Skip to main content
Animals : an Open Access Journal from MDPI logoLink to Animals : an Open Access Journal from MDPI
. 2022 Nov 19;12(22):3208. doi: 10.3390/ani12223208

A Note on the Conditioning of the H−1 Matrix Used in Single-Step GBLUP

Mohammad Ali Nilforooshan 1
Editor: Michael E Davis1
PMCID: PMC9686757  PMID: 36428435

Abstract

Simple Summary

Compared to BLUP, in single-step genomic BLUP, G1A221 is added to the inverse of the pedigree relationship matrix (A1), forming H1, where G is the genomic relationship matrix, and A22 is the block of A for genotyped animals. Incompatibility between G and A may cause inflated genetic variance. Blending and tuning G with A22 partially solves the problem. However, conditioning H1 might still be needed, which is usually performed via τG1ωA221. This may violate the properties upon which H is built. Alternative ways of weighting the H1 components are presented to prevent/minimise violations of the properties of H.

Abstract

The single-step genomic BLUP (ssGBLUP) is used worldwide for the simultaneous genetic evaluation of genotyped and non-genotyped animals. It is easily extendible to all BLUP models by replacing the pedigree-based additive genetic relationship matrix (A) with an augmented pedigree–genomic relationship matrix (H). Theoretically, H does not introduce any artificially inflated variance. However, inflated genetic variances have been observed due to the incomparability between the genomic relationship matrix (G) and A used in H. Usually, G is blended and tuned with A22 (the block of A for genotyped animals) to improve its numerical condition and compatibility. If deflation/inflation is still needed, a common approach is weighting G1A221 in the form of τG1ωA221, added to A1 to form H1. In some situations, this can violate the conditional properties upon which H is built. Different ways of weighting the H1 components (A1, G1, A221, and H1 itself) were studied to avoid/minimise the violations of the conditional properties of H. Data were simulated on ten populations and twenty generations. Responses to weighting different components of H1 were measured in terms of the regression of phenotypes on the estimated breeding values (the lower the slope, the higher the inflation) and the correlation between phenotypes and the estimated breeding values (predictive ability). Increasing the weight on H1 increased the inflation. The responses to weighting G1 were similar to those for H1. Increasing the weight on A1 (together with A221) was not influential and slightly increased the inflation. Predictive ability is a direct function of the slope of the regression line and followed similar trends. Responses to weighting G1A221 depend on the inflation/deflation of evaluations from A1 to H1 and the compatibility of the two matrices with the heritability used in the model. One possibility is a combination of weighting G1A221 and weighting H1. Given recent advances in ssGBLUP, conditioning H1 might become an interim solution from the past and then not be needed in the future.

Keywords: conditional property, inflated, relationship matrix, single-step GBLUP, weighting

1. Introduction

The unified genetic evaluation of genotyped and non-genotyped animals has been of great interest. In an initial attempt, Misztal et al. [1] suggested a unified pedigree (A) and genomic (G) relationship matrix (Hini), in which genomic relationships between genotyped animals replaced their pedigree relationship coefficients in A. Denoting non-genotyped and genotyped animals with 1 and 2:

Hini=A11A12A21G=A+000GA22. (1)

This relationship matrix did not condition the distributions of breeding values for genotyped and non-genotyped animals on each other, leading to incoherencies in the joint distribution of genetic values for genotyped and non-genotyped animals. Legarra et al. [2] presented an augmented (A and G) relationship matrix in which the genetic values of non-genotyped animals were conditioned to the genetic values of genotyped animals. The resulting matrix was:

H=H11H12H21H22=A11+A12A221(GA22)A221A21A12A221GGA221A21G=A+A12A221(GA22)A221A21A12A221(GA22)(GA22)A221A21GA22, (2)

which can be simplified to any of the following:

H=A11A12A221A21000+A12A221IGA221A21I, (3)
H=(A11)1000+A12A221IGA221A21I, (4)
H=A+A12A221IGA22A221A21I. (5)

In matrix H, the genomic information in G influences the relationships between non-genotyped and genotyped animals and among non-genotyped animals. Later, it was discovered that H1 can be indirectly obtained without forming and inverting H [3,4].

H1=H11H12H21H22=A11A12A21H22=A1+000G1A221. (6)

Note that:

G1A221=H221A221=H22H21H111H12A22+A21A111A12=H22A21A111A12A22+A21A111A12=H22A22.

