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Abstract: Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance.
Improving the curative effect of radiotherapy and delaying cancer progression have become difficult
problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process
by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions
between the mitochondria and tumors being ignored. This misconception was not dispelled until
the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance
remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis,
mitochondria can influence the radiation effects of malignancies by controlling redox reactions,
participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis.
Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In
this review, we summarize the internal relationship and related mechanisms between mitochondrial
metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial
signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the
potential value of mitochondria in prolonging the survival of cancer patients.
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1. Introduction

Cancer is a serious problem that threatens human life, and the number of cancer-
related deaths and incidences are increasing annually. According to the 2020 World Cancer
Report, 4.57 million new cancer cases and 3 million cancer-related deaths have occurred
in China, ranking it first in the world for cases and deaths [1]. As a traditional cancer
treatment, radiotherapy causes nuclear DNA damage directly via ionizing radiation (IR) or
indirectly via the production of reactive oxygen species (ROS), pushing cancer cells with
high levels of DNA damage over the threshold for cell death [2]. As some tumors, such as
malignant lymphoma, testicular seminoma, and nephroblastoma, are highly sensitive to
IR, an explosion of interest in the role of radiotherapy in eradicating tumor cells has been
observed in recent decades [3–5]. Mitochondria exist in most cells and are the main sites of
cellular aerobic respiration, adapting to rapid tumor growth demands by regulating the
process of energy production [6]. It is worth noting that mitochondria are the most impor-
tant targets of IR damage aside from the nucleus [7]. Radiation-induced mitochondrial
DNA mutations and electron transport chain (ETC) disruption activate oxidative stress
and eventually trigger the mitochondrial apoptosis pathway, which seriously affects the
survival of tumor cells [8]. However, tumor cell resistance to IR remains an important
obstacle that hinders the clinical application of radiotherapy, potentially leading to poor
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prognosis, tumor recurrence, and metastasis [9,10]. In addition, radioresistance increases
the incidence of radiation-induced damage to normal tissue cells surrounding the tumor
and the disruption of homeostasis, mainly manifesting as radiation pneumonitis, intestinal
dysbiosis, hemorrhage, and cardiac-related complications [11,12]. Fractionated treatment
regimens have been established for radiotherapy. As fractionation is the process of divid-
ing a radiation dose into multiple fractions, fractionated radiotherapy ensures as much
tumor cell death as possible while reducing normal tissue complications. However, IR has
been shown to activate epithelial–mesenchymal transition transcription factors such as
Snail, Slug, Twist, ZEB1/2, hypoxia-inducible factor 1 (HIF1), and signal transducer and
transcriptional activator 3 (STAT3); interfere with glucose and mitochondrial metabolism;
promote metastatic potential; and increase the likelihood of radioresistance [13–15].

Metabolic disorders have long been recognized as carcinogenic factors [16]. Metabolic
reprogramming, the alteration in metabolic pathways by which cancer cells can proliferate
rapidly, survive under conditions of nutrient depletion and hypoxia, and evade the immune
system, is considered a hallmark of cancer [17].

Glucose is the primary energy source that drives the rapid proliferation of cancer
cells, and cancer starvation therapy based on glucose deprivation to induce oxidative
stress has become an effective method for inhibiting tumor growth and survival [18].
2-Deoxy-D-glucose (2DG), a glucose analog, targets glucose metabolism to deplete energy
in cancer cells [19]. For most cancer cells, 2DG treatment alone does not significantly
induce cell death, but renders cells more vulnerable to the oxidative stress induced by
radio- or chemotherapy [20]. For example, 2DG combined with cisplatin or radiation
enhances the cytotoxicity of head and neck squamous cell carcinoma through metabolic
oxidative stress [21]. Furthermore, inhibition of glycolysis (2DG) and intracellular redox
metabolism (glutathione/thioredoxin) improves the radiation response of radioresistant
cervical cancers [22]. Unexpectedly, glucose deprivation promotes the death of malignant
cells and induces colorectal cancer migration, invasion, and epithelial–mesenchymal tran-
sition (EMT). Knockdown of thioredoxin-1 can decrease G6PD protein expression and
activity thereby reducing NADPH production, increasing ROS levels, enhancing glucose-
starvation-induced cell death, and reversing aggressive or metastatic potential during
cancer progression [23]. Rapidly proliferating cells tend to have high G6PD activity, while
the pentose phosphate pathway (PPP) is the main pathway for glucose catabolism, and its
reductant NADPH can be used to detoxify intracellular ROS, thus acting as an antioxidant
defense [24]. During oxidative stress, cancer cells selectively shut down the glycolytic
pathway, thereby increasing the glucose flux through PPP to meet the need for NADPH
synthesis [25]. Snail, a key transcriptional repressor of EMT, regulates the glucose flux be-
tween glycolysis and PPP by inhibiting the platelet isoform of phosphofructokinase (PFKP)
expression, which plays an important role in cancer cell survival [26]. Thus, interfering
with the PPP to disrupt NADPH homeostasis not only enhances radiotherapy-induced
immunogenic cell death but also overcomes cisplatin resistance [27,28].

