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Abstract: Recently, there has been an increasing number of blight disease reports associated with
Erwinia amylovora and Erwinia pyrifoliae in South Korea. Current management protocols that have
been conducted with antibiotics have faced resistance problems and the outbreak has not decreased.
Because of this concern, the present study aimed to provide an alternative method to control the
invasive fire blight outbreak in the nation using bacteriophages (phages) in combination with an
antibiotic agent (kasugamycin). Among 54 phage isolates, we selected five phages, pEa_SNUABM_27,
31, 32, 47, and 48, based on their bacteriolytic efficacy. Although only phage pEa_SNUABM_27
showed host specificity for E. amylovora, all five phages presented complementary lytic potential that
improved the host infectivity coverage of each phage All the phages in the cocktail solution could
lyse phage-resistant strains. These strains had a decreased tolerance to the antibiotic kasugamycin,
and a synergistic effect of phages and antibiotics was demonstrated both in vitro and on immature
wound-infected apples. It is noteworthy that the antibacterial effect of the phage cocktail or phage
cocktail-sub-minimal inhibitory concentration (MIC) of kasugamycin was significantly higher than
the kasugamycin at the MIC. The selected phages were experimentally stable under environmental
factors such as thermal or pH stress. Genomic analysis revealed these are novel Erwinia-infecting
phages, and did not encode antibiotic-, virulence-, or lysogenic phage-related genes. In conclusion,
we suggest the potential of the phage cocktail and kasugamycin combination as an effective strategy
that would minimize the use of antibiotics, which are being excessively used in order to control fire
blight pathogens.

Keywords: phage–antibiotic synergy; bacteriophage; phage therapy; Erwinia amylovora; fire blight

1. Introduction

The bacterium Erwinia amylovora is a causative agent of fire blight, a devastating dis-
ease of rosaceous plants [1,2]. Fire blight-free regions suffer devastating economic losses
following the first outbreak of fire blight invasion due to there being no specific methods
to effectively control plant pathogens, except for a limited number of antibiotics such as
streptomycin, oxytetracycline, and kasugamycin [3–5]. E. amylovora isolates from apple
orchards are known to have resistance to streptomycin, the primary treatment for fire
blight [6]. Furthermore, the high prevalence of resistance genes to these antibiotics in the
environment (endosphere, rhizosphere, or phyllosphere), creates a high probability of the
transfer of antibiotic resistance genes to pathogens [7–9]. Consequently, a high concentra-
tion of antibiotics should be used to be effective against bacterial outbreaks, including fire
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blight, which can cause dysbiosis in the environmental microbiota. A disrupted microbial
balance can facilitate an outbreak of diseases [10,11].

To overcome the problem of antibiotic resistance in E. amylovora, a number of alternatives
have been reported, such as essential oil, plant extracts, and antagonistic bacteria [12–17]. In
addition, bacteriophages (phages) have been suggested as potential alternatives to antibi-
otics for controlling fire blight owing to their direct killing effect [18,19]. The comparative
advantages of using phages to control pathogens mainly comprise their ability to specifi-
cally recognize cell surface receptors on their bacterial hosts to infect and lyse the pathogen
after replication within the host cell [20,21]. For decades, a number of phages have been
characterized as effective agents against fire blight, and several commercial phages have
been developed and made available worldwide as solutions against fire blight such as Om-
nilyticus AgriPhage™-Fire Blight (Salt Lake City, UT, USA) and Enviroinvest Erwiphage
PLUS (Kertváros, Hungary) [22–24]. The high specificity of therapeutic phages confers
on them the advantage of being able to be used as a biocontrol method without affecting
beneficial microbes in the environment. However, it can be a major limitation at the same
time owing to the inability of such phages to act on a broad range of pathogens. Therefore,
phages with a broad host range are generally preferred for therapeutic use [25–27].

Combining different phages in cocktail solutions is the primary strategy to overcome
the limitation of the narrow host range of phage therapy [28,29]. Different phages in
cocktail solutions can complement the host range coverage of every other phage in the
solution, as well as address the issue of phage resistance being developed due to the
administration of a single type of phage [30,31]. In particular, phage cocktails are expected
to show a synergistic effect of the combination of phages, although this is not always
observed to be the case [32,33]. Another strategy is to combine antibiotics with phages [34].
Synergy between phages and antibiotics can be demonstrated to occur by the observation
of enhanced plaque size or clarity, and improved growth characteristics of phages, such
as a shortened eclipse period or increased burst size [35–39]. The application of phages
to control bacterial pathogens can therefore reduce the excessive use of antibiotics, thus,
allowing them to be reserved for urgent clinical needs.

The present study investigated the biocontrol potential of newly isolated Erwinia
phages. With the five phages selected in our study, we showed the effectiveness of the
resultant phage cocktail, as well as that of its combination with antibiotics, which we
propose as an alternative strategy to control fire blight caused by E. amylovora.

