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Simple Summary: Green sea lettuce (Ulva spp.), with its worldwide distribution and remarkable
ability to grow rapidly under a range of conditions, represents an important natural resource that is
still under-exploited. Its biomass can be used for various applications in the food, feed, pharmaceu-
tical, nutraceutical, biofuel and bioremediation sectors. However, knowledge of Ulva genetics, its
environmental responses and microbial interactions are far from complete. This knowledge gap is a
major constraint for the development of Ulva aquaculture and further investigation of these factors is
needed to advance strain selection for yield and biochemical composition in a broad range of cultiva-
tion environments. In this review, after presenting the characteristics of the biochemical content and
the recognised applications of Ulva biomass, we present the established knowledge and highlight
areas requiring greater investment to develop a sustainable and profitable Ulva aquaculture industry.

Abstract: Sea lettuce (Ulva spp.), with its worldwide distribution and remarkable ability to grow
rapidly under various conditions, represents an important natural resource that is still under-
exploited. Its biomass can be used for a wide range of applications in the food/feed, pharmaceutical,
nutraceutical, biofuel, and bioremediation industries. However, knowledge of the factors affecting
Ulva biomass yield and composition is far from complete. Indeed, the respective contributions of the
microbiome, natural genetic variation in Ulva species, environmental conditions and importantly, the
interactions between these three factors on the Ulva biomass, have been only partially elucidated.
Further investigation is important for the implementation of large-scale Ulva aquaculture, which
requires stable and controlled biomass composition and yields. In this review, we document Ulva
biomass composition, describe the uses of Ulva biomass and we propose different strategies for
developing a sustainable and profitable Ulva aquaculture industry.

Keywords: Ulva; metabolites; aquaculture; bioremediation; microbiome; strain-selection; environmental
factors

1. Introduction

Species of green macroalgae from the genus Ulva (Phylum Chlorophyta, Class Ulvo-
phyceae, Order Ulvales, Family Ulvaceae) are among the most abundant seaweed species,
being omnipresent in coastal communities around the world [1]. Ulva comprises diverse
species which present two main morphologies, either tubular monostromatic (single cell
layer) or foliose distromatic (two cell layers) [2,3]. Some species also present both morpho-
types, such as U. compressa [4,5]. Thus, this morphological diversity is not solely explained
by genetic variability, but also by considerable morphological plasticity in response to
environmental conditions and variations in the associated microbiome [1,6,7]. For this
reason, species identification based on morphological characters is largely unreliable and
genetic information is necessary to properly identify Ulva species [8–10]. Currently, among
the 400 Ulva species described, only ca. 40 species have been recognised taxonomically via
the use of genetic information [11,12].
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From an economic point of view, Ulva spp. biomass has long been recognised as
sustainable and valuable. It contains valuable metabolites, including bioactive compounds,
which can be used in the food, pharmaceutical, nutraceutical, or biorefinery industries [13,14].
Moreover, high growth rates, as well as high rates of carbon, nitrogen and phosphorus
assimilation and the ability to adapt rapidly to variable environmental conditions, make
Ulva spp. “physiologically robust” organisms and suitable candidates to be used as a
biological filter (macroalgal “nutrient traps”) to mitigate eutrophication [15,16]. Ulva species
have already proven their effectiveness for nutrient removal from water, e.g., in finfish
and shellfish aquaculture, bio-reactor sludge, or industrial wastewater treatment [17–22].
However, there are still large knowledge gaps around their efficiency for nutrient removal,
especially in “extreme environmental conditions”, such as low salinity, high nutrient loads,
and varying temperatures. We can expect that some Ulva species or even strains are
more suitable than others for nutrient removal in given environmental conditions [23] and
identifying these might allow increases in Ulva bioremediation efficiency. Similarly, in
addition to variation in nutrient removal capacity, species and strain-based variation in
biomass composition are observed [23] and it is of importance for the valorisation of Ulva
biomass. Thus, a strain selection programme tailored to both bioremediation efficiency and
use of the accumulated biomass could lead to significant gains in yield and economical
value of Ulva aquaculture, while reducing eutrophication.