Because of these classical conclusions, it was erroneously believed that malignant
cells met their bioenergetic and anabolic needs primarily through glucose metabolism,
and the role of mitochondrial metabolism in all steps of tumorigenesis was ignored [29].
However, the latest research has indicated that malignant transformation, tumor progres-
sion, and evasion of exogenous stress are influenced by mitochondria metabolism [30,31].
In addition, although the effect of radiation therapy is primarily dependent on glucose
metabolism, there is growing awareness that changes in mitochondrial metabolism, such
as mitochondrial function associated with antiradiation effects, also contribute to the de-
velopment of radioresistance in head and neck squamous cell carcinomas and gliomas
(Figure 1) [32,33]. Changes in mitochondrial size and shape or mutations in mitochondrial
DNA interfere with the normal physiological function of mitochondria, thereby enhancing
their adaptability to radiation [34]. Therefore, it is necessary to understand the molecular
mechanisms underlying these changes caused by mitochondria to improve the efficacy of
radiotherapy. Here, we briefly review the research progress on the relationship between mi-
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tochondrial metabolism and radioresistance from four aspects: regulating oxidative stress,
participating in oxidative phosphorylation (OXPHOS), producing oncometabolites, and
triggering apoptosis (Figure 1), with a focus on the possibility of targeting mitochondrial
metabolism for cancer therapy.
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Figure 1. A schematic model illustrating the effects of two major metabolisms on radioresistance. Six
targets in glucose metabolism have the most significant impact on radiation resistance, regulating
their corresponding molecules or processes to intervene in the therapeutic effect. In general, small-
molecule inhibitors can be used to help IR restore the expected efficacy, and there are several approved
drugs currently available for clinical treatment. The effects of mitochondrial metabolism on radiation
resistance can be summarized in four aspects, the details of which are presented below. Abbrevia-
tions: GLUT1/4—glucose transporter 1/4, PFK—phosphofructokinase, HK1/2—hexokinase 1/2,
PKM2—pyruvate kinase M2, HIF1 α—hypoxia-inducible factor 1 α, OXPHOS—oxidative phospho-
rylation, ROS—reactive oxygen species.

2. ROS and Radioresistance

Reactive oxygen species are products of normal cellular metabolism and mainly
include superoxide anions (O2

−), hydrogen peroxide (H2O2), and hydroxyl radicals
(−OH) [35]. Multiple lines of evidence indicate that there are three main sources of ROS
in vivo, namely macrophages, the mitochondrial respiratory chain, and mitochondrial
polyunsaturated membrane lipid peroxidation, a process during which ROS from mito-
chondrial polyunsaturated membranes pose the greatest threat to cells [36]. Under normal
physiological conditions, cells tend to maintain redox homeostasis, that is, the balance
between the production of free radicals and reactive metabolites (oxidants, ROS, or reac-
tive nitrogen species) and their elimination through protective mechanisms (antioxidant
systems) [37]. When the balance between ROS and antioxidants is disrupted, the body
is in a state of oxidative stress, resulting in damage to important biomolecules and cells
with potential effects on the entire organism [38]. It is worth noting that oxidative stress
is generally present in tumor cells, and data show that the concentration of ROS is usu-
ally 10 times higher than that in normal cells, which may further lead to DNA mutation,
genomic instability, and tumor cell proliferation [39].

Most ROS in mammalian cells are generated by the mitochondrial oxidative respiratory
chain [40]. Furthermore, an inextricable relationship exists between ROS production and
radioresistance. Mitochondrial H2O2 can trigger the accumulation of potential oncogenic
DNA or activation of potential oncogenic signaling pathways, including the mitogen-
activated protein kinase (MAPK) and epidermal growth factor receptor (EGFR) signaling
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pathways, thereby promoting cell proliferation and malignant transformation [41,42]. Ex-
periments have demonstrated that activation of the MAPK and EGFR signaling pathways
can increase the resistance of cervical and lung cancer cells to radiation, respectively, and
knockout of thyroid hormone receptor interactor 4 (TRIP4) promotes the inactivation
of MAPK signaling, which effectively improves the sensitivity of the former to radia-
tion [43,44]. It has also been reported that activated O2

−- and H2O2-mediated cell survival
in non-small-cell lung cancer (NSCLC) occurs via the c-Met-PI3K-Akt and c-Met-Grb2/SOS-
Ras-p38 pathways [45]. Interestingly, acidosis is a common characteristic of the tumor
microenvironment. Under such acidic conditions, the specific mitogen reaction of cancer
cells reduces extracellular acidification and increases O2

− production by switching from
glycolysis to OXPHOS, which promotes tumor invasiveness and insensitivity to radiation
therapy [31]. However, the mechanism appears to be different in endothelial cells, where
mitochondrial ROS (mtROS) can stimulate the activity of NAD(P)H oxidases (NOXs), re-
sulting in a positive feedback loop of ROS-induced ROS generation [46]. Recent studies
have also shown that NOXs significantly contribute to H2O2 and O2

− production in gas-
trointestinal and pancreatic cancers [47,48]. Kim etal. reported that the novel PPARGligand
PPZ023 can lead to NOX4-derived mtROS generation to induce death of radioresistant
NSCLC cells via exosomal endoplasmic reticulum stress [49].