2. Results
2.1. Bacteriophage Screening

Among 54 phage isolates, we selected five phages that showed the highest growth-
inhibitory effect against E. amylovora TS3128, which is the reference strain for fire blight
research in South Korea. A low concentration 5 log colony forming unit [CFU]/mL of E.
amylovora was co-cultured with phages for the first screening. Phages pEa_SNUABM_2,
6, 14, 15, 16, 18, 20, 23, 26, 27, 28, 30, 31, 32, 36, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52,
and 54 were selected as cocktail candidates in the initial screening. Subsequently, a high
concentration (6 log CFU/mL) of E. amylovora was used for the second screening. The
five phages pEa_SNUABM_27 (vB_EaM-SNUABM_27; ϕ27), pEa_SNUABM_31 (vB_EaM-
SNUABM_31; ϕ31), pEa_SNUABM_32 (vB_EaM-SNUABM_32; ϕ32), pEa_SNUABM_47
(vB_EaM-SNUABM_47; ϕ47), and pEa_SNUABM_48 (vB_EaM-SNUABM_48; ϕ48) were se-
lected as the final cocktail candidates in the second screening round (Supplementary Table S1).

2.2. Morphological and Biological Characteristics of the Bacteriophages

The selected phages were morphologically recognized as belonging to the family
Myoviridae (Figure 1). Extended long tail fibers were observed around ϕ48 (Figure 1e).
Structural observations of phages ϕ27, ϕ31, ϕ32, ϕ47, and ϕ48, showed the presence of a
capsid having diameter minimum 68.5 ± 2.76 nm and maximum 139.15 ± 5.47 nm, and
a contractile tail having length minimum 115.1 ± 2.16 nm and maximum 196.32 ± 11.45
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nm (n = 5) (Table 1). The host range of the five selected phages is represented in using
94 and 25 isolates of E. amylovora and E. pyrifoliae, respectively. All five phages infected
100% of the E. amylovora strains (94/94) recently isolated in South Korea. Although ϕ27
showed a narrow host range when tested against E. pyrifoliae strains (8/25; 32%), other
phages could complement the host coverage, rendering all E. pyrifoliae strains susceptible
to the infectivity of those phages (Supplementary Materials Figure S1).
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Figure 1. Transmission electron micrographs of Erwinia bacteriophages (a) ϕ27, (b) ϕ31, (c) ϕ32,
(d) ϕ47, and (e) ϕ48. Scale bar is 100 nm. The contractile tails of ϕ32, ϕ47, and ϕ48 were observed in
the contracted state (c–e).

Table 1. General features of genomes of Erwinia phages pEa_SNUABM_27, pEa_SNUABM_31,
pEa_SNUABM_32, pEa_SNUABM_47, and pEa_SNUABM_48.

Bacterio-Phage pEa_SNUABM_27 pEa_SNUABM_31 pEa_SNUABM_32 pEa_SNUABM_47 pEa_SNUABM_48

Genus Loessnervirus Alexandravirus Alexandravirus Eneladusvirus unclassified
Size (bp) 53,014 265,765 265,891 355,376 294,405

Open reading frames (ORFs) 78 337 336 540 358
tRNAs 1 0 0 35 2

Guanine–cytosine (GC) content (%) 44.07 49.53 49.19 34.48 49.52
DNA Circularity Circular Circular Circular Circular Circular

Accession number MW349138.1 MZ443773.1 MZ443774.1 MT939487.1 MW879340.1
Capsid diameter (nm) 68.5 ± 2.76 139.15 ± 5.47 130.03 ± 6.06 127.74 ± 6.58 139.74 ± 2.34

Tail length (nm) 115.1 ± 2.16 196.32 ± 11.45 168.88 ± 6.53 126.61 ± 2.93 150.35 ± 16.91

2.3. In Vitro Bacterial Killing Assay

Phage administration led to a rapid lysis of E. amylovora (Figure 2). Each phage was
effective in lysing E. amylovora up to 8 h; however, the regrowth of E. amylovora was observed
at 24 h of incubation with ϕ27, ϕ47, and ϕ48. The CFU of regrown bacteria in samples
treated with the cocktail, ϕ31, and ϕ32 was significantly lower than that of the samples
treated ϕ27, ϕ47, and ϕ48 (p < 0.05). The phage cocktail contained 1/5 parts concentration
of each phage, and yet was an extremely effective solution for inhibiting the pathogen. The
administration of the single phages resulted in 2.4, 3.5, 3.5, 1.2, 1.4 log CFU/mL reduction in
the final bacterial counts of phages ϕ27, 31, 32, 47, and 48, respectively, and the bactericidal
effect of the five-phage cocktail led to a 3.7 log CFU/mL reduction of the bacterial count,
which is a significant decrease compared with the bacterial count of the untreated control
group (p < 0.001 at 2 h, 4 h, 6 h, 8 h, and 24 h).

