Skip to main content
. 2022 Nov 14;9(11):690. doi: 10.3390/bioengineering9110690

Table 2.

Synthesis of the 5-fold cross-validation classifiers for focal lesional epilepsy vs. non-epilepsy classification, with AUC, accuracy, sensitivity and specificity assessment metrics. In a validation vs. training performance check, we report the difference between AUC scores in training and in validation.

# Model AUC Accuracy Sensitivity Specificity Val vs. Train
1 SVM (linear) and ANOVA 0.736 ± 0.044 0.689 ± 0.052 0.856 ± 0.031 0.531 ± 0.102 0.0426
2 SVM (gaussian) and PCA 0.730 ± 0.030 0.705 ± 0.020 0.692 ± 0.084 0.717 ± 0.061 0.0255
3 SVM (linear) and Corr-ANOVA 0.735 ± 0.037 0.689 ± 0.034 0.672 ± 0.162 0.704 ± 0.118 0.0345
4 MLP and ANOVA 0.732 ± 0.047 0.717 ± 0.051 0.749 ± 0.116 0.688 ± 0.117 0.0082
5 MLP and PCA 0.734 ± 0.026 0.698 ± 0.018 0.674 ± 0.141 0.724 ± 0.141 0.0576
6 RFC 0.745 ± 0.022 0.714 ± 0.012 0.730 ± 0.069 0.699 ± 0.048 0.254
7 RFC and ANOVA 0.718 ± 0.047 0.686 ± 0.050 0.767 ± 0.080 0.609 ± 0.161 0.282
8 RFC and PCA 0.706 ± 0.022 0.698 ± 0.023 0.655 ± 0.117 0.742 ± 0.140 0.272
9 LogReg and ANOVA 0.734 ± 0.048 0.698 ± 0.057 0.775 ± 0.209 0.629 ± 0.205 0.0344
10 LogReg and PCA 0.729 ± 0.033 0.698 ± 0.023 0.704 ± 0.107 0.693 ± 0.131 0.0028
11 LogReg and Corr-ANOVA 0.752 ± 0.038 0.717 ± 0.037 0.634 ± 0.189 0.795 ± 0.153 0.0173