The reason for these diametrically opposite results may be the dual role of ROS, in
which the difference in the level of ROS is dominant (Figure 2). In normal cells, ROS are
produced at low concentrations and are effectively neutralized by the potent antioxidant
systems of the cells. A moderate increase in ROS levels as in states of chronic oxidative stress
induces random mutations in cells and promotes tumor cell proliferation, metastasis, and
radioresistance. If ROS levels continue to increase beyond the antioxidant capacity of cells,
this will cause apoptosis, ferroptosis, or cuproptosis, thereby significantly improving the
efficacy of radiotherapy [38,50]. Sublethal levels of ROS stimulate tumor cell proliferation by
inhibiting tumor suppressors such as redox-sensitive phosphatase and tensin homologues
(PTEN), thereby promoting the PI3K-Akt signaling pathway or stabilizing HIF1 α, and
are associated with chemotherapy resistance and prevention of tumor cell death [51]. In
addition, a slight increase in superoxide can activate signal transduction pathways related
to metastasis, including the mtROS-Src-SMAD-Pyk2 signaling pathway; in particular, Src
can also promote radiation resistance in glioblastoma (GBM) [52,53]. Combining the novel
Src inhibitor Si306 with radiotherapy represents a promising approach to increasing the
therapeutic effect on GBM [54]. Importantly, moderately elevated ROS levels increase
the resistance of cancer cells to radiotherapy by triggering an adaptive hormetic response
and promoting autophagy activation [55,56]. Conversely, in the case of severe oxidative
stress, ROS cause regulated cell death (RCD) or trigger apoptosis independently of DNA
damage, thereby increasing the sensitivity to radiotherapy (Figure 2) [57]. For example,
elesclomol (STA-4785) targets tumor ROS, which can further increase ROS levels in tumor
cells, induce cytotoxicity in tumor cells, and selectively induce apoptosis in melanoma
cells [58]. Unexpectedly, elesclomol did not show a significant radiosensitization effect
on prostate cancer cells, indicating that there was no clear linear relationship between
the specific ROS dose and radioresistance [59]. Of course, we should not ignore the fact
that early and late ROS accumulation can lead to opposite carcinogenic effects. Radiation-
induced early ROS signaling is responsible for the activation of Jak3-Erk-STAT3, which
leads to a cell survival response, whereas late ROS production is different [60].

In cells, ROS production is counterbalanced by cellular antioxidant defense systems.
Superoxide dismutases (SODs), the most potent antioxidant enzymes in mitochondria, can
catalyze O2

− to H2O2 [61]. SOD-produced H2O2 can be subsequently reduced to H2O by
catalases (CATs), glutathione peroxidases (GPXs), and peroxiredoxins (Prxs) [31]. To date, an
increasing amount of evidence has suggested that the antioxidant stress system is responsible
for radio- and chemoresistance [38]. Furthermore, ROS induced by chemoradiotherapy acti-
vate the Keap1-Nrf2 and PI3K-AKT pathways, which regulate several antioxidant enzymes
in downstream signaling, ultimately triggering both radio- and chemoresistance [62,63]. The
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inhibitors of these two signaling pathways, trigonelline and delicaflavone, can significantly
reverse radioresistance and enhance radiosensitivity, further demonstrating the detrimental
effects of the antioxidant stress system on cancer therapy [64,65]. Studies have shown an
important relationship between an increase in the survival rate of pancreatic cancer cells after
γ-ray irradiation and enhancement of the activity of manganese superoxide dismutase (Mn-
SOD), the main antioxidant enzyme in the body, which also indicates that MnSOD significantly
increases the resistance of pancreatic cancer to radiotherapy [66]. CuZn-SOD overexpression
confers radioresistance on human glioma cells by suppressing irradiation-induced late ROS
accumulation (superoxide) [67]. GPX4 inhibition promotes lipid peroxidation and re-sensitizes
radioresistant cancer cells to IR-induced ferroptosis, resulting in radiosensitization [68]. In
addition, redox-active metal ions are involved in antioxidant reactions, such as O2

−- and
H2O2-mediated disruption of Fe metabolism, sensitizing NSCLC and GBM to pharmacologi-
cal ascorbate [69]. However, recent studies have yielded conflicting results that antioxidant
supplementation is detrimental to patients with adequate antioxidant status (lung, gastroin-
testinal tract, head and neck, and esophagus), whereas individuals with deficient antioxidant
systems respond positively [47].
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Under physiological conditions, ROS levels are maintained at a low state under the regulation
of antioxidant systems, which ensures the survival of normal cells. Moderate levels of ROS tend
to promote tumor initiation and progression, and to some extent interfere with the efficacy of
radiotherapy. A continued rise in ROS levels to high levels will lead to cell death.

