tool for
allergenicity prediction. Available online: https://www.ddg-pharmfac.net/AllerTOP/ (ac-
cessed on 15 November 2022)) [116]. They studied the predicted epitopes of lymphocytes T
and B that could stimulate long-lasting immunity against Ct and concluded that a chimeric
peptide will be more efficient. The novel therapeutic epitope vaccine candidates, known
as “LSWEMELAY”, “LSNTEGYRY”, “TSDLGQMEY”, “FIDLLQAIY” and “FSNNFSDIY”,
described by Shiragannavar and colleagues, must be validated experimentally in order to
complement the in silico studies to conclude whether the vaccine is efficacious and provides
long-term immunity stimulation for translational application [113,115]. In addition, as
defended by the authors, a vaccine combining multi-epitopes must be studied because it
could be more promising due to the distinct interactions that it could have with the human
leukocyte antigen (HLA) molecules [115]. This thesis is also defended by Aslam et al., who
developed a study concerning in silico multi-epitope-based vaccine (MEBV) development,
concomitantly with an adjuvant (Cholera toxin subunit B) coupled to increase the immune
system response because the MEBV itself cannot trigger enough immunogenicity. The
authors tested the physio-chemical properties, antigenicity, immunogenicity, allergenicity,
secondary structure, solubility, and other important features of this vaccine, using bioin-
formatic tools, a cost-effective method for the vaccine design, and have concluded that
this prototype can successfully stimulate the humor and cell immune responses against Ct.
Thus, a forward step is required to test the tolerance, safety, and effectiveness of this MEBV
in vitro in future experimental trials in order to approve an effective vaccine [113].

https://www.ddg-pharmfac.net/AllerTOP/
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5. Conclusions

Ct infection is one of the most common sexually transmitted infections worldwide
that could be associated with serious health problems in the genital tract as well as peri-
natal morbidity of fetuses, even when it runs an asymptomatic course. Therefore, a need
for screening measures arises in order to adequately treat the infection according to the
guidelines. Ct infection treatments are based on antibiotics prescriptions. Nevertheless,
there is a risk of drug resistance and re-infection. Therefore, it is urgent to achieve progress
in the development of therapeutic weapons against Ct infection. Indeed, in the future, the
key to Ct control must focus on public health intervention through populational screening
of asymptomatic individuals to avoid infection transmission and adequately treat patients
in a timely matter. Concomitant with this strategy to eradicate the infection worldwide
should be the administration of an effective vaccine.

In conclusion, this review highlights the need for a public health intervention with Ct
screening to better treat this infection which could have serious complications for human
health. Moreover, we reinforce the necessity for further laboratory studies regarding
vaccine development and the MEBV approach in order to prove the effectiveness of in silico
studies and consequently, allow for immunization of future populations, which will only
be possible by combining efforts to study potential vaccine candidates, study safety and
efficacy within the population, and accelerating cost-effective vaccine manufacture and
implementation in order to eradicate this health problem.
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