Matrix G is not always full-rank (e.g., when the number of genotyped animals is greater than the number of loci or when there are duplicated genotypes, such as for identical twins). To force G to be positive-definite and avoid large diagonal values of G1 due to the bad numerical condition of G, the first step of conditioning G often involves blending it with A22, which is always positive-definite (except in the existence of identical twins or clones [5]) and of good numerical conditions (i.e., G(1k)G+kA22, 0 < k < 1). Blending introduces residual polygenic effects (genetic effects not captured by genetic markers) to the evaluation model without explicitly modelling it, where the scalar k is the ratio of the polygenic to the total additive genetic variance [6].

It is theoretically true that no artificially inflated variance is introduced via the H matrix [2]. However, inflated genetic variances have been observed due to incompatibilities between G and A22 [6,7,8,9]. Incompatible G and A22 lead to incorrectly weighted pedigree and genomic information [7,8]. Besides different distributions of G and A22 elements, incomplete and incorrect pedigree information, and genotyping and imputation errors, incompatibilities between G and A22 can be due to the non-random selection of genotyped animals [10], and the different bases and scales of the two matrices [7]. Matrices A22 and G regress data to different means. Matrix A22 regresses solutions towards pedigree founders, animals in the pedigree with unknown parents or genetic groups if considered in the pedigree. On the other hand, G regresses solutions toward a founder population comprising genotyped animals [5,10] since the real allele frequencies in the founder population are unknown. The average genetic merit of genotyped animals can be different from founders, especially in the presence of selection. Different approaches (referred to as tuning) have been used for correcting the base difference between G and A22 [7,11] and rebasing and scaling G to improve its consistency with A22 [10]. Those approaches were tested by Nilforooshan [9] on New Zealand Romney sheep. Christensen [8] and Gao et al. [6] tuned G by regressing its averages to the averages of A22 (Equations (7) and (8), respectively).

μ(diag(G))β+α=μ(diag(A22))μ(G)β+α=μ(A22) (7)
μ(diag(G))β+α=μ(diag(A22))μ(offdiag(G))β+α=μ(offdiag(A22)) (8)

The α and β scalars obtained by solving either of the equations above are used for transforming G into βG+α11. Another solution proposed to tackle the problem of inflated genomic evaluations (i.e., an increased variance of genomic predictions) as a result of incorrectly scaled genomic and pedigree information was scaling G1A221 in the form of τG1ωA221 [3,12,13]. Applying τG1ωA221 is equivalent to transforming G into τG1(ω1)A2211 [3,9], which equals G(1ω)G+τA221A22. It is also equivalent to replacing GA22 with τG1(ω1)A2211 in Equation (2) [12].

Reducing τ and ω values toward 0 brings G closer to A22 by bringing H22 closer to A22. However, it is not easily quantifiable how G and A22 are proportionally combined. With τ and ω deviating from each other and 1, there is a risk of distorting the conditional properties of H, because the changes made in H22 are not reflected in other blocks of H1. Whereas 1 – k and k are the commonly used blending coefficients of G and A22, τ and ω are the commonly used blending coefficients of H1 and A1. i.e.,

A1+000τG1ωA221=ωH1+(1ω)A1+000(τω)G1. (9)

Considering the above equation, there is no legitimate reason for ω being out of the boundary of 0 and 1, and τω being out of the boundary of –1 and 1. Martini et al. [12] studied τ ranging from 0.1 to 2, and ω ranging from –1 to 1 by steps of 0.1, leading to 420 analyses. Dealing with two parameters increases the number of analyses and validation tests in a two-dimensional space. It is assuming that the k coefficient has already been chosen and does not need to be validated. The most coherent approach for finding k is by restricted maximum likelihood (REML), as proposed by Christensen and Lund [4], rather than using empirical values by screening and validation.

Weighting G1 and A221 as τG1ωA221 has been used until recently [12,13,14,15,16,17]. Several improvements have been made to ssGBLUP [18] and the use of τG1ωA221 is declining. For example, one of the factors leading to the need for an ω considerably less than 1 was that inbreeding coefficients were considered in A221 but not in A1 [19]. The aim of this study was to communicate the problems that might occur using τG1ωA221, and investigate the possible solutions for weighting the H1 components if the modifications in G are not satisfactory and the weighting of the H1 components is still needed for the deflation/inflation of genomic breeding values.