Based on the above studies, it can be concluded that ROS is a double-edged sword;
it is one of the ways in which radiotherapy can eradicate tumor cells, yet even moderate
intracellular concentrations may lead to radioresistance. Although the dual role of ROS is a
major challenge in cancer therapy, it presents a promising strategy to differentiate normal
cells from cancer cells using specific cellular signals to target tumor killing. An in-depth
understanding of the dynamic balance between ROS and antioxidant levels and the role
of ROS in different stages of the disease will help researchers to develop personalized
therapies for different tumor types. Both disabling cellular antioxidants and adding specific
ROS inducers provide new ideas for the precise treatment of tumors and the improvement
in radiosensitivity.

3. OXPHOS and Radioresistance

Carbohydrates are the main source of cellular energy and are involved in the oxidative
breakdown of glucose including glycolysis and OXPHOS [70]. Normally, cells favor the
application of the mitochondrial OXPHOS, which is more efficient at producing ATP;
however, the rate of glucose metabolism by aerobic glycolysis is 10–100 times faster than
that of the complete oxidation of glucose in the mitochondria [71]. Therefore, Warburg
initially believed that cancer cells could have an active glycolytic phenotype even in
the presence of adequate oxygen supply and completely functioning mitochondria [72].



Antioxidants 2022, 11, 2202 6 of 18

Warburg later proposed that this phenomenon was due to a developmental defect in the
mitochondria of tumor cells that resulted in impaired aerobic respiration and reliance
on glycolysis, hypothesizing that this event was the primary cause of cancer [73,74]. In
contrast, Koppenol et al. offered a more plausible explanation, emphasizing the impairment
of glycolytic regulation rather than mitochondrial respiration. There are clear indications
that glycolysis is upregulated in most tumors without mitochondrial dysfunction. In these
cancers, OXPHOS continues normally, even producing as much ATP as normal tissue at
the same partial pressure of oxygen [75]. Notably, Weinhouse also strongly criticized the
Warburg effect for his finding that well-differentiated Morris hepatomas do not produce
lactic acid in aerobiosis [76]. At the same time, metabolic changes and adaptations occurring
in tumors have been demonstrated to extend well beyond the Warburg effect and are seen
as a secondary effect of tumorigenesis [77]. Subsequent studies have further revealed that
certain types of tumors such as ovarian cancer and acute myeloid leukemia can also rely on
mitochondria-specific OXPHOS to maintain biosynthesis and bioenergetics in addition to
glycolysis [78]. Furthermore, in B16 melanoma the Warburg effect has been shown to be
dispensable owing to the upregulation of mitochondrial metabolism [79].

Based on the above findings, we can conclude that metabolic reprogramming en-
dows cancer with the ability to utilize multiple metabolic modalities to rapidly progress
in vivo [80]. Some studies indicate that metabolic plasticity allows cells to efficiently pro-
duce energy through multiple metabolic pathways, thereby conferring on cancer cells a high
degree of adaptability to a wide range of stresses and harsh tumor microenvironments [31].
In other words, tumor tissues are less sensitive to conventional chemoradiotherapy. In
cancer cells that rely on glycolytic metabolism, OXPHOS can promote resistance to ther-
apy through both the cancer-cell-intrinsic and -extrinsic pathways. In contrast, tumor
cells that primarily utilize OXPHOS for energy production can become resistant to ETC
inhibitors because they gain partial glycolytic metabolism (Figure 3) [81]. For example,
recent studies have shown that acquired radioresistance is associated with a switch from
glycolytic to oxidative metabolism in laryngeal squamous cell carcinoma cancer cells [32].
Similarly, a switch from glycolysis to OXPHOS was observed in glioma cells that developed
acquired resistance to PI3K inhibitors [82]. In addition, glycolytic-dependent BRAF-mutant
melanoma cells are more sensitive to the BRAF inhibitor vemurafenib, while resistant
cells display upregulation of the mitochondrial biogenesis co-activator PGC1α through
the melanocyte master regulator microphthalmia-associated transcription factor (MITF),
leading to resistance to the original treatment and sensitivity to OXPHOS inhibitors [83].
Interestingly, glucose deprivation significantly promotes mitochondrial elongation, thereby
inducing a metabolic shift from glycolysis to OXPHOS during energy stress in tumor cells,
which is critical for hepatocellular carcinoma (HCC) survival [84]. Additionally, Dynamin-
related protein 1 (DRP1) is necessary for mitochondrial elongation in HCC cells. Elongated
mitochondria amplify OXPHOS through facilitating cristae formation and assembly of res-
piratory complexes and in turn, exerting a feedback inhibitory effect on glycolysis through
NAD-dependent SIRT1 activation [84]. Consistent with this, nutrient-deprivation-related
OXPHOS/glycolysis interconversion has also been observed in glioma cell lines, although
the role of mitochondrial dynamics has not been investigated [85]. The only exception is
that dichloroacetate, which activates OXPHOS by reversing aerobic glycolysis, improves the
radiosensitivity of high-grade gliomas [86]. In conclusion, the vast majority of malignant
cells can switch freely between the two metabolic modes, simply inhibiting glycolysis or
OXPHOS as a reasonable therapeutic candidate. The combination of a glycolysis inhibitor
(2-DG) with an OXPHOS inhibitor (metformin) significantly enhances the radiosensitization
of neuroblastoma and glioma cells, suggesting that dual metabolic targeting may be a good
strategy to control tumor progression and eliminate radioresistance [87]. Unfortunately,
the cytotoxic effect of this combination on normal tissue remains the biggest obstacle to its
clinical application.
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Figure 3. A schematic summary of glycolysis, TCA cycle, and OXPHOS in regulating radioresistance.
(1) In the cytoplasm, pyruvate produced by glycolysis crosses the outer mitochondrial membrane and
participates in the TCA cycle, and the subsequently produced NADH and FADH2 are oxidized by a step-
wise, continuous enzymatic reaction on the ETC located in the inner mitochondrial membrane, thereby
releasing energy for the body to utilize. (2) Inactivation of FH, SDH, D2HGDH, and L2HGDH, mutation
of IDH1/2, or promiscuous activity of MDH/LDH can induce accumulation of oncometabolites. On the
one hand, oncometabolites promote tumorigenesis; on the other hand, they also amplify the benefits of
radiotherapy. (3) Enhancing OCR or favoring the reprogramming of tumor cells’ metabolic pathways
induces radioresistance. Abbreviations: TCA cycle—tricarboxylic acid cycle, ETC—electron transport
chain, OCR—oxygen consumption rate, FH —fumarate hydratase, SDH—succinate dehydrogenase,
D2HGDH—D-2-hydroxyglutarate dehydrogenase, L2HGDH—L-2-hydroxyglutarate dehydrogenase,
IDH1/2—isocitrate dehydrogenase-1/-2, LDH/MDH—lactate dehydrogenase/malate dehydrogenase,
α-KG—α-ketoglutarate, D-2HG—D-2-hydroxyglutarate, L-2HG—L-2-hydroxyglutarate.

Another mitochondrial condition of interest is hypoxia, which poses a problem for
radiation therapists because the scarcity of oxygen induces radioresistance [88]. Efforts
to increase oxygen delivery to tumors have not shown positive clinical effects because
of poor tumor vascularization [89]. This implies that attempts to target tumor hypoxia
should focus on normalizing oxygen levels in remote tumor regions by reducing the
oxygen consumption rate (OCR). Therefore, an attractive strategy is to achieve this by
inhibiting mitochondrial OXPHOS as it reduces the OCR, increases oxygenation, and thus
improves the radiation response [90,91]. Several clinical trials are underway to repurpose
FDA-approved drugs to curb mitochondrial function and reverse radioresistance. The
antidiabetic drugs metformin and phenformin have been shown to increase the partial
pressure of oxygen (pO2) in local tumors by inhibiting mitochondrial complex I, thereby
significantly improving the effect of radiotherapy on colorectal cancer cells [92]. Another
complex I inhibitory molecule, arsenic trioxide (As2O3), has shown strong superiority in the
treatment of acute promyelocytic leukemia. However, in recent years, more attention has
been paid to the potential of As2O3 to overcome radioresistance in solid tumors [93]. Both
OXPHOS levels and the OCR are impaired by As2O3 to varying degrees in liver and lung
cancer cells, with enhanced radiosensitivity [94]. Papaverine, a smooth muscle relaxant
used as a vasospasm and erectile dysfunction agent, not only leads to reduced hypoxia and
an increased response to radiotherapy in NSCLC and breast cancer by blocking complex I,
but also has significantly fewer side effects than other OXPHOS inhibitors [95]. Atovaquone
was originally used to treat and prevent parasitic infections; however, in hypopharyngeal,
colorectal, and lung cancer cell lines, it significantly increased oxygenation and sensitized
tumors to radiotherapy by inhibiting electron transport complex III (Table 1) [96].
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Table 1. List of OXPHOS inhibitors under clinical trials or potential.

OXPHOS
Inhibitor Identifier Phase Cancer Type ECT Target Ref.

Metformin

NCT04275713,
NCT04414540,
NCT04945148,
NCT04387630

II, II, II, II
Cervical cancer, head and neck

squamous cell carcinoma, glioblastoma
(IDH-wildtype), breast cancer

Complex I [92]

Phenformin NCT03026517 I Melanoma Complex I [92]

Arsenic Trioxide NCT02066870,
NCT03503864 I, II Non-small-cell lung cancer,

neuroblastoma Complex I [93]

Papaverine NCT05136846,
NCT03824327 I, I Locally advanced or unresectable

non-small-cell lung cancer Complex I [95]

Atovaquone NCT04648033,
NCT02628080 I, I Locally advanced non-small-cell lung

cancer, non-small-cell lung cancer Complex III [96]

Proguanil N.A. N.A. Acts synergistically with atovaquone Complex I [97]

Pyrvinium
Pamoate NCT05055323 I Resectable pancreatic ductal

adenocarcinoma Complex I [98]

Vitamin E NCT01871454 II Non-small-cell lung cancer Complex II [99]

ONC201 NCT04055649 II
Platinum-resistant epithelial ovarian,
fallopian tube, or primary peritoneal

cancer, diffuse midline gliomas
Complex I, II [100]

Mitoxantrone

NCT04927481,
NCT03839446,
NCT03258320,
NCT04718402

II, II, I, I
Breast cancer, acute myeloid leukemia,

prostate cancer patients, advanced
gastric carcinoma

Complex V [101]

Ivermectin N.A. N.A.
Induces the death of renal cancer cells,
chronic myeloid leukemia cells, and

glioblastoma cells *
Complex I [102]

Anonacin N.A. N.A. Delays the growth of pancreatic
cancer cells * Complex I [103]

Trifluoperazine N.A. N.A.
Induces pancreatic ductal

adenocarcinoma cell death in
combination with bortezomib *

Mitochondrial
Stress [104]

* indicates that the drug has not been validated by clinical trials but has been confirmed in in vitro cell experiments
and in vivo xenograft models.

In addition to the above-mentioned drugs that have been investigated in clinical trials
as hypoxia regulators, there has also been an explosion of interest in small molecules that
have the potential to overcome radioresistance. For instance, since annonacin is a natural
lipophilic inhibitor of complex I, in addition to its known ability to promote selective
cancer cell death through NKA- and SERCA-dependent pathways, it is reasonable to
speculate that annonacin may also act as a radiosensitizer through its potential ability
to target OXPHOS [103,105]. In addition, experiments have shown that the anthelmintic
pyrvinium pamoate inhibits the proliferation of myeloma, erythroleukemia, and pancreatic
cancer cells by targeting mitochondrial respiratory complex I [98,106]. Considering this,
IR combined with pyrvinium pamoate is a promising future direction for addressing the
unsatisfactory effects of radiotherapy on radioresistant pancreatic cancer cells (Table 1).
However, further clinical research is needed to clarify various issues that may be overlooked
by new treatments, such as balancing the relationship between therapeutic effects and toxic
side effects.

Given that OXPHOS involves two distinct modalities that interfere with the radiation
response along with active metabolic reprogramming activity or persistent local hypoxia in
some tumors, targeting mitochondrial respiration to overcome radioresistance has attracted
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attention. Indeed, as the therapeutic index is the decisive factor for the utility of any therapy,
those targeting OXPHOS are often limited by side effects rather than a lack of efficacy;
therefore, there is an urgent need to find novel and more specific radiosensitizers.

4. Oncometabolites and Radioresistance

Oncometabolites, defined as metabolites that accumulate abnormally from distorted
metabolic pathways, play pivotal roles in tumor transformation, cancer progression, in-
vasiveness, and therapy resistance [107]. Mutations in the genes encoding isocitrate de-
hydrogenase 1/2 (IDH1/2) or promiscuous activity of lactate dehydrogenase/malate
dehydrogenase (LDH/MDH) leads to the synthesis of D-2-hydroxyglutarate (D-2HG) and
L-2-hydroxyglutarate (L-2HG), respectively [108]. Furthermore, loss of function of the
tricarboxylic acid cycle enzymes succinate dehydrogenase (SDH) and fumarate hydratase
(FH) results in the accumulation of succinate and fumarate (Figure 3) [109]. Oncometabo-
lites act as structural mimics of α-ketoglutarate (α-KG) and thus competitively interfere
with α-KG-dependent dioxygenases, which are involved in regulating the demethylation
status of histones, RNA, and DNA, and targeting HIF-α degradation [110,111]. For exam-
ple, oncometabolites lead to extensive hypermethylation of histone 3 lysine 9 (H3K9me3) by
inhibiting histone lysine demethylase (KDM), which hinders the recruitment of DNA repair
factors, leading to genomic instability that promotes tumor growth [112]. Thus, fumarate,
succinate, D-2HG, and L-2HG have been characterized as bona fide tumor metabolites
and have become pathognomonic hallmarks of a growing number of cancers (Figure 3),
including neuroendocrine tumors, gliomas, leukemia, renal cell carcinomas, and head and
neck squamous cell carcinomas [113–116]. In recent years, there has been great interest in
the possible role of oncometabolites in cancer cell resistance to radiation, and numerous
clinical trials have been conducted.