Therefore, due to the environmental impact of Ulva spp., but also their potential
industrial applications, more research effort should be invested to document the natural
variation present in the growth rates of the Ulva genus in different environments and how
this relates to biomass composition. In this review, we summarise the current knowledge
of Ulva biochemical composition, list the current uses of its biomass and comment on the
different strategies we foresee in developing Ulva cultivation and the industrial applications
of its biomass.

2. Ulva Biomass Composition and Its Potential Applications

Green seaweeds of the genus Ulva have been intensively studied because of their
accessibility and abundance in the intertidal zone of many oceans worldwide, as well as
for their valuable chemical content. which makes them a target for a number of econom-
ically attractive industrial applications [24,25]. Ulva spp. biomass contains high levels
of nutritional elements, such as proteins, carbohydrates, polysaccharides, minerals and
lipids [26–28], which compares favourably with major land crops, especially for minerals
(Table 1). Interestingly, the relative abundance of these compounds varies according to
genetic differences between species and populations as well as environmental conditions,
such as temperature, salinity, irradiance and nutrient composition of the water [25,29–35].

Table 1. Biochemical composition of the macroalgae Ulva spp. and conventional feedstuffs (% Dry Weight).

Ulva spp. Soybean Corn Wheat

Proteins 9–29 37–43 10 9–19

Carbohydrates 41–50 20–30 74–85 61–84

Lipids 1–12 20 4 2

Ashes 14–52 6 1.2 1.5–2

Magnesium 2–5.2 0.12 0.13 0.14

Potassium 0.7–1.5 1.5 0.29 0.4

Calcium 0.8–6.2 0.3 0.007 0.04

Sodium 0.4–2.9 0.3 0.04 0.001
Sources: Ulva spp. [26,36–38]; Soybean [39–41]; Corn and Wheat [42–45].

Ulva protein content is highly variable, from 9 to 29% of the dry weight (DW) [46].
The highest protein content, 29% (DW), was recorded in U. lactuca collected from North
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Yorkshire in the United Kingdom [47] and the lowest protein content was reported in the
same Ulva species collected in Tunisia during the summer [46,48], which suggests a role
of temperature in regulating protein content, similar to land plants [49,50]. Aspartic and
glutamic acids are the most abundant amino acids and taken together can represent up to
26 and 32% of the total amino acids in U. rigida and U. rotundata, respectively [51,52]. Other
essential amino acids required for animal and human nutrition are also abundant in Ulva
(Table 2), with valine, leucine, lysine and threonine together representing 42% of the total
amino acid content in U. lactuca [48].

Ulva is also considered an important source of minerals, with a relatively high ash content
of 14% to 52% DW depending on the species and the growth conditions [26,53–55]. Potassium,
magnesium, sodium and calcium are the main minerals in Ulva biomass (Table 1) [26,56].

Ulva spp. biomass is relatively low in energy due to a low lipid content (1 to 12% DW)
and high carbohydrate content (41 to 50% DW) [26,57,58]. The carbohydrates are classified
into three major groups, the water-soluble ulvans (8–29% DW) [59,60], the structural
water-insoluble cellulose (9% DW) [61], and the non-structural water-insoluble starch
(10% DW) [23]. Ulvans are mainly composed of sulfated rhamnose, uronic acids (glucuronic
acid and iduronic acid) and xylose and are the major polysaccharides present in the cell
wall [62]. The high carbohydrate content and the presence of valuable polysaccharides
make Ulva spp. of interest for the production of pharmaceutical products and biofuels.

Table 2. Essential amino acids composition of the macroalgae Ulva spp. and conventional foodstuffs
(g/100 g proteins).

Ulva spp. Soybean Corn Wheat

Phenylalanine 3.9–7.1 2.4 3.5 4.1

Leucine 4.6–6.9 7.3 8.8 5.9

Methionine 1.4–2.6 1.2–1.4 0.9 1.3

Lysine 3.5–4.5 6.4–6.5 1.8 2.9

Isoleucine 2.3–3.7 3.6 2.5 1.8

Valine 4.1–6.2 4.5 3.0 3.1

Threonine 3.1–6.9 4.0 2.0 2.9

Histidine 1.2–4.0 3.8–4.0 2.0 3.8
Sources: Ulva spp. (U. lacinulata U. pertusa and U. lactuca) [30,51]; Soybean [63]; Wheat [45]; Corn [64].