2.4. Biological Characteristics of Phage-Resistant Erwinia amylovora TS3128 Derivatives

The profile of phage susceptibility of single phage-resistant strains is summarized in
Figure 3a. The R27 strain was susceptible to phages ϕ31, 32, 47, and 48. While the phage
resistance of R31, R32, R47, and R48 was induced by ϕ31, 32, 47, and 48, respectively, the
resistant strains gained cross-resistance to all the other unrelated phages (ϕ31, 32, 47, and 48)
except ϕ27 (Figure 3a). However, the cocktail solution infected all phage-resistant strains.
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significance was calculated using the one-way analysis of variance test with Tukey post-hoc, and
the significance threshold was set at p < 0.05. Means at the same sampling time point with different
letters (a–e) are significantly different.
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amycin with the phage-resistant strains is indicated (*). WT and N indicate wild type and negative
control (no bacterial ingredient), respectively.
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The minimal inhibitory concentration (MIC) values of kasugamycin against the wild
type E. amylovora TS3128 and the phage-resistant strains are shown in Figure 3b. The MIC
of kasugamycin for wild type (WT) TS3128 was observed to be 64 µg/mL. Moreover, we
observed a 2- to 4-fold decrease in the MIC of the phage-resistant strains R27, R31, and R32.

2.5. Phage–Antibiotic Synergy (PAS) Assay

To determine the enhanced antibacterial activity of the phage cocktail with kasug-
amycin, a phage–antibiotic synergy assay was performed with different antibiotic concen-
trations and the bacteria TS3128 (Figure 4). Kasugamycin at MIC inhibited the growth of
E. amylovora, while sub-MIC inoculations allowed bacterial growth. There was a slight
enhancement in the antibacterial effect from using the phage cocktail and 1/4 MIC kasug-
amycin combination. The advanced effect was much higher when the phage cocktail was
combined with 1/2 MIC and 1 MIC kasugamycin. The final viable bacterial cell count
reduction was 3.7 (phage cocktail), 3.8 (phage cocktail–1/4 MIC kasugamycin), 5.1 (phage
cocktail–1/2 MIC kasugamycin), and 5.4 (phage cocktail–1 MIC kasugamycin), therefore
resulting in the PAS effect (difference of bacterial cell count reduction between phage
cocktail only and phage cocktail–kasugamycin combination) to be 0.1 (phage cocktail–1/4
MIC kasugamycin), 1.4 (phage cocktail–1/2 MIC kasugamycin), and 1.7 (phage cocktail–1
MIC kasugamycin). The samples treated using the phage cocktail with 1/4 MIC, 1/2
MIC, and 1 MIC kasugamycin showed a significant reduction compared with treated with
kasugamycin alone (p < 0.001).
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2.6. Experiment on Apple Fruit under Controlled Conditions

A biocontrol assay of the phages was conducted for the phage cocktail and its combina-
tion with antibiotics (Figure 5). A significant improvement in inhibition of bacterial growth
was observed when the phage cocktail–kasugamycin combination with 1/2 MIC and 1 MIC
was administered compared with the phage cocktail treatment at day 4 and 6 (p < 0.001).
The final viable bacterial cell count reductions were 0.39 (1/4 MIC kasugamycin), 1.37 (1/2
MIC kasugamycin), 1.86 (1 MIC kasugamycin), 0.7 (phage cocktail), 3.4 (phage cocktail–1/2
MIC kasugamycin), and 4.35 (phage cocktail–1 MIC kasugamycin).
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Figure 5. Apple fruit administration of the five-phage cocktail in combination with 0, 1/4, 1/2, or
1 MIC kasugamycin, under controlled conditions. The infective concentration of Erwinia amylovora
TS3128 was 2 × 105 Colony Forming Unit [CFU]/mL. Viable bacterial cell counts were observed
over time. The bars of each point indicate the standard deviation. Statistical significance was
calculated using the one-way analysis of variance test with Tukey post-hoc, and the significance
threshold was set at p < 0.05. Means at the same sampling time point with different letters (a–f) are
significantly different.