Furthermore, IDH1/2 mutations have been predicted in clinical trials and retrospective
analyses to improve the response to radiotherapy in low-grade gliomas, showing significantly
prolonged progression-free survival and overall survival [117]. However, mutated IDH1, when
co-expressed with inactivating TP53 and alpha thalassemia/mental retardation syndrome X-
linked gene mutations in gliomas, induces genome stability and enhances the DNA damage
response, triggering resistance to IR [118]. Thus, pharmacological inhibition of the DNA re-
pair pathway is necessary if radiotherapy demonstrates superior therapeutic advantages in
IDH1/2-mutated glioma cells. Studies have shown that FH expression in gastric cancer cells is
significantly higher than that in nearby normal cells and is negatively correlated with patient
prognosis. In addition, cisplatin is the first-line treatment for gastric cancer, and FH can signifi-
cantly inhibit the cytotoxicity of cisplatin. Recent experiments have concluded that miconazole
nitrate enhances the effects of cisplatin in vitro and in vivo by inhibiting FH activity [119]. Given
that activated FH restrains sensitivity to traditional chemotherapy drugs, it could have the same
adverse effects on radiation therapy. Patients with hereditary leiomyomatosis, renal cell cancer
(HLRCC), and a substantial accumulation of fumarate are susceptible to kidney cancer with
type 2 papillary morphology, which is refractory to current radiotherapy [120,121]. Interestingly,
fumarate can covalently modify GPX4 and inhibit its activity, thereby activating ferroptosis-
selective HLRCC cell death [122]. Furthermore, SDH5 is required for the activity of the SDH
complex, and its rapid depletion inhibits p53 degradation through the ubiquitin/proteasome
pathway, thereby promoting apoptosis and enhancing NSCLC radiosensitivity [123].

Taken together, it is not difficult to see this as an interesting phenomenon, and while
oncometabolites are beneficial for cancer progression, they also appear to significantly
reverse the resistance of tumor tissue to IR, likely because tumors that accumulate high
levels of oncometabolites are more vulnerable to therapies that cause DNA damage [124].
Moreover, it has been demonstrated that KDM induces transforming growth factor (TGF)-
β2 transcriptional activation by downregulating the enrichment of H3K9me3 at its promoter
region. Activated TGF-β2 further enhances Smad/ATM/Chk2 signaling, which confers
radioresistance in lung cancer [125]. Therefore, oncometabolites may be suitable signals
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indicative of radiosensitivity, providing new insights into possible methods for predicting
radiotherapy responses in patients who cannot tolerate biopsy.

5. Apoptosis and Radioresistance

Apoptosis is a tightly controlled mode of programmed cell death that plays an essential
role in development, tissue homeostasis, and defense against unwanted, redundant, and
potentially dangerous cells, particularly in the regulation of tumorigenesis [126,127]. The
mitochondrial apoptotic pathway initiated by caspases and regulated by members of the
Bcl-2 family of proteins or inhibitors of apoptotic proteins may have particularly relevant
roles in radiation signal transduction. In differential expression analysis of related genes
in cervical cancer cell lines, 33 genes have shown changes in expression after radiation
induction, which may have potential effects on the apoptosis of cervical cancer cells after
radiotherapy [128]. These findings suggest that IR can lead to significant changes in the
expression of apoptosis-related genes, thereby inducing radioresistance. Some genetic
dysregulation, as commonly observed in apoptotic signaling pathways in aggressive cancer
cells, greatly limits the efficacy of anticancer treatments such as radiotherapy, which relies
on these pathways to eradicate tumors [129]. Enhancing apoptosis to improve the thera-
peutic effect in cancer can be accomplished in two ways: by upregulating pro-apoptotic
genes or by interfering with anti-apoptotic protein function [130].