Minerals, proteins and fibres (Ulvans and cellulose) make Ulva biomass suitable for
food and feed industries. In Asian countries, Ulva is popularly consumed as a foodstuff or
can be used as an extract, for example, in health supplements [65]. In Western countries,
seaweeds are mostly used as food additives or extracts and the use of Ulva as a foodstuff is
still marginal [66,67]. This low popularity as a foodstuff might be partly explained by the
legislation in place in Europe. Indeed, since 1997, according to the online European Novel
Food Catalogue, only one Ulva species, U. lactuca, is allowed for human food consumption
in all European countries, being classified as “non-novel food”. An exception to this is
in France, where all Ulva species are accepted as food [13,68]. Molecular improvements
to species classification, as well as sequencing type specimens in herbariums, have now
determined that the species U. lactuca is absent in the East North Atlantic Area [11,69].
With this finding, it is highly likely that much of the Ulva spp. biomass consumed in
Europe is misattributed and a change in legislation may be necessary. Including other Ulva
species in the European list of species suitable for human consumption would encourage
the consumption of endemic seaweed species and may contribute to the expansion of
this market.

However, special attention should be paid to the use of Ulva spp. as food for humans
regarding food safety regulations [25]. While Ulva spp. can be natural accumulators of
beneficial compounds, they can also accumulate toxic elements, such as heavy metals
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(e.g., mercury, arsenic, lead and cadmium) [70–72]. In Europe, there are strict legal limits
concerning the maximum safe exposure levels for heavy metals. These limits are based
on the recommendations of the Joint FAO/WHO Expert Committee on Food Additives
(JECFA) and the European Food Safety Authority’s Expert Group on Contaminants in
the Food Chain (CONTAM Group) and are established in legislation by Commission
Regulation (EC) No. 1881/2006 [73].

In the 19th and early 20th centuries, seaweeds and in particular, the Ulva spp. were
commonly used as feed for cattle, horses, and poultry in Europe (Norway, Scotland,
France) and America [74]. However, there are limited data on the digestibility and energy
values of Ulva for animals and especially for ruminants. This would depend on the
biochemical content of the seaweed and also on the adaptation of the animal to this
particular feed [53,75]. Their use as substitutes for land-based products for protein and
other essential nutrients, such as minerals and vitamins has already been tested and led
to Ulva biomass inclusion as feed for shellfish/finfish aquaculture [76]. Currently, the
main use of Ulva biomass as feed is for abalone, shrimp, and fish aquaculture [77–81].
Previous works in finfish aquaculture demonstrated the positive impact on fish growth of
the inclusion of green seaweeds in their diet. For example, Hashim and Saat (1992) [82]
showed that the incorporation of 5% Ulva spp. in the feed for Snakehead murrel resulted in
an increase in growth rate, feed efficiency and feed consumption. The positive influence
of including Ulva in fish feed has been demonstrated for other fish species, such as the
Atlantic salmon, European sea bass and Nile tilapia [81,83,84].

Ulva biomass can be considered a good substitute feed for livestock because it contains
more crude protein and minerals than traditional forages [85]. Ulva biomass can be incorporated
into poultry diets, leading to a nutritional advantage [86]. Indeed, Abudabos et al. (2013) [38]
demonstrated that replacing 3.0% of corn in the diet with U. lactuca for 21 days, had no
negative effects on the measured production parameters of poultry, but improved carcass
characteristics in terms of dressing and breast yield.

Ulvans are the most abundant chemical compounds showing biological activity in
Ulva. An ulvan extract of U. compressa has been reported to have antiviral activity, inhibiting
virus propagation [87]. In U. rigida, antioxidant activity has been associated with its high
polyphenolic content [88]. The crude extracts of two others Ulva species, U. intestinalis
and U. lactuca, have also demonstrated antiprotozoal and antimycobacterial activity [89].
Sterols from Ulva have been reported to reduce blood cholesterol levels and were found
to reduce excessive fat deposition in the heart [90]. Beyond Ulva biochemical compounds,
the antimicrobial potential of Ulva epiphytic bacteria has also been reported in the species
U. rigida [91]. Despite the value of these compounds, procedures for their large-scale
extraction are still largely under development. Further advances in these methods are
needed to support widespread usage and examination by the pharmaceutical industry [34].