2.7. Stability Assay

The stability of the phages under environmental stressors (pH and temperature) was
examined. A majority of the five phages were considerably stable under the thermal condi-
tions tested (4–50 ◦C), except for phages ϕ32 and ϕ48, which are both slightly vulnerable
to high temperatures (50 ◦C; Figure S2). In addition, the infectivity of ϕ32 was slightly
hindered under alkaline conditions, while the other phages were stable under different pH
conditions ranging from pH 4 to 9 (Figure S2).
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2.8. Genomic Analysis of the Selected Phages

The general features of the genomes of the phages are presented in Table 1. The five
Erwinia phages ϕ27, ϕ31, ϕ32, ϕ47, and ϕ48 possessed double-stranded circular DNA,
having a guanine–cytosine (GC) content of 44.07%, 49.53%, 49.19%, 34.48%, and 49.52%,
respectively. Phage ϕ27 possessed a relatively small genome (53,014 bp) compared with the
those of other phages, and the Erwinia jumbo phageϕ47 had a large genome (355,376 bp). In
total, 78, 337, 336, 540, and 358 open reading frames (ORFs) were identified in the genomes
of ϕ27, 31, 32, 47, and 48, respectively. The genus of ϕ27 was identified as Loessnervirus,
characterized by a genome of 55.80 kbp with 44.2% GC content, such as the Erwinia phage
vB_EamM-Y2 and the Pantoea phage vB_PagM_SSEM1. No encoded tRNAs have been
previously reported in the genomes of Loessnervirus; however, one tRNA was identified in
the genome ofϕ27. The genus ofϕ31 andϕ32 was identified as Alexandravirus, represented
by the Erwinia phage Alexandra and the Dickeya phage AD1. This genus presents genomes
of 261–266 kbp coding two distinct tail sheath proteins. Phages ϕ31 and ϕ32 have two
tail sheath proteins and no tRNA. The genome of ϕ47 was identified as Eneladusvirus,
represented by the Serratia phage BF and the Yersinia phage Yen9-04. This genus presents a
genome of 354–357 kb with 34.4% GC contents and 35 tRNAs. Phage ϕ48 has two tRNAs
but its genome was unclassified.

The Erwinia phages in this study showed dissimilar and unique genomic arrangements,
except for phages ϕ31 and ϕ32, as they were in the same genus. Even though most of the
predicted ORFs had no matches in any database, identified proteins from the five phages
could be categorized into the following six groups based on their functions: proteins related
to structure and packaging, nucleotide metabolism, tRNA, lysis, additional functions, and
hypothetical proteins (Figure 6, Tables S2–S6).
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2.9. Comparative Genomic Analysis

The whole-genome sequences of the five phages were evaluated for comparative
analysis with representative phages infecting Erwinia spp., Dickeya spp., Pantoea spp., and
Pectobacterium spp. A phylogenetic analysis using the Virus Classification and Tree Building
Online Resource (VICTOR) clustered the phages according to their taxonomy (Figure 7a).
Phage ϕ27 was clustered with Erwinia phage vB_EamM-Y2 (NC 019504.1) and Pantoea
phage vB_PagM_SSEM1 (NC 048875.1), in a manner similar to the clustering exhibited
by Loessnervirus. The cluster comprising ϕ31 and ϕ32 was clustered with Dickeya phage
vB_DsoM_AD1 (NC 048054.1), and these two phages were identified as Alexandravirus.
Phage ϕ47 was clustered with Pectobacterium phage CBB (NC_041878.1) and identified
as Eneladusvirus. Phage ϕ48 formed a distinct cluster that diverged from a common an-
cestor with Agricanvirus bacteriophages. The dot plot analysis of the 79 phages indicated
firm clustering and supported the phylogenetic analysis (Figure 7b). Phage ϕ27 had a
strong lineage association with Loessnervirus (Erwinia phage vB_EamM-Y2 and Pantoea
phage vB_PagM_SSEM1); phages ϕ31 and ϕ32 were seen to be closely related to Alexan-
dravirus (Erwinia phage vB_EamM_Alexandra and Dickeya phage vB_DsoM_AD1). In
contrast, phages ϕ47 and ϕ48 did not demonstrate close relatedness with other reported
Erwinia phages.

Progressive Mauve was used to align and compare phages ϕ27, ϕ31, ϕ32, ϕ47,
and ϕ48 with genetically close phages: Pantoea phage vB_PagM_SSEM1, Dickeya phage
vB_DsoM_AD1, Erwinia phage vB_EamM_Alexandra, Pectobacterium phage CBB, and Er-
winia phage vB_EamM_RAY (Figure 7c). The genome of ϕ27 and Pantoea phage vB_PagM_
SSEM1 were identified as the Loessnervirus genus. The genomes of ϕ31, Dickeya phage
vB_DsoM_AD1, ϕ32, and Erwinia phage vB_EamM_Alexandra were closely related with
the genus Alexandravirus. Furthermore, close relatedness of ϕ47 with Pectobacterium phage
CBB was also determined. A comparative study between the genomes of ϕ48 and Erwinia
phage vB_EamM_RAY (Agricanvirus) was conducted, since the genus of ϕ48 was not iden-
tified in the genomic analysis; this showed similarity with, however, relevant differences.
The results showed that the genome sequences of ϕ27, ϕ31, ϕ32, ϕ47, and ϕ48 presented
the differences from their closest relatives, which supported the comparative results from
the phylogenetic analysis and dot plot analysis.
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Figure 7. Phylogenetic whole genome analysis of 79 phages infecting Erwinia spp., Dickeya spp., 
Pantoea spp., and Pectobacterium spp. (a) The phylogenetic tree was constructed using Virus Classi-
fication and Tree Building Online Resource (VICTOR). Black arrows (▶) indicate the five Erwinia 
phages in this study. Black letters next to genus indicate family of the phages (A: Ackermannviridae, 
M: Myoviridae, C: Chaseviridae, S: Schitoviridae, D: Drexlerviridae, Au: Autographiviridae). The genus of 
φ27 was identified as Loessnervirus, that of φ31 and φ32 as Alexandravirus, that of φ47 as Eneladusvi-
rus, while that of φ48 was unclassified. (b) Dot plot analysis of the 79 phages with parallel order of 
phylogeny. (c) Comparative whole genome analysis using progressive Mauve. 
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3. Discussion