We have summarized the apoptotic molecules associated with radiation resistance,
and insights into the mechanisms involved can guide subsequent therapeutic approaches
as follows. (1) NF-κB is increasingly recognized as a key player in many steps from
cancer initiation to progression, with some degree of activation in various tumors, such as
gastric, colorectal, lung, nasopharyngeal, and prostate carcinomas [131–134]. The activity
of NF-κB is often enhanced by radiation and plays a central role in the resistance of cancer
cells to radiation through the activation of the pro-survival proteins Bcl-2 and Bcl-XL in
downstream signaling pathways [135]. Curcumin, one of the most important inhibitors
of NF-κB, significantly delays tumor regeneration in irradiated mice [136]. (2) p53, a
tumor suppressor gene, also has a diametrically opposite significance in the development
of radioresistance. Downregulation of p53-induced death-domain-containing protein
expression and inhibition of ataxia–telangiectasia-mutated protein (ATM) directly silence
NF-κB, which inhibits DNA damage repair and ultimately increases the radiosensitivity
of tumor cells [129]. Conversely, radiation-induced DNA damage can also activate the
downstream effector kinase Chk2 of ATM, which contributes to further activation of p53
and pro-apoptotic proteins PUMA and BAX to induce apoptosis [137]. A study showed that
the loss of components in the ATM/Chk2/p53 pathway was associated with radioresistance
in a glioma mouse model [138]. Radiotherapy, the standard treatment for patients with
nasopharyngeal carcinoma (NPC), induces DNA methyltransferase 3B, which greatly
contributes to radioresistance in NPC by methylating p53 and p21 [139]. (3) Apoptosis-
related proteins in the TGF-β signaling pathway (ARTS) are alternative spliceosomes of
the Sept4 gene located in the outer mitochondrial membrane [140]. As the only dual pro-
apoptotic protein in vivo, ARTS directly bind to and restrain XIAP and Bcl-2 and assist p53
in inhibiting Bcl-XL [141]. Therefore, targeting the ARTS-mediated degradation of anti-
apoptotic proteins may represent an effective way of sensitizing tumor cells to radiotherapy.
(4) Most patients with breast cancer treated with radiotherapy are completely cured, but in
partial IR-induced triple-negative breast cancer, activated STAT3 and Bcl-2 and reduced ROS
promote cell proliferation, reduce apoptosis, increase angiogenesis, and increase immune
evasion, thus severely compromising the effectiveness of radiotherapy [142]. Niclosamide,
a small-molecule STAT3 inhibitor, leads to a significant decrease in the protein levels of
downstream anti-apoptotic target genes (such as Bcl-XL and survivin) by inhibiting Tyr-705
phosphorylation and nuclear translocation of STAT3, thereby improving the survival of
patients with radioresistant breast cancer [142,143]. (5) Recent studies have shown that
amplification of the cancer-associated gene YWHAZ is an indicator of poor prognosis in
patients with urothelial carcinoma of the bladder (UCUB) [144]. Upregulation of YWHAZ
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resulted in insufficient expression of pro-apoptotic proteins (BAK and BAX) and several
caspases (CASP 3, 7, and 10) involved in mitochondrial apoptotic cascade reactions, with
an emphasis on radiation insensitivity [145]. Notably, gene knockdown using a specific
shRNA triggered a significant increase in cell death after radiation therapy, providing a
new therapeutic target for YWHAZ-overexpressing UCUB [145].

In addition, Jumonji C domain histone lysine demethylases (JmjC-KDMs), Wnt1-
inducible-signaling protein 1 (WISP1), and Caveolin-1 can also interfere with apoptosis
and further induce radioresistance [146–148] (Figure 4). Therefore, elucidating the precise
mechanism underlying the interaction between mitochondrial apoptosis and radioresis-
tance would benefit the development of novel radiosensitizers. Although drugs developed
based on this principle still require more clinical experiments to verify their indications and
safety, they undoubtedly provide a promising starting point for the treatment of tumors
with high target gene expression levels.
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Figure 4. A schematic representation of the signaling mechanism of apoptosis-related molecules.
IR induces DNA damage, leading to abnormal expression of mitochondria-related proteins, or
directly regulates apoptosis-related genes, thereby promoting DNA damage repair and inhibit-
ing mitochondrial apoptosis, ultimately causing the occurrence of radioresistance. Abbreviations:
SSB/DSB—single-strand breaks/double-strand breaks, ATM—ataxia–telangiectasia-mutated pro-
tein, PIDD—p53-induced death-domain-containing protein, Chk2—checkpoint kinase 2, NF-κB—
nuclear factor-κB, RAIDD—receptor-interacting protein (RIP)-associated ICH-1/CED-3-homologous
protein with a death domain, ARTS—apoptosis-related proteins in the TGF-β signaling pathway,
STAT3—signal transducer and transcriptional activator 3, WISP1—Wnt1-inducible-signaling protein
1, JmjC-KDMs—Jumonji C domain histone lysine demethylases.

6. Conclusions and Perspectives

Acquired radioresistance is the main clinical obstacle for patients with tumors receiv-
ing radiotherapy and is affected by several factors. Since the Warburg effect was proposed,
glucose metabolism has received unprecedented attention. However, a considerable num-
ber of studies point to the development of radioresistance closely related to mitochondrial
metabolism, not only because mitochondria predominate in the tolerance of malignant



Antioxidants 2022, 11, 2202 12 of 18

cells to radiation-induced RCD, but also because it underlies metabolic reprogramming.
Maintaining the normal physiological function of the mitochondria is an important factor
that improves the effect of radiotherapy. To date, many small-molecule inhibitors have
been developed against ROS and oncometabolites or to regulate OXPHOS and apoptosis,
which can target specific receptors and enhance the radiation response of tumor tissue.
However, owing to the lack of high specificity, the indiscriminate attack of radiosensitizers
on non-tumor cells can have unwanted effects, which also hinders their generalization.
Due to different tumor types and specific metabolic processes or molecules, we need to
individualize the treatment of tumors, so the development of more effective and specific
sensitizers has become an irreplaceable solution. Despite these challenges, with a deeper
understanding of the mechanism of radioresistance, targeting mitochondrial metabolism to
reverse radiation insensitivity may be a safe and efficient radiosensitizing method in the
future and thus deserves more attention.
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