2. Methods

2.1. Possible Problems with τG1ωA221

The (τω)G1 matrix in Equation (9) is unconditional and not reflected in the other blocks of H1. As such, some combinations of τω potentially distort the conditional properties of H. However, any τ=ω ranging from 0 to 1 is legitimate and can be considered as a blending of H1 and A1. While it might make sense to weight G1 and A221 to bring them closer to each other and make them more compatible, weighting A221 causes incompatibility between A221 and A1. Matrix H1 can also be written as:

H1=IA221A21A11IA12A221+000G1 (10)
=A11A12A21A22A221+000G1. (11)

Weighting the components of IA221A21A11IA12A221 in Equation (10), the aim is to preserve the existing quadratic form. This study aimed to introduce weighting on the H1 components that are unlikely to introduce distortions to the conditional properties of H. Weighting H1 can be performed on any of the following components:

  • 1.

    H1 itself

  • 2.

    G1A221

  • 3.

    G1

  • 4.

    A1

  • 5.

    A11

  • 6.

    A22

  • 7.

    A221

2.2. Weighting H1

This scenario is helpful when the heritability estimate (h2) does not match the data or H1. Heritability may change over time and as a result of selection. An outdated h2 may differ from the current h2 of the trait in the population. Estimating variance components is a computationally expensive process. The h2 estimate might have been from a population subset or via a matrix other than H1 (A1 or G1). Different relationship matrices contain different information and may result in different genetic variances and h2 estimates [20].

2.3. Weighting G1A221

Aguilar et al. [3] suggested using equal τ and ω. Weighting G1A221 by α is equivalent to αH1+(1α)A1.

2.4. Weighting G1

This scenario can be understood as scaling the h2 corresponding to G1 to the h2 corresponding to A1. No violation is made to the conditional properties of H1, and weighting G1 by α is equivalent to using G/α in H. Therefore, instead of G, G/α is propagated through the blocks of H. A G/α more compatible with A22 would bring G closer to and more compatible with A.

2.5. Weighting A1

This scenario can be understood as scaling the h2 corresponding to A1 to the h2 corresponding to G1. In response to A1 weighted by α, G1A221 in Equation (6) should be changed to G1αA221, which is equivalent to multiplying A11A12A21A22A221 in Equation (11) by α. With an h2 estimate based on pedigree information, weighting G1 is preferred over weighting A1.

2.6. Weighting A11

Considering Equation (10), weighting A11 is equivalent to weighting all the components of H1, except G1, similar to that of the weighting A1 scenario.

2.7. Weighting A22

Considering Equation (11), weighting A22 should coincide with weighting the other blocks of A1 to preserve its conditional properties, as well as weighting A221, similar to that of the weighting A1 scenario.

2.8. Weighting A221

Considering Equation (10), weighting A221 is equivalent to:

H1=IαA221A21A11IαA12A221+000G1=A11αA12αA21αA22A221+000G1=I00αIA11A12A21A22I00αI+000G1αA221. (12)

However, this is not recommended as it imposes a different pedigree-based h2 on the genotyped and non-genotyped animals in A1. Furthermore, as α becomes smaller, the relationships between genotyped and non-genotyped animals are weakened.

2.9. The Experiments

Since the scenarios of weighting A11 and A22 are equivalent to weighting A1, and weighting A221 is not recommended, the four scenarios of weighting H1, G1A221, G1, and A1 were tested. These scenarios were tested with α ranging from 0.8 to 1.2 to know the responses of each H1 conversion to the deviation of α from 1. Because weighting G1A221 requires α to be between 0 and 1, it was studied with α ranging from 0.8 to 1. Predictive ability was calculated as Pearson’s correlation between the phenotypes and the estimated breeding values. Phenotypes were regressed on the estimated breeding values, where a lower slope means inflation and a higher slope means deflation.

3. Materials

Data were simulated for a species in a 1:1 sex ratio, litter size of 2, and generation overlap of 1. The pedigree, phenotypes, and genotypes were simulated using the R package pedSimulate [21]. Initially, ten generations were simulated, starting with a base generation (F0) of 100 animals (50 of each sex). No non-random pre-mating mortality or selection was applied to F0. Genotypes were simulated on 5000 markers, and allele frequencies were sampled from a uniform distribution ranging from 0.1 to 0.9. Marker (allele substitution) effects were simulated from a gamma distribution with shape and rate parameters equal to 2. The distribution was rebased to have a mean of 0 and scaled to create a variance of (true) marker breeding values in F0, σg2 = 9. Residual polygenic and environment (residual) effects were simulated from normal distributions with variances σa2 = 1 and σe2 = 30, respectively.