Fire blight was first reported in 2015, and since then there has been an increasing
number of outbreaks in South Korea, especially recently [40,41]. Without any regulations
regarding the administration order for antibiotics to control the fire blight in South Korea,
secondary agents, including kasugamycin, are widely used in general. There are no
investigations that reported the antibiotic resistance of E. amylovora in South Korea, however,
misuse of the antibiotic agents can promote the evolution of resistance, and dysbiosis of
the orchard environment, which would lead to the failure of the fire blight management of
the nation. To combat this severe blight disease, our research team has been dedicated to
developing phages as effective alternatives to antibiotics. Due to the presence of two nearly
indistinguishable pathogens, E. amylovora and E. pyrifoliae, in South Korea, phages that are
capable of infecting both pathogens are considered ideal biocontrol agents.

Although the phages used in this study were isolated using E. amylovora as their host,
they could infect E. pyrifoliae, an endemic species that also led to blight symptoms in plants
in South Korea, which is in accordance with the previous reports that Erwinia amylovora
bacteriophages have a broad host range [22,23,42–46]. From our Erwinia phage isolates,
we screened phages based on their bacterial cell lysis efficacy and selected phages ϕ27,
ϕ31, ϕ32, ϕ47, and ϕ48 to form the Erwinia phage cocktail solution. Phages in the cocktail
improved each other’s host range complementarily, leading the cocktail to be infective
towards all recently isolated E. amylovora and E. pyrifoliae strains. Combining phages with
complementary host ranges is one of the key virtues of phage cocktails, since phages
present host-specific infectivity [28].

The ideal strategy for phage cocktails is to generate synergy between phages [28]. As
the phages inhibit the secondary infection (superinfection) of their close relatives, it is a
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crucial factor to exclude the ones revealing the antagonistic effect in the cocktail [28]. One
promising way to generate synergism is combining the phages having virion-associated en-
zymes [32]. In line with the prediction that the genome of pEa_SNUABM_47, a constituent
of cocktail, encodes for tail spike lysozyme [45]. Indeed, pEa_SNUABM_47 revealed the
synergistic effect in the first phases (0 to 8 h) of the in vitro bacterial killing assay with the
phages that are genetically distant (Figures 2 and 6). Even though this effect could not be
achieved over the long term (24 h), the selected phages did not show an antagonistic effect,
which is not recommended for cocktail constituents [28].

Analysis of phage resistance in the five phages showed cross-resistance between ϕ31,
ϕ32, ϕ47, and ϕ48 (Figure 3). Only the ϕ27-resistant strain (R27) did not show cross-
resistance with other phages, and vice versa. It is remarkable that phages selected from
distinct genera could be cross-resistant (Figure 7a). The genomic arrangement of the five
phages was totally unrelated; eventheir lysis-related proteins did not show homology
to each other (Figure 7b,c, and Tables S2–S6). The infection process of the phages was
considered to be the origin of the phage resistance and the cross-resistance. However,
this contradicts previous presumptions of infection mechanisms differing based on the
taxonomical status (family) of the phages [45]. As of today, a number of phages have been
reported, and genomic classifications have been improved and updated. In our study, all
phages were classified in the family Myoviridae; however, the host recognition strategy of
the myophages with a small genome is presumed to differ from that of jumbo myophages.
More detailed analyses are warranted in future studies to elucidate host–phage interactions.
We suggest that analyzing cross-resistance patterns among candidate phages for cocktail
solutions should be considered as the highest priority. Because the phages’ host preference
and infection have a dependency on exopolysaccharides (EPS) produced by E. amylovora,
a novel strategy combining the strains that produce different amounts of EPS have been
suggested for the host range analysis [46,47].