This biomass is up to 50% carbohydrates, with no lignin, making it an excellent
candidate for the production of bioethanol [53,92]. With the aim of decreasing reliance
on fossil fuels, plant and algal biomass is considered a promising source of raw materials
for biofuel production. Among the different biofuel types produced from macroalgae
biomass are biodiesel, biogas, biomethane, hydrogen and bioethanol, with the latter being
the most widely produced fossil fuel alternative from plant material [93,94]. The use of
macroalgae biomass as a raw material for biofuel production offers interesting advantages
over many land plant based biomasses. Among the benefits, the use of seaweeds avoids
competition with food crops for arable land, many macroalgae do not require freshwater,
which is increasingly scarce in many areas in the world, and often macroalgae cultivation
does not require the supply of fertilisers, which are environmentally and economically
costly [95]. Qarri and Israel (2020) [96] have also demonstrated that Ulva spp. dried biomass
contained 16 to 22% of its dried biomass as TRS (total Reducing Sugars), and TRS showed
a conversion rate of 30% to ethanol upon fermentation. The feasibility of producing Ulva
feedstock in outdoor land-based cultivation for bioethanol production has been investigated
and economic analyses have been conducted [96–99]. A long-term research program has
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shown that outdoor ponds of 1000 m2 can produce 10 tons of Ulva biomass (DW) per year
which can generate about 730 L of ethanol [96,98]. However, if biofuel production from
seaweed biomass has some potential, the use of this biomass for food/feed or extraction
of high value compounds is probably economically and environmentally more promising.
Hence, we suggest that biofuel production from seaweed biomass shall be beneficial in the
frame of a zero-waste strategy, e.g., by producing biofuel after the previous extraction of
valuable compounds from the biomass.

Finally, the high growth rate of Ulva biomass, up to 30% per day, implies that Ulva spp.
has a high nutrient assimilation potential. It makes them a suitable candidate for biore-
mediation processes which could eventually allow for offsetting the biomass production
costs [2,100–103]. Moreover, because of their tolerance to different salinities, the use of
Ulva spp. for the bioremediation of a wide range of wastewaters is possible [22,104]. Several
studies have reported the nutrient removal efficiency of Ulva spp. with an assimilation
rate for ammonium in the range of 50–90 µmol N g−1 DW h−1, the variation is explained
by the species and growth conditions used [17,105–108]. Moreover, as mentioned before,
Ulva species are known to rapidly accumulate high concentrations of heavy metals from its
environment, which makes it suitable for heavy metal bioremediation [109,110]. Ulva spp.
is also already used for bioremediation in shellfish aquaculture and several studies have
demonstrated its effectiveness in the treatment of aquaculture effluents and bio-reactor
sludge [15,17–19,22].

In recent years, coastal eutrophication associated with shellfish and finfish aquaculture
has been a rising issue. In this context, integrated multitrophic aquaculture (IMTA), i.e., co-
cultivation of marine livestock with primary producers, such as seaweeds, would mitigate
the detrimental effects of aquaculture, enhancing its sustainability. The integration of Ulva
into livestock monocultures, e.g., shrimp, urchin and abalone has led to several benefits,
including a reduction in effluent nutrient loads released into the environment, a reduced
need for commercial feed as Ulva spp. can be used as feed for those species (see above),
and in some cases an increase in the economic value of the final product [19,22,111]. The
global distribution of the genus Ulva also suggests that this approach may be applied
worldwide [18,112]. However, species or even the strains which could be used need to be
carefully selected. Indeed, it has been shown that species and strains respond differently
in terms of growth performance, biomass composition and nutrient uptake in response to
variations in environmental factors, such as nutrient source and concentration, salinity, or
water temperature [107,113,114].