Following F0, half of the males were mated to half of the females, which were all randomly selected and mated. Where the numbers of mating animals per sex were not equal, the sex with the higher number of animals underwent random selection to match the number of animals of the opposite sex. These ten generations were followed by ten more generations, in which 50% of male candidates (to become sires of the next generation) were selected for their marker breeding value and mated to the same number of randomly selected females. Genotypes in each subsequent generation were obtained by combining sampled gametes from the parents’ genotypes.

Phenotypes were calculated as y=μ1+g+a+e, where μ is the population mean, and g, a, and e are the vectors of effects corresponding to σg2, σa2, and σe2. Genotypes before F8 and phenotypes for the last generation (F19) and before F7 were set to missing. Randomly, 5% of the known dams and 5% of the known sires (after F0) were set to missing. As such, missing pedigree and phenotype information, genomic pre-selection, and base and scale deviations between A and G were accommodated in the simulation. Data simulation was repeated ten times to reduce the possibility of observing the results specific to a dataset.

No fixed effect was simulated, and the data were analysed using the following mixed model equations:

111ZZ1ZZ+H1σe2σg2+σa2μ^u^=yZy, (13)

where Z is the matrix relating phenotypes to animals, 1 and u^ are the vectors of ones and predicted breeding values, and μ^ is the mean estimate. Matrix G was used in H1 and built according to method 1 of VanRaden [5], where G=WW/2p(1p), W is the centred and scaled genotype matrix, and p is the marker allele frequency. Markers with minor allele frequency below 0.02 were discarded before calculating G. Then, G was blended as G0.9G+0.1A22.

4. Results

The simulated pedigrees had a population size of 2162.8 ± 358.3 (μ ± sd), 1326.4 ± 298.2 genotypes, 1324.6 ± 277.2 phenotypes, 1074.7 ± 156.8 males, and 1088.1 ± 202.9 females. Inflation and predictive ability estimates over the ten simulated pedigrees were averaged and presented (Figure 1 and Figure 2).

Figure 1.

Figure 1

Regression coefficients of the phenotypes on genomic breeding values for different components of H1 weighted by α. Each data point is an average of ten observations for the simulated populations.

Figure 2.

Figure 2

Correlation coefficients between phenotypes and genomic breeding values for different components of H1 weighted by α. Each data point is an average of ten observations for the simulated populations.

Different H1 components were weighted by α ranging from 0.8 to 1.2, except for G1A221, where α ranged from 0.8 to 1. Weighting H1 and G1 showed similar trends for inflation (Figure 1) and predictive ability (Figure 2), with the slope of the trends being slightly less for G1 compared to H1. Weighting A1 (accompanied by weighting A221) showed slightly decreasing trends, with the regression slope decreasing by 0.01 (i.e., inflation increasing by 0.01) and the predictive ability decreasing by 4.4 ×103 over the range of α. The inflation and prediction ability increased by weighting G1A221 with α decreasing from 1 to 0.8.

5. Discussion

Matrices G and A22 indicate different means and variances for genotyped animals. This can cause differently scaled genomic and pedigree information in H1 [3]. Usually, G is blended and tuned (rebased and scaled) with A22. If genomic breeding values are still inflated, a complementary weighting of G1A221 might be needed. A common practice is to weight using τG1ωA221. It was shown that some τω combinations are likely to distort the properties of H that provide conditionality between the breeding values of genotyped and non-genotyped animals. Other ways of weighting the components of H1 were presented that are unlikely to distort the conditional properties of H.

Weighting H1 with α > 1 is equivalent to reducing h2 and increasing inflation due to increased dispersion. It is equivalent to adding (1α)/α to 1/h2 or weighting the genetic variance by 1/α. Due to selection, h2 can be lower than expected. The h2 reduction is expected to be greater due to genomic selection. Change of genetic variance by genomic selection is propagated from G throughout H. The predictive ability declined with increasing α (Figure 2), which might be concerning. However, predictive ability is a direct function of the slope of the regression line (Figure 1). Therefore, the slope of the regression line (inflation) should be the main concern.