Even though resistance to antimicrobial agents is a major concern, the phages in our
cocktail solution could control the phage-resistant strains (Figure 3a). Bacterial pathogens
might acquire phage resistance by fitness trade-off [48]. To escape contact with phages,
bacteria modify (or even lose) receptors used for phage infection as their first-line anti-
phage defense strategy [49]. Often, these alterations cause lowered viability, decreased
pathogenicity, and increased susceptibility to antimicrobial agents [50]. Interestingly, a
trade-off between phage resistance and kasugamycin susceptibility was observed in the
phage-resistant E. amylovora strains R27, R31, and R32. The decreased MIC is indicative
of PAS against E. amylovora. Indeed, the phage–antibiotic combination proved to have
superior efficacy in both the in vitro and apple fruit assays, which may reduce the use of
antibiotics in the field. PAS was observed even at sub-inhibitory antibiotic concentrations
(Figures 4 and 5).

Aminoglycoside antibiotics, such as gentamicin, kanamycin, streptomycin, and ka-
sugamycin, are translation-interfering drugs that can also hinder translation in phages,
resulting in premature lysis [51,52]. Even worse from the perspective of phage therapy,
in the long term aminoglycosides can cause the extinction of phages from the environ-
ment [53]. However, the antibiotic action of kasugamycin is competitive [54], therefore
translation can be initiated if surplus initiation factors are present. Such translational
initiators include initiation tRNA (tRNAi), such as tRNA-fMET, which is encoded in the
jumbo Erwinia phage pEa_SNUABM_47 [45]. The synergy and facilitation between phages
and kasugamycin is presumed to originate from the phage-originated translational initiator
in the following process: (1) kasugamycin inhibits bacterial growth by interfering with
translation; (2) phages infect stationary-phase bacteria and transcribe their genome, includ-
ing tRNAi; (3) tRNAi of phage origin hijacks the translational machinery by competition
and starts to translate phage proteins, allowing progeny release and propagation; and (4)
phage replication continues while the adjacent bacterial cells are still in the stationary phase
due to kasugamycin. Although the mechanism might not be exactly the same, a PAS effect
has been hypothesized between gentamicin (another aminoglycoside antibiotic) and a
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Staphylococcus phage [55]. The tRNAs of jumbo phages increase phage fitness by improving
the translational efficiency or independence of translation from the host factors [56]. Thus,
the combination of phages encoding tRNAi and kasugamycin should be included as a
biocontrol agent against fire blight.

Considering the findings of a previous report elucidating the importance of adminis-
tration order in devising combined treatments with phages and antibiotics [57], the next
step would be optimization of the administration order with the concentrations obtained in
the present study (8 log plaque forming unit [PFU]/mL and sub-MIC of kasugamycin). We
proposed the use of PAS for optimizing strategies to control E. amylovora and, consequently,
fire blight and strategies involving PAS can reduce the excessive use of antibiotics in fire
blight control. This can minimize the emergence and spread of antibiotic resistance among
opportunistic pathogens present in the environment [58]. We propose our phage cocktail,
and its combination with kasugamycin, to be an effective protocol to control the current
blight outbreaks caused by Erwinia in South Korea, as the pathogens tested in our study
are recently recovered strains from diseased plant tissue obtained from locations across
South Korea. Further studies investigating the synergistic mechanisms of kasugamycin,
and phages having their own translational initiator, are expected to broaden our options
for alternative antibacterial strategies and reduce the excessive use of antibiotic agents.

4. Materials and Methods
4.1. Phage Isolation

A total of 220 samples were collected comprising 94 soil samples and 126 water
samples from the area affected by the fire blight outbreak in South Korea, and the phages
infecting E. amylovora were isolated from the samples using a protocol described in previous
studies [59,60]. The Erwinia amylovora TS3128 strain, a reference strain for research in Korea,
was cultured with exponential growth, and the samples were added to the cultures in a
one-to-one ratio. The mixed samples were cultured at 27 ◦C for 24 h to amplify the phages.
Samples presenting plaques were identified, collected, and subsequently filtered through
a 0.45 µm syringe filter. The double-layer agar (DLA) method was used to confirm the
bacteriolysis induced by the phages [61]. Cloning of the phages from the plaques was
carried out five times to purify and isolate the respective phages.

4.2. Phage Propagation and Purification

The DLA method was used to amplify the phages, based on a protocol described
in a previous publication [62]. The top agar layer was collected in an SM buffer (50 mM
Tris [pH 7.5], 100 mM NaCl, and 10 mM MgSO4) and mixed for 1 h. The mixture was
centrifuged, and the supernatant was filtered through a 0.45 µm syringe filter to eliminate
contaminants. Then, a polyethylene glycol/NaCl solution was added to the sample to
precipitate the phage particles. The cesium chloride (CsCl) density gradient centrifugation
method was used to purify the phage particles [45]. Phage samples with gradient layers
of CsCl solution were ultracentrifuged for 3 h at 50,000× g using a Type 70 Ti fixed-
angle titanium rotor (Beckman, Brea, CA, USA). The sedimentation bands were collected
and dialyzed using a 7000 MWCO Slide-A-Lyzer® Dialysis Cassette (Thermo Scientific,
Waltham, MA, USA). The purified samples (>1010 PFU/mL) were stored at 4 ◦C for further
analysis.