3. Strategies to Improve Ulva Biomass Yield and Composition

Ulva is a valuable marine resource, and its biomass can be used for a lot of purposes
(see above). However, its biochemical composition varies significantly according to the
strains, species, environmental conditions, and likely other factors, such as its associated
microbiome [19,32,35,115,116]. Environmental growth conditions are thought to be the
main factor influencing the composition of seaweed [117]. However, a recent study has
shown that genetic variation can lead up to a five-fold variation in major compounds of
Ulva biomass [23]. In addition, if the genotype (G) and environment (E), are components
explaining the yield of a crop, their interaction (G*E), is also a major component, as it
has been widely described for land crops [118,119]. Unfortunately, G*E has not yet been
properly described in Ulva spp. In other words, Ulva spp. phenotypic variation is extensive,
and the respective contributions of the genotype, environment and their interaction remain
to be described. Another significant consideration for Ulva spp. phenotypic outcomes is
the mutualism with microorganisms. Ulva can be considered a holobiont with its associ-
ated microbiome which is necessary for the proper development of the organs (rhyzoids
and thalli) [120]. It is also likely that the microbiome is required for optimal vegetative
growth [120]. A lot of research is still required, especially for large-scale cultivation where
the biomass is usually outdoors and subject to fluctuating environmental conditions [121].
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3.1. Environmental Conditions, a Focus on Salinity

Salinity is one of the most important factors influencing the distribution of the coastal
green seaweed Ulva [122]. It is also probably the most important environmental factor to
consider for the use of Ulva spp. in the bioremediation of coastal fresh/brackish wastewa-
ters or in any other aquaculture application outside the sea. Ulva belongs to the intertidal
zone and is a euryhaline genus that tolerates a wide range of salinities, from the hypoha-
line to hyperhaline zones [123]. Generally, intertidal seaweeds have a higher capacity to
withstand changes in salinity than subtidal species. For example, the seaweeds present in
the pools formed during the retreat of the sea can experience large variations in salinity
during the day, ranging from 0.1 to 3.5 times that of seawater [124]. Importantly, Ulva spp.
have the remarkable characteristic to include marine, brackish and freshwater species [123].
This makes this genus ideal for the investigation of the mechanisms involved in salinity
tolerance and adaptations, as well as a source of diverse species which can be deployed for
bioremediation, according to the salinity observed in the wastewater to be treated and the
availability of water sources.

Variations in salinity can cause osmotic, ionic and oxidative stresses, which have a
strong effect on the cellular functions of photosynthetic organisms [125]. Under salinity
stress, variations in osmolarity disturb cell turgor pressure, ion distribution and metabolic
reactions, and often lead to an accumulation of reactive oxygen species (ROS). This accu-
mulation of ROS is responsible for damage to protein complexes, membranes and other
cellular components, thus affecting metabolism and growth, leading in extreme cases to
cell death [122,126–128]. Such damage can result from either hypo or hyper-salinity treat-
ments [129]. A number of publications document the impact of salinity on the growth rate
and nitrate and phosphate uptake of Ulva species [114,130,131]. Disturbances in carbon and
nitrogen metabolism due to changes in hypersaline conditions have also been described
in the species U. pertusa, with an increase in the compatible solute proline [132]. In re-
sponse to hyposalinity stresses, growth and physiological impacts of salinity have been
largely documented in a number of Ulva species, such as U. intestinalis, U. prolifera, U. linza,
U. limnetica, U. lactuca and U. australis [129,132–138]. A six-day exposure of U. prolifera to
hyposaline conditions, from 30 ppt to 10 ppt, has a significant impact on growth rate and
photosynthetic performance, decreasing growth rate by 65% [139]. Lu et al. (2006) [129]
also found that after only 4 days of exposure of Ulva fasciata to hyposalinity (10 ppt), there
was a reduction in maximum photosynthetic quantum efficiency (Fv/Fm) of 10%, which
was proposed to be due to oxidative damage in chloroplasts [129].

Salinity is also known to affect the morphology of Ulva species [140–143]. Some Ulva
species, such as U. compressa and U. intestinalis can be found with two distinct morphotypes,
tubular and foliose thalli. Indeed, U. compressa is found as a monostromatic tubular morpho-
type in a saline/hypersaline environment and a distromatic foliose form in a low salinity
environment, such as estuarine sites [141]. It is not clear whether these differences can be
attributed to a direct effect of salinity or are an indirect effect of salinity associated variation
in the microbiome [144]. No obligate foliose species have been recorded in freshwater
ecosystems and tubular morphotypes are found in a broader range of salinities [3,145,146].
For example, U. flexuosa is the only Ulva species known to date which is able to grow
from ultra-oligohaline to hyperhaline zones where salinity exceeds 50 PSU [4,142,145,147].
U. torta also shows a very wide range of salinity tolerance, from 1 to 36 PSU [123].
Valiela et al. (1997) [148] have hypothesised that those tubular cells have a better survival
potential under low salinity conditions, e.g., a higher surface-volume ratio allowing for
more rapid nutrient uptake compared to the foliose morphotype. In addition, an increase in
the number of branches associated with a thallus in an aggregated form under low salinity
has been reported for the species U. prolifera [6]. It was hypothesised that this may allow for
better protection against increased turgor caused by lower salinity, as this new morphology
would allow for the establishment of a more stable microenvironment around Ulva thalli.
Contradictory observations were made in the distribution of U. compressa, which more
frequently presents the tubular morphotype at high salinity and the foliose morphotype
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at low salinity [141,144]. Going further, Rybak et al. (2018) [123] hypothesised that an
ancestral tubular morphotype carried tolerance and rapid adaptation mechanisms that are
independent of morphotype, with these being lost among more recently diverged foliose
and/or tubular species, but experimental evidence is unfortunately lacking.

Recent gene expression studies identified candidate genes for involvement in tolerance
to short-term low salinity conditions [125]. In one study, genes involved in photosynthe-
sis and glycolysis were typically shown to be up-regulated in response to hypo-salinity
stress [125]. An earlier study demonstrated the downregulation of many genes related to
lipid metabolism, membrane and cell adhesion (51–93 genes) when U. prolifera and U. linza
were cultured in fresh/brackish water compared to seawater [149]. The same study also
identified some upregulated genes, encoding an ion transporter, a hydrolase and multiple
heat shock proteins. Despite the insight that such comparative transcriptomics can offer,
a more thorough understanding of the mechanisms of acclimatisation and tolerance to
salinity variations is likely to require targeted strategies to identify genes involved in the
process, such as via genome-wide association studies or QTL mapping.

3.2. Microbiome

Ulva spp. depend on mutualistic bacteria for proper development and growth [1,150–152].
This dependence is not related to the presence of a single, defined bacterium, rather, it can
be achieved by redundant partnerships and the details of these requirements are poorly
described [153]. A useful study system for this dependency has been developed and termed
“tripartite symbiosis”, where Roseovarius sp. MS2 and Maribacter sp. MS6 are sufficient
to restore normal development in the Ulva host [154]. Ulva does not survive or grows at
a very low rate with an undeveloped cell wall when deprived of its microbiome [120].
Ulva-associated bacteria also provide nutrient cycling and disease resistance for their
host [155,156].

The change in environmental conditions during establishment in aquaculture settings
often causes stress in the seaweed and changes in the associated microbiome [155,157].
Ulva adaptation to new environmental conditions can be considered to occur via changes in
the metabolism of the seaweed depending on its genetic characteristics and changes in the
bacterial community associated with Ulva that provides support through the production of
algal growth and morphogenesis-promoting factors (AGMPFs) [158]. The composition of
the microbiome associated with Ulva spp. is influenced by the geographical location as well
as abiotic factors, such as temperature, salinity and nutrient concentrations [159,160]. Even
if a core microbiome with the essential bacteria exists in macroalgae, Burke et al., 2010 [159]
and Tujula et al. (2010) [161] have demonstrated that the composition of the microbiome
changes both seasonally and geographically. Understanding this microbiome-Ulva com-
plex is, therefore, essential given its importance for the adaptation of Ulva spp. to its
environment, which will vary between aquaculture systems.

Many studies have examined the impact of growing conditions on the epiphytic mi-
crobiomes of seaweed [162,163]. In Fucus vesiculosus, an increase in salinity can cause a sig-
nificant loss in bacterial community diversity [164]. Saha et al. (2020) [162] have shown that
the epibacterial communities of an invasive red seaweed (Agarophyton vermicullophylum)
changed significantly in terms of species richness and diversity according to the salin-
ity. Concerning Ulva species, Tujula et al. (2010) [161] have shown that the microbiome
associated with the species Ulva australis can vary considerably among the individuals
collected from the same area and between different seasons. Califano et al. (2020) [157]
have investigated the impact of wild Ulva transfer in a controlled environment (IMTA)
on the composition of its microbiome and showed that the implementation of IMTA re-
sults in detectable changes in the epiphytic bacterial community. Another more recent
study, focusing on the impact of one environmental factor, salinity, on the Ulva bacterial
community has shown that the Ulva-associated microbiome is strongly structured by salin-
ity [144]. Interestingly, the differences in bacterial communities at low and high salinity
were quantitative rather than qualitative. These studies highlight that changes in bacterial
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communities are strongly environment dependent, which is an important consideration for
the establishment of a new Ulva aquaculture farm [91,165,166].

To date, studies on associations between microbiota and conditions remain correla-
tive, and only hypotheses can be made regarding the ability of bacteria to facilitate host
adaptation to environmental factors. While studies have identified the bacteria required for
Ulva development [1,150,151], studies identifying specific bacteria influencing the growth
of mature thallus and the biochemical composition of the biomass are still lacking. To
date, a limited number of studies have attempted to demonstrate that certain bacteria can
promote Ulva growth [167,168] and can affect the biochemical composition of Ulva [116].
Further, examination of the molecular mechanisms driving Ulva: microbial interactions is
still limited. For example, are there certain bacteria adapted to a specific environment that
may be better than others for promoting Ulva growth? If they exist, such bacteria could
be of critical importance to the optimisation of Ulva yields and biomass composition in
aquaculture conditions. Thus, the use of different “cocktails” of bacteria could directly
impact the biochemical content and the growth of Ulva [158,169]. Future studies should
investigate the effect on Ulva phenotype of the microbiome:host genotype interactions, and
the impact of environmental conditions on these interactions. For example, the exchange
of resources and chemical signals from both host seaweed and epiphytic bacteria, and the
impact of environmental conditions on these exchanges, should be documented.

3.3. Natural Variation within the Genus Ulva spp.

Natural variation refers to changes in phenotype between individuals from the same species,
which are explained by genetic differences. As a result, to assess the extent of natural variation
within a species, individuals must be grown in the same environmental conditions in order to
exclude changes in phenotypes due to the environment. Natural variation within Ulva species
has been studied both for foliose and tubular species [23,170–172]. Lawton et al. (2013) [171]
reported high levels of variation in the specific growth rate of the foliose thallus of U. ohnoi,
with strains cultivated in the same location showing > two-fold variation in growth rates.
Fort et al. (2019) [23] also reported extensive variation within U. lacinulata species, >four-
fold, from 0.092 to 0.371 mg·mg−1·d−1. This variation was in fact as high as that observed
between six different Ulva foliose species. Moreover, the authors reported a similar extent
of natural variation for a large range of biochemical traits, e.g., starch content and protein
content. Interestingly, Fort et al. (2020) [103] subsequently reported that for a given species,
the Ulva strains originating from green tide areas have higher protein, pigments, lower
starch content and higher growth rates than other samples, making green tide areas suitable
places for the collection of strains for aquaculture if the biomass produced is destined to
feed/food applications. Huo et al. (2013) [173] also identified several strains from a same
species in greentides.

Although natural variation has been identified as being very high within Ulva species,
the associated genes are still unknown. A recent study has demonstrated the importance of
intraspecific variation in mitochondrial genomes within the species Ulva compressa [174].
However, many previous studies of Ulva organellar genomes have shown very few differ-
ences within Ulva species, and high variation between species, suggesting that a large part
of the natural variation within Ulva species is explained by nuclear encoded genes [43,172].
A recent study written by Fort et al. 2022 [11], details the genomic resources available in
Ulva. Hence, nuclear DNA marker association studies, such as genome wide association
studies or quantitative trait loci analyses, should be considered with growth and metabo-
lite profiles to engineer, select or breed for improved yield and biomass characteristics
in aquaculture.

However, before undertaking such targeted improvement strategies, significant pro-
ductivity gains can already be achieved by simply screening this existing natural genetic
variation to identify and isolate fast-growing strains with desirable characteristics. An
important aspect of strain selection is to select strains in the environment they will be
cultivated in afterward. The phenotype is dependent on the genotype (G), as well as the
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environment (E), and their interaction (G*E); hence, strain selection must be performed
under environmental conditions as close as possible to those the strains will be cultivated
in. To avoid the introduction of invasive strains, representing a threat to ecosystem balance
and biodiversity and to ensure the preservation of the local genetic diversity, we suggest
that such selection should be performed using local strains.

4. Conclusions

The global distribution, with wide environmental tolerance, high growth rate and
nutrient uptake as well as a unique biochemical composition has made the green algal genus
Ulva an attractive model for aquaculture and bioremediation. Ulva spp. biomass is becoming
increasingly important economically, with many different industrial applications investigated,
but the economic viability of large-scale cultivation needs further consideration.

A “perfect programme” to obtain the best Ulva product is obviously very complex
to define because of the many parameters which can influence the yield and quality of
the biomass produced (Figure 1, “Phenotype”). Each aquaculture system has different
growing conditions (“E”) that will have a direct impact on the final product obtained, but
the impact of natural variation (“G”), microbiome composition (“M”), and the interaction
between all these factors cannot be neglected. Three-way interactions between G, E and M
may also be important [175], particularly in key developmental phases, such as substrate
adhesion during colonization [176]. Furthermore, it is important to emphasise that the
optimal growing conditions for biomass yield do not necessarily correspond exactly to the
ideal growing conditions for obtaining a valuable final product for the desired application.
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Figure 1. Description of the main factors controlling the phenotype. G: Genotype [123,151,152,177].
Elite or strains of interest can be selected by screening wild type strains and/or the creation of
artificial populations. E: Environment [103,125,159,161]. M: Microbiome [155,156,169]. Variations in
the impact of the microbiome on Ulva phenotype are expected via qualitative and qualitative changes
in bacterial composition. Importantly, the interactions between those three factors are also expected
to influence Ulva phenotype.
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The species within the genus Ulva possess a large diversity in environmental toler-
ances, necessitating the careful selection of a species for cultivation to achieve a desirable
balance of biomass yield and biochemical composition. Therefore, further research should
be conducted on improving the selection of strains according to the application, and to
facilitate this work, the identification of the genes involved should be considered as they
could be used, for example, as markers to assist the selection process. Moreover, those genes
could provide the basis for genetic engineering to introduce novel traits and/or optimise
metabolic throughput towards a desired biochemical composition. The creation of trans-
genic macroalgae has already proven to be successful in the genus Ulva and the progress
of knowledge in this field seems to be promising [177,178]. However, the acceptance of
these modified organisms remains questionable. Will the cultivation/commercialisation of
an improved/engineered strain be accepted, even if it is generated from a local genotype?
What will be the potential impacts of the spread of these modified genes on local biodiver-
sity, as Ulva is already considered a highly invasive species worldwide? Moreover, for such
targeted improvement strategies to succeed in Ulva, more genomic resources are required to
empower genomic selection and molecular breeding. Fortunately, the extensive phenotypic
diversity present among wild isolates means that large-scale selection programs, supported
by marker-assisted selection, but not involving transgenic approaches, are likely to achieve
significant improvements to yield, resilience and biomass quality [179].

While large-scale cultivation of Ulva spp. is still in its infancy, Ulva species represent a
promising source of biomass with many exciting valorisation opportunities. Exploiting the
valuable ecosystem services that Ulva can provide, such as in wastewater bioremediation,
provides new avenues to increase the industrial competitiveness of Ulva cultivation.
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