Weighting A1 (accompanied by weighting A221) did not influence inflation and predictive ability. Predictive ability and the slope of the regression line decreased slightly (inflation increased slightly) over the increase in α. The reason for this is likely that H is a genomic relationship matrix extended from G for genotyped animals to non-genotyped animals via the A12A221 coefficients (Equations (2)–(5)). As such, G is more influential in defining the variances in H than A. This was confirmed by similar trends for weighting G1 and H1 (Figure 1 and Figure 2). The slopes of the regression line (inflation) and predictive ability were slightly steeper for H1 than for G1, and that was a result of the combined weighting of G1, A1 and A221. Weighting G1A221 by α < 1 increased the inflation but at a lower rate than weighting H1 or G1 with α > 1.

The inflation results are expected to be valid for other data as weighting H1 or its components is equivalent to inversely weighting the genetic variance, regardless of the data. The exception is weighting G1A221. Whether weighting G1A221 with a larger α results in inflation or deflation depends on whether using H1 instead of A1 results in inflation or deflation. If using H1 results in inflation, then weighting G1A221 with a larger α (more emphasis on H1 than A1) results in greater inflation. The predictive ability improved by weighting G1A221 with α decreasing from 1 to 0.8. Generally, predictive ability increases by the increase in the slope of the regression line. Notice that the predictive ability ignoring inflation can be misleading. Since the trends for prediction ability and the slope of the regression line were in opposite directions for weighting G1A221, it shows that the predictive ability benefited from blending H1 and A1, mainly because the h2 was more compatible with a blended H1 and A1 than with H1.

This study does not completely rule out using τG1ωA221. However, weighting H1 components should meet specific conditions to avoid/minimise violating the conditional properties of H. As such,

A1+000αG1A221,τA1+000αG1A221,A1+000αG1A221,

and αH1 are better alternatives to τG1ωA221. By definition, none of these four options are better than the others. However, achieving good compatibility between the resulting H1 and h2 without blending H1 and A1 at a high rate (low emphasis on genomic information) is important.

Concerning pedigree and genomic errors, regardless of the emphasis given to pedigree and genomic information, genotype errors propagate through non-genotyped animals, and pedigree errors incorrectly and insufficiently propagate genotype information through non-genotyped animals. Therefore, the correctness and the completeness of pedigree and genomic information are vital for accurate and unbiased ssGBLUP evaluations.

Future research may focus on changing genetic parameters over time or across populations in genomic predictions. It is possible to reduce inflation in genomic predictions for young animals by using smaller additive genetic variances. This can be done by replacing H1 with DH1D. Considering no overall weight on H1: DH1D=H1. Matrix D is a diagonal matrix of positive values descending in function of the animal’s age. The researcher would need to decide the min(d)σeσgmax(d) range, where d = diag(D). With recent advances in ssGBLUP (mentioned by Misztal et al. [18]), which improve the compatibility between A and G, conditioning H1 might become an interim solution from the past or be reduced to only weighting H1.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data, code, and the results supporting the findings of this study are openly available in Mendeley Data at doi:10.17632/cn9jzpj7fg.1 [22].

Conflicts of Interest

M.A.N. is employed at Livestock Improvement Corporation, Hamilton, New Zealand. He declares that the research was conducted in the absence of any commercial or financial interest.

Funding Statement

This work was supported by the NZ Ministry for Primary Industries, SFF Futures Programme: Resilient Dairy-Innovative breeding for a sustainable dairy future (grant number PGP06-17006).

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Misztal I., Legarra A., Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 2009;92:4648–4655. doi: 10.3168/jds.2009-2064. [DOI] [PubMed] [Google Scholar]
  • 2.Legarra A., Aguilar I., Misztal I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009;92:4656–4663. doi: 10.3168/jds.2009-2061. [DOI] [PubMed] [Google Scholar]
  • 3.Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. Hot topic: A unified approach to utilise phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010;93:743–752. doi: 10.3168/jds.2009-2730. [DOI] [PubMed] [Google Scholar]
  • 4.Christensen O.F., Lund M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 2010;42:2. doi: 10.1186/1297-9686-42-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.VanRaden P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. [DOI] [PubMed] [Google Scholar]
  • 6.Gao H., Christensen O.F., Madsen P., Nielsen U.S., Zhang Y., Lund M.S., Su G. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet. Sel. Evol. 2012;44:8. doi: 10.1186/1297-9686-44-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Forni S., Aguilar I., Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 2011;43:1. doi: 10.1186/1297-9686-43-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Christensen O.F. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation. Genet. Sel. Evol. 2012;44:37. doi: 10.1186/1297-9686-44-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Nilforooshan M.A. Application of single-step GBLUP in New Zealand Romney sheep. Anim. Prod. Sci. 2020;60:1139–1144. doi: 10.1071/AN19315. [DOI] [Google Scholar]
  • 10.Vitezica Z.G., Aguilar I., Misztal I., Legarra A. Bias in genomic predictions for populations under selection. Genet. Res. 2011;93:357–366. doi: 10.1017/S001667231100022X. [DOI] [PubMed] [Google Scholar]
  • 11.Chen C.Y., Misztal I., Aguilar I., Legarra A., Muir W.M. Effect of different genomic relationship matrices on accuracy and scale. J. Anim. Sci. 2011;89:2673–2679. doi: 10.2527/jas.2010-3555. [DOI] [PubMed] [Google Scholar]
  • 12.Martini J.W.R., Schrauf M.F., Garcia-Baccino C.A., Pimentel E.C.G., Munilla S., Rogberg-Muñoz A., Cantet R.J.C., Reimer C., Gao N., Wimmer V., et al. The effect of the H−1 scaling factors τ and ω on the structure of H in the single-step procedure. Genet. Sel. Evol. 2018;50:16. doi: 10.1186/s12711-018-0386-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Misztal I., Aguilar I., Legarra A., Lawlor T.J. Choice of parameters for single-step genomic evaluation for type; Proceedings of the 61st Annual EAAP Meeting; Heraklion, Greece. 23–27 August 2010; p. 357. [Google Scholar]
  • 14.Kang H., Ning C., Zhou L., Zhang S., Yan Q., Liu J.-F. Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins. J. Dairy Sci. 2018;101:11143–11149. doi: 10.3168/jds.2018-15090. [DOI] [PubMed] [Google Scholar]
  • 15.Imai A., Kuniga T., Yoshioka T., Nonaka K., Mitani N., Fukamachi H., Hiehata N., Yamamoto M., Hayashiet T. Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus. PLoS ONE. 2019;14:e0221880. doi: 10.1371/journal.pone.0221880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Alvarenga A.B., Veroneze R., Oliveira H.R., Marques D.B.D., Lopes P.S., Silva F.F., Brito L.F. Comparing alternative single-step GBLUP approaches and training population designs for genomic evaluation of crossbred animals. Front. Genet. 2020;11:263. doi: 10.3389/fgene.2020.00263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fu C., Ostersen T., Christensen O.F., Xiang T. Single-step genomic evaluation with metafounders for feed conversion ratio and average daily gain in Danish Landrace and Yorkshire pigs. Genet. Sel. Evol. 2021;53:79. doi: 10.1186/s12711-021-00670-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Misztal I., Lourenco D., Tsuruta S., Aguilar I., Masuda Y., Bermann M., Cesarani A., Legarra A. How ssGBLUP became suitable for national dairy cattle evaluations; Proceedings of the 12th World Congress on Genetics Applied to Livestock Production; Rotterdam, The Netherlands. 3–8 July 2022; [(accessed on 5 October 2022)]. p. 357. Available online: https://www.wageningenacademic.com/pb-assets/wagen/WCGALP2022/52_009.pdf. [Google Scholar]
  • 19.Lourenco D.A.L., Legarra A., Tsuruta S., Masuda Y., Aguilar I., Misztal I. Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90. Genes. 2020;11:790. doi: 10.3390/genes11070790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Legarra A. Comparing estimates of genetic variance across different relationship models. Theor. Pop. Biol. 2016;107:26–60. doi: 10.1016/j.tpb.2015.08.005. [DOI] [PubMed] [Google Scholar]
  • 21.Nilforooshan M.A. pedSimulate—An R package for simulating pedigree, genetic merit, phenotype, and genotype data. R. Bras. Zootec. 2022;51:e20210131. doi: 10.37496/rbz5120210131. [DOI] [Google Scholar]
  • 22.Nilforooshan M.A. Code & Data—A Note on the Conditioning of the H-1 Matrix Used in Single-Step GBLUP. Mendeley Data V1. 2022. [(accessed on 15 November 2022)]. Available online: [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data, code, and the results supporting the findings of this study are openly available in Mendeley Data at doi:10.17632/cn9jzpj7fg.1 [22].


Articles from Animals : an Open Access Journal from MDPI are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES