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Abstract: Many signaling pathways, molecular and cellular actors which are critical for wound
healing have been implicated in cancer metastasis. These two conditions are a complex succession of
cellular biological events and accurate regulation of these events is essential. Apart from inflammation,
macrophages-released ROS arise as major regulators of these processes. But, whatever the pathology
concerned, oxidative stress is a complicated phenomenon to control and requires a finely tuned
balance over the different stages and responding cells. This review provides an overview of the
pivotal role of oxidative stress in both wound healing and metastasis, encompassing the contribution
of macrophages. Indeed, macrophages are major ROS producers but also appear as their targets since
ROS interfere with their differentiation and function. Elucidating ROS functions in wound healing
and metastatic spread may allow the development of innovative therapeutic strategies involving
redox modulators.

Keywords: wound healing; metastasis; oxidative stress; macrophage; Hypoxia Induced Factor;
Nuclear Factor Kappa B; nuclear factor erythroid-2-related factor 2

1. Introduction

The process of wound healing is a successive well-organized cascade of events involv-
ing specific cellular and molecular actors with the intent to restore tissue homeostasis and
protect it from infection. On the contrary, unsuccessful healing is associated with severe
clinical outcomes such as tumor development. It is also now well documented that some
wounds like diabetic wounds or septic injury are associated with tumor progression and/or
with an increased risk of cancer relapse.

Excessive and prolonged inflammation during inadequate wound healing process
creates a microenvironment that shares strong similarities with tumor stroma. Notably,
these microenvironments are characterized by hypoxia that generates a neovascularization
for nourishment, influx of leukocytes sustaining the inflammatory response and break-
down/remodeling of the extracellular matrix. The tight similarity between wounds and
tumor stroma generation have been first proposed by Rudolph Virchow in 1858 with his ‘ir-
ritation theory’, in which he concluded that irritation and its subsequent inflammation were
the essential factors that led to the formation of neoplastic tissues [1]. Over a century later,
these same similarities have led Harold Dvorak to state that tumors are ‘wounds that do not
heal’ [2]. The strong similarities between the wound healing process and metastasis dissem-
ination have been extensively and recently reviewed elsewhere in particular concerning the
pivotal role of inflammation. Nevertheless, inflammation is also associated with oxidative
stress either via Reactive Oxygen Species (ROS) and/or via Reactive Nitrogen Species
(RNS) production that may play a key role in the clearing repairing process. Surprisingly,
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while these mechanisms are well known for wound healing, it remains poorly studied
concerning metastasis. In this mini-review, we will focus on the specific contribution of
oxidative stress in these two (physio)-pathological processes, in particular by describing the
molecular and cellular actors involved. Studying pathophysiological mechanism of wound
healing may help to better understand the metastasis process and lead to new therapies
and vice versa.

2. Good and Bad Wound Healing: Acute versus Chronic and Chronology of the
Cellular Actors

Four distinct and overlapping steps are needed in the physiological wound healing
process: (1) hemostasis, (2) inflammation, (3) new tissue formation and (4) tissue remodel-
ing [3–5].

Hemostasis consists of the formation of platelet plug, blood clot and consequent
local hypoxia. Then, during the inflammation phase, neutrophils and tissue resident
macrophages are the first immune responding cells to the wound [6–9]. This stage also
induces immune cells invasion particularly monocytes recruited from the bone marrow
and differentiated into mature inflammatory macrophages (named M1) [10]. Proteolytic
enzymes, pro-inflammatory cytokines, growth factors and ROS are secreted [11] to protect
organism against bacterial or other micro-organisms invasion. After this step, the levels
of pro-inflammatory cytokines and oxidative stress decrease to return to a basal state [11].
Resolving anti-inflammatory macrophages (named M2) contribute to remove cells and bac-
teria debris by efferocytosis or phagocytosis [12]. Keratinocytes, fibroblasts and endothelial
cells migrate to the wound and proliferate to initiate new tissue formation stage. Finally,
tissue remodeling macrophages promote matrix metalloproteinase (MMP) expression in
order to restore functional and anatomical integrity of tissue (Figure 1) [13–16].
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Figure 1. Timeline of cellular actors, ROS and hypoxia involved in wound healing. 

After injury, various cells are recruited during the early phase of wound healing. 
During the inflammation stage, platelets first migrate to the site of the injury to induce 
coagulation followed by neutrophils. At the same time, ROS level increases while local 
oxygen concentration decreases leading to hypoxia. Lymphocytes and M1 macrophages 
are then recruited and promote inflammation. During the angiogenesis and proliferation 
stage, fibroblasts migrate to the wound and macrophages polarization is modified. Hy-
poxia is reduced and ROS level decreases indicating the beginning of the late phase. Dur-
ing the remodeling phase, macrophages are polarized in an M2 resolving phenotype and 
fibroblasts are still present. ROS return to a physiological low level and hypoxia is abol-
ished. 

Disturbance at any point in the wound healing process can contribute to pathological 
wound like fibrosis or non-healing wound. 

2.1. Macrophages in Wound Healing Process 
Macrophages are major contributing cells in the wound healing process following 

organ damage either induced by infection, autoimmune disorders, mechanical or toxic 
injuries. Evidence demonstrates that macrophages depletion reduces inflammatory re-
sponses whereas macrophages activation reduces recovery responses [13,17]. Beside tis-
sue resident macrophages, bone marrow-derived macrophages, along with neutrophils, 
are among the first cells recruited to the site of injury. Their role, widely reviewed within 
the past years, is described at each step of tissue repair allowing them to be grouped into 
three types of activation. Firstly, early research highlighted their pro-inflammatory and 
scavenging contribution to the inflammatory stage [18,19]. Cellular response is then initi-
ated by secreted inflammatory mediators (chemokines, ROS, matrix metalloproteases) 
leading to pathogens killing and phagocytosis [20,21]. At this stage, macrophages are 
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After injury, various cells are recruited during the early phase of wound healing.
During the inflammation stage, platelets first migrate to the site of the injury to induce
coagulation followed by neutrophils. At the same time, ROS level increases while local
oxygen concentration decreases leading to hypoxia. Lymphocytes and M1 macrophages are
then recruited and promote inflammation. During the angiogenesis and proliferation stage,
fibroblasts migrate to the wound and macrophages polarization is modified. Hypoxia is
reduced and ROS level decreases indicating the beginning of the late phase. During the
remodeling phase, macrophages are polarized in an M2 resolving phenotype and fibroblasts
are still present. ROS return to a physiological low level and hypoxia is abolished.

Disturbance at any point in the wound healing process can contribute to pathological
wound like fibrosis or non-healing wound.

2.1. Macrophages in Wound Healing Process

Macrophages are major contributing cells in the wound healing process following
organ damage either induced by infection, autoimmune disorders, mechanical or toxic
injuries. Evidence demonstrates that macrophages depletion reduces inflammatory re-
sponses whereas macrophages activation reduces recovery responses [13,17]. Beside tissue
resident macrophages, bone marrow-derived macrophages, along with neutrophils, are
among the first cells recruited to the site of injury. Their role, widely reviewed within
the past years, is described at each step of tissue repair allowing them to be grouped
into three types of activation. Firstly, early research highlighted their pro-inflammatory
and scavenging contribution to the inflammatory stage [18,19]. Cellular response is then
initiated by secreted inflammatory mediators (chemokines, ROS, matrix metalloproteases)
leading to pathogens killing and phagocytosis [20,21]. At this stage, macrophages are
mainly described with a pro-inflammatory ‘classical’ M1 phenotype. Secondly, in response
to microenvironment stimuli, the predominant macrophage population can maturate to
an anti-inflammatory healing phenotype depicted to remove dead cells and dampen in-
flammation [22,23]. These M2 resolving macrophages promote cellular proliferation and
blood vessel development through growth factors (Platelet-Derived Growth Factor [PDGF],
insulin-like growth factor-1, Vascular Endothelial Growth Factor [VEGF]) and reduce local
hypoxia following injury [24,25]. They secrete Transforming Growth Factor-β1 (TGF-β1),
which will allow fibroblasts differentiation, stromal cells migration and expansion, wound
contraction and closure. In the final stage, a specific subtype of macrophages, called
tissue-remodeling macrophages, instruct tissue repair suppressing immune response and
subsequently resolving inflammation.

These three functional phenotypes involve an activation continuum that evolves,
according to cellular ontogenesis and environmental stimuli, from a pro-inflammatory to a
remodeling phenotype [26,27]. Each stage of wound healing must be carefully regulated,
especially by different macrophage phenotypes whose roles are unique and critical [28].

2.2. ROS in Wound Healing

ROS (superoxide anion [O2
•–] and hydrogen peroxide [H2O2]) act in the early phase

of wound healing to induce vasoconstriction, platelet activation and defend host from
bacterial invasion [11,29,30]. They play a pivotal role in orchestrating wound healing owing
to the function of their signaling mediators in immune and stromal cells. ROS allow the
recruitment of neutrophils, macrophages and/or lymphocytes to the site of injury [31]
and promotes endothelial migration and division. Oxidative stress indicators include
glutathione oxidation, modulation of redox-sensitive kinases, or transcription factors such
as Nuclear Factor-Kappa B (NF-κB) [32].

ROS level is finely controlled by small anti-oxidant molecules (vitamin C, vitamin E, α-
tocopherol, Nicotinamide adenine dinucleotide phosphate [NADPH]) or by an endogenous
anti-oxidant and pro-oxidant specialized group of enzymes [33]. Anti-oxidant enzymes
(catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD], NADPH
quinone oxidoreductase-1 [NQO-1], Heme-oxygenase-1 [HO-1]) are designed to detoxify
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ROS and thereby eliminate their deleterious effects. Contrariwise, NADPH oxidases
(NOXs) are a family of major ROS-producing enzymes. The seven transmembrane isoforms
(NOX1, NOX2, NOX3, NOX4, NOX5, Duox1, and Duox2) have tissue- and cell type-specific
expression profiles and are involved in ROS production as NOX2 and NOX4 mRNA are
overexpressed in injury [34]. In addition to the control of the redox state, these enzymes are
implicated in a wide range of cellular processes, which includes apoptosis, cellular signal
transduction, host defense, angiogenesis and oxygen sensing [35].

A precise homeostatic control of oxidative state is essential for normal tissue repair
while extreme (low or high) levels of ROS can impair wound healing [36–39]. Indeed,
several studies indicated that reduced ROS level, by magnetic field or pro-oxidant enzyme
deficiency, improved wound healing in a model of diabetic mice [34,40]. Furthermore, it has
been well documented that non-healing wounds, due to diabetes, or chronic wounds char-
acteristic of pathologies such as inflammatory bowel diseases, are associated with a higher
ROS level [32,41–43]. Elevated and sustained ROS are, in these cases, due to excessive or
uncontrolled oxidant production or decreased anti-oxidants level (Vitamin E, glutathione)
or enzymes activity (CAT, GPx or SOD) [44,45]. This results in a prolonged inflammation
process. It therefore appears important to be able to modulate ROS production in healing
and to redirect the therapeutic strategy towards their control.

3. Macrophages Polarization: Role of ROS and NOXs

Because macrophages and ROS play major roles in the process of tissue repair, we will
focus this review on the mechanisms underlying ROS production during macrophages
differentiation and polarization in an oxidative microenvironment.

Based on hydroxyl radical (HO•) imaging, macrophages differentiation stage and HO•

formation are closely interlinked and involve NADPH and consequently NOXs [46]. Fur-
thermore, macrophages polarization towards the pro-inflammatory M1 phenotype resulted
in an increased O2

•– and H2O2 production compared to M2-polarized macrophages [47].
These results suggest the implication of NOX enzymes in this process.

Further evidence identified the pro-oxidants enzymes NOX1, NOX2 and NOX4 in
phagocytes [47,48]. NOX1 and NOX2 are the main isotypes expressed in both bone mar-
row monocytes and bone marrow-derived macrophages [49]. NOX2 is the most well-
characterized enzyme for its role in phagocytic function and is the highest expressed in
both human and murine immature macrophages, followed by NOX4 and NOX1 [47,49].

3.1. ROS in Macrophages Differentiation/Polarization and Function

Macrophages produce ROS, which can modulate macrophages function at various
stages. Firstly, ROS are essential for the monocytes to macrophages differentiation. Indeed,
previous studies indicated that chemically inhibition of ROS generation may affect the
monocyte-macrophage differentiation process. Treatment with butylated hydroxyanisole
(BHA), a ROS inhibitor, during differentiation blocked the increase in the expression of the
macrophage marker CD11b, the induction of O2

•– production and the specific macrophage
morphology features [50,51]. This loss of morphology was partially recovered by low
concentrations of H2O2 [50]. In the context of healing, ROS produced by neutrophils allow
bone marrow monocytes to differentiate into macrophages [52].

Secondly, ROS are required for M2 differentiation. ROS inhibitors have been re-
ported to block the overexpression of the M2 marker CD163, the M2 cytokine interleukin-
10 (IL-10) and the chemokines CCL17, CCL18 and CCL24 [50,51]. ROS inhibition only
acts during the polarization stage and has no effect on the phenotype and function once
the macrophage is mature. Indeed, decreased M2 ROS production, after lipopolysac-
charide (LPS) treatment, do not affect the expression of M2 markers such as CD163 or
CD200R [53]. With regard to the pro-inflammatory macrophages, this treatment had
no effect on the CD86 marker and little effect on the secretion of M1 cytokines, Tumor
Necrosis Factor-α (TNF-α) and IL-6 [50]. Other studies concluded that depletion of
H2O2 by catalase or inhibition of ROS favors the expression of M1 markers on bone
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marrow-derived macrophages [47] and a function on T cell proliferation comparable
to M1 macrophages [51]. It therefore seems that ROS are required for macrophages
differentiation and polarization.

3.2. NOXs in Macrophages Polarization

At the molecular level, NOX1 and NOX2 are implicated in this process. Indeed, in
monocytes from NOX1/2 double knockout mice, ROS generation was largely blocked
and affected macrophages differentiation resulting in more rounded and less differ-
entiated cells [49]. NOX2 and its product O2

•– specifically promote an M1 phenotype
with phagocytic activity and pro-inflammatory properties [54,55]. Accordingly, NOX2
deficiency reduced pro-inflammatory M1 macrophages and promoted M2 macrophages
polarization in a mouse model of brain injury [56]. In contrast, M2 polarization of
macrophages is characterized by both reduced NOX2 activity and reduced O2

•– produc-
tion. Loss of NOX1 and NOX2 affects the differentiation of monocytes to macrophages
and the polarization of M2 macrophages. The M2 populations from NOX1/2 double
knockout mice were substantially reduced compared with the wild-type mice [49]. In a
wound healing model, NOX1/2 double knockout mice had less infiltration of M2-type
macrophages in the wound edge and a delayed wound healing compared with wild-type
mice [49,57]. These results may indicate a defect in macrophages polarization or recruit-
ment to the site of injury. Another study, on in vitro murine macrophages, indicated that
loss of NOX2 induced a small but significant reduction in M1 polarization with no effect
on M2 polarization [47,49].

Because NOX4 expression is increased during phorbol myristate acetate (PMA)-
induced monocytes to macrophages differentiation, several studies analyzed the con-
tribution of this enzyme on this process. Data showed that NOX4 expression remained up-
regulated in the PMA-induced differentiating macrophages, while treatment with apocynin
downregulated NOX4 in an in vitro system [46]. When NOX4 was chemically inhibited,
TNF-α and IL-1β expression was increased in human macrophages, derived from periph-
eral blood monocytes, indicating M1 polarization. This was accompanied by a significant
downregulation in M2 markers [47]. On the contrary, other studies focused on murine
intestinal macrophages abundantly found in inflammatory bowel diseases and expressing
various phenotypes. They revealed that NOX4 inhibitor suppressed the M1 polarization
of intestinal macrophages, reducing the proportion of F4/80+ CD11c+ macrophages and
inflammatory cytokines levels [58]. We can assume that these divergent results of NOX4
inhibition relate with the macrophages lineage and that NOX4 may act on distinct differenti-
ation and polarization stages. Furthermore, the absence of NOX4 increased ROS formation
in M1-polarized macrophages. Because the major source of ROS in M1 macrophages is
NOX2, studies revealed that its expression was elevated in NOX4-deficient M1 polarized
macrophages [47].

3.3. Molecular Events and Signaling Pathways Involved in Wound Healing

Wound healing stages involve specific molecular hallmarks such as hypoxia, inflamma-
tion and oxidative stress. These markers are regulated, among other things, by numerous
transcription factors. Activation of these transcription factors is a key event for the hypoxic
or inflammatory signaling cascades and the oxidative stress response. We will describe
here the main signaling targets identified in macrophages (i.e., Hypoxia Induced Factor
[HIF], NF-κB and nuclear factor erythroid-2-related factor 2 [Nrf2]) and their functional
interrelation (Figure 2).
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Nrf2 in the cytoplasm. When ROS are produced, Keap1 is oxidized and ubiquitinated thereby lead-
ing to its proteasomal degradation. Consequently, Nrf2 is free to translocate to the nucleus and 

Figure 2. ROS signaling pathways involved in wound healing and metastasis. Extracellular ROS
activate intracellular signaling pathways. 1© Nrf2 pathway. In unstressed conditions, Keap1 retains
Nrf2 in the cytoplasm. When ROS are produced, Keap1 is oxidized and ubiquitinated thereby
leading to its proteasomal degradation. Consequently, Nrf2 is free to translocate to the nucleus
and binds to the anti-oxidant response elements (AREs). This binding inhibits NOX2 and pro-
inflammatory cytokines transcription and enhances the anti-oxidant defense response expression.
2© NF-κB pathway. In normal conditions, NF-κB is associated with IκB and retained in the cytoplasm.

In the presence of ROS, IKK is activated and can phosphorylate IκB to induce its dissociation
with NF-κB and its proteasomal degradation. Then, free NF-κB translocates to the nucleus, binds
to NF-κB Response Elements (NREs) and induces target genes transcription leading to a global
inflammatory response. ROS are able to directly act in the nucleus inhibiting NF-κB binding to the
NREs. 3© HIF pathway. In homeostatic conditions, HIF-1α is hydroxylated by PHDs and targeted for
proteasomal degradation. HIF-1α is also regulated by FIH, which blocks the interaction between HIF-
1α transactivation domain and coactivators on HREs. During hypoxia or when ROS are produced,
PHDs are inactivated which stabilizes HIF-1α and FIH is inhibited. HIF-1α then translocates into the
nucleus where it binds to HIF Response Elements (HREs). Transcription of target genes is induced
leading to hypoxic and angiogenic response. Nrf2, NF-κB and HIF pathways are closely interlinked.
Nrf2 can inhibit IκB proteasomal degradation and NF-κB nuclear translocation, NF-κB pathway
induces anti-oxidant response regulating iNOS and COX-2 transcription and HIF-1α expression is
regulated by NF-κB.
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- HIF (Figure 2 1©)

In a wound, local oxygen level is reduced due to blood vessel destruction [59]. A
change in oxygen concentration regulates transcription factors, the main being HIF. This
local hypoxia implicates macrophages and induces ROS production, among others, as
signaling molecules to restore normoxia [42,60]. As oxidative stress and macrophages are
closely related during wound healing, the role of ROS on HIF activation, in macrophages,
has been investigated.

HIF are a family of 3 transcription factors (HIF-1, HIF-2 and HIF-3). These het-
erodimers of β-subunits and hypoxia-induced α-subunits (HIF-1α, HIF-2α HIF-3α bind
to hypoxia-responsive elements and activate target genes transcription. HIF-1α induces
the expression of glucose transporter 1 (GLUT1), and pyruvate dehydrogenase kinase
isoform 1 (PDK1) in macrophages [61,62]. In cancer cells, HIF-1α increases Programmed
death-ligand 1 (PD-L1) expression and cytokines secretion (i.e., VEGF) thereby promoting
tumor associated macrophages (TAM) accumulation and immune escape.

In homeostatic conditions, HIF activation is regulated by proteasomal degradation.
HIF is hydroxylated by prolyl hydroxylases (PHDs) and subsequently ubiquitinated by the
E3 ubiquitin ligase von Hippel-Lindau. These modifications direct HIF to the ubiquitin-
proteasome system for degradation. Another layer of regulation involves the interaction
between proteins from the signaling pathway. This level involves Factor inhibiting HIF
(FIH), which blocks interactions between the HIF-α transactivation domain and coactivators.
When oxygen concentration decreases, PHDs are inactive and HIF is stabilized in the
cytoplasm. This accumulation allows the transcription factor to translocate in the nucleus
and to regulate target genes expression [63].

Several studies have focused on oxidative stress and HIF during hypoxia or nor-
moxia [64,65]. They revealed that ROS contribute to HIF transcriptional activity by stabiliz-
ing HIF-1α and inhibiting FIH. Indeed, Chandel et al. demonstrate that catalase abolishes
HIF-1α stabilization under hypoxic conditions [64]. Conversely, high concentration of
H2O2 can induce HIF-1α stabilization in normoxia [65].

In macrophages, stimuli like LPS or pathogenic microorganisms’ infection, can up-
regulate HIF-1α expression and activity through NF-κB signaling [65–67]. Indeed, Li
et al. demonstrate the critical role of HIF-1α during macrophages polarization towards
pro-inflammatory phenotype. They also found that HIF-1α is necessary for macrophages re-
sponses when these cells are challenged with pathogens. Furthermore, in HIF-1α deficient
macrophages, mRNA expression, production and secretion of several pro-inflammatory
cytokines (TNF-α and IL-6) or VEGF are inhibited independently of oxygen level [67,68]. In
inflammatory bowel diseases, on the contrary, effects of HIF knockout in myeloid cells de-
pend on the type of transcription factor studied. Finally, in an intestinal context, HIF-1 has
been reported to promote inflammation while HIF-2 protects against chemically induced