4.3. Transmission Electron Microscopy

The purified phage samples were attached for 1 min on separate glow-discharged
TEM Grid FCF200-CU-50 Formvar/Carbon grids (Sigma-Aldrich, Burlington, MA, USA).
After removing the sample solution, 2% phosphotungstic acid was added to the grids
to stain the phages for 30 s, and the remaining solution was eliminated. The grids were
air-dried for 1 h, and morphological study of the phages was performed using a Talos
L120C transmission electron microscope (FEI, Hillsboro, OR, USA) operated at 120 kV.
Three isolated virions were measured, and the mean size of the phages was calculated.



Antibiotics 2022, 11, 1566 16 of 21

4.4. Bacteriophage Screening Assay

Bacteriophages were screened in two stages to select five effective phages based on
their growth inhibition potential. Growth inhibition was determined based on optical
density (OD) at 600 nm after 24 h of phage–bacteria co-culture. The initial screening was
performed at 105 CFU/mL, and the second screening was performed with 106 CFU/mL of
E. amylovora. The tests were performed in a 96-well plate with 108 PFU/mL of each phage
and incubated at 27 ◦C with shaking (150 rpm). The phages and bacteria were prepared in
nutrient broth. The growth inhibition was calculated as follows:

% growth =
OD600 of challenge

OD600 of untreated host
×100 (1)

4.5. Bacteriophage Host Range Assay

A total of 94 strains of E. amylovora and 25 strains of E. pyrifoliae were tested to identify
the host infectivity of the selected five phages: ϕ27, ϕ31, ϕ32, ϕ47, and ϕ48. The infectivity
of phages was determined by performing a spot assay against recently recovered strains
obtained from diseased plant tissue in South Korea. Serial dilutions of phage lysate (10 µL)
at a concentration of 101 to 108 PFU/mL were added dropwise on the bacterial lawns, and
the infectivity was represented as the efficiency of plating (EOP) value. The protocol was
described in a previous study, with minor modifications, i.e., using a 52 ◦C water bath
instead of a 46 ◦C heating block [63].

4.6. Bacterial Killing Assay In Vitro

The bactericidal efficacy of individual phages, and of their cocktail, was examined
using E. amylovora TS3128 according to a method described in a previous publication,
with minor modifications [64]. The strain (105 CFU/mL) was infected with phages at a
concentration of 108 PFU/mL. The cocktail comprised identical ratios (1:1:1:1:1) of 2 × 107

PFU/mL of each phage. The mixtures were cultured at 27 ◦C with shaking (150 rpm), and
the cell counts were observed over time. Each experiment was performed in triplicates
(n = 3).

4.7. Phage Resistance Assay

The phage resistance assay was performed as previously described, with minor mod-
ifications [31]. After the in vitro bacterial killing assay, the surviving colonies were sub-
cultured thrice to remove the residual phages. Then, phage susceptibility was tested as
described above. If plaques were not observed, the strain was confirmed to be phage
resistant. Phage-resistant strains were designated as follows; ϕ27-resistant strain (R27),
ϕ31-resistant strain (R31), ϕ32-resistant strain (R32), ϕ47-resistant strain (R47), and ϕ48-
resistant strain (R48). The susceptibility of phages was determined using the five phages
and the cocktail at a concentration of 2 × 109 PFU/mL. Ten microliters of serial dilutions
(10−1 to 10−8) of phage solution were spotted on each phage-resistant strain: R27, R31, R32,
R47, and R48. Negative control (N) and wild type (WT) were also tested.

4.8. Minimum Inhibitory Concentration (MIC) Assay

The MIC value of kasugamycin against the wild type E. amylovora and phage-resistant
strains was determined using the broth microdilution method [65]. Serial dilutions (two-
fold) starting with 512 µg/mL were inoculated with the same volume of the bacterial
solution (2 × 105 CFU/mL) and incubated for 24 h at 27 ◦C. The MIC of the antibiotics was
determined by measuring the OD at 600 nm in triplicates (n = 3). The growth inhibition
was calculated as follows and the results were visualized in a heatmap:

% growth =
OD600 of challenge

OD600 of untreated host
×100 (2)
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4.9. Phage–Antibiotic Synergy Assay

The advanced effect between the phage cocktail and kasugamycin was determined
using E. amylovora with a method described in a previous study [64]. The phage cocktail
comprised a five-phage mixture having each phage in the same ratio and was mixed with
kasugamycin solutions diluted in nutrient broth at MIC, 1/2 MIC,1/4 MIC, and 0 MIC. The
wild-type strain (105 CFU/mL) was co-cultured with a phage cocktail (108 PFU/mL) with
or without a combination of antibiotics. The mixtures were cultured at 27 ◦C with shaking
(150 rpm), and the cell counts were observed over time. Each experiment was performed in
triplicates (n = 3).

4.10. Experiment on Apple Fruit under Controlled Conditions

Immature apples (cv. Fuji) were surface sterilized using ethanol, wounded, and
infected with 2 × 105 CFU/mL of E. amylovora TS3128 according to a method described in
a previous publication [66]. Wounded fruits were administered 2 × 108 PFU/mL of phages,
antibiotics, or a phage–antibiotic combination and incubated in a humidified chamber at
27 ◦C. Symptoms were recorded at 2, 4, and 6 days after administration. The infected fruits
were homogenized in order to enumerate the bacterial counts and the assay was repeated
three times with three biological replicates (n = 3).

4.11. Stability Assay

The stability of the phages at different temperatures and pH conditions was examined.
The phages (~1 × 108 PFU/mL) were incubated at 4 (control), 20, 30, 40, and 50 ◦C for
thermal stability. The phages (~1 × 108 PFU/mL) were incubated in an SM buffer with a
pH adjusted to 4, 5, 6, 7 (control), 8, and 9 using NaOH or HCl at 27 ◦C for the pH stability
assay. After incubation for 60 min, the sample concentrations were evaluated in triplicates
(n = 3). The stability value was standardized by using control as 100%.

4.12. DNA Isolation and Sequencing

The conventional phenol–chloroform method was used to isolate DNA from the
phages [67]. RNase A (10 IU), DNase I (10 IU), and 10X DNase I buffer (Takara Bio, Kusatsu,
Japan) were added to 1 mL of the phage solution of 1010 PFU/mL, and then the solution
was incubated at 37 ◦C for 1 h. Fifty microliters of 0.5 M ethylenediaminetetraacetic acid
and proteinase K were added in the solution to inactivate the enzymes and hydrolyze
the proteins, respectively. A mixture of isoamyl alcohol, chloroform, and phenol (1:24:25)
was added, and the solution was centrifuged. Ethanol was added to the solution and
the supernatant was removed. The precipitate was then resuspended in distilled water.
The phage DNA was sequenced using an ABI 3730xl System (Thermo Fisher Scientific,
Waltham, MA, USA) at Macrogen (Seoul, South Korea). FastQC (v0.11.6) was used to check
the read quality. Trimmomatic (v0.36) was used to remove adapter sequences, and the
assembly was performed using SPAdes (v3.12).

4.13. Genome Analysis

GenMarkS, Prokka (v1.12b), Nucleotide BLAST, and HHpred were used for gene pre-
diction and annotation [68–71]. Identification of tRNA was conducted using tRNAscan-SE
(v2.0) [72]. Visualization of the genome was conducted using DNAPlotter [73]. The genome
dot plot was created using Gepard with default settings [74]. Phylogenetic analysis was
performed using VICTOR [75]. In VICTOR, 79 phages infecting Erwinia spp., Dickeya spp.,
Pantoea spp., and Pectobacterium spp. were analyzed using default settings. Alignment with
progressive Mauve was used forϕ27, ϕ31, ϕ32, ϕ47, ϕ48, Pantoea phage vB_PagM_SSEM1,
Dickeya phage vB_DsoM_AD1, Erwinia phage vB_EamM_Alexandra, Pectobacterium phage
CBB, and Erwinia phage vB_EamM_RAY for the comparative genomic analysis [76]. The
comparable phages were selected based on their genomic closeness with the five phages
used in this study. The result was visualized with the default settings.
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4.14. Statistical Analysis

Each experimental set of data of in vitro bacterial killing assay, phage–antibiotic syn-
ergy assay, and experiments on apple fruit under controlled conditions was statistically
analyzed with one-way analysis of variance (ANOVA) and the Tukey post-hoc test using
SigmaPlot software version 12.5 (Systat Software, San Jose, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11111566/s1, Figure S1: Host range of Erwinia phages
ϕ27, ϕ31, ϕ32, ϕ47, and ϕ48, Figure S2: Stability of the phage virions, TableS1: Screening assay of
the bacteriophages, Table S2: Functional classification of ORFs in Erwinia phage pEa_SNUABM_27,
Table S3: Functional classification of ORFs in Erwinia phage pEa_SNUABM_31, Table S4: Functional
classification of ORFs in Erwinia phage pEa_SNUABM_32, Table S5: Functional classification of ORFs
in Erwinia phage pEa_SNUABM_47, Table S6: Functional classification of ORFs in Erwinia phage
pEa_SNUABM_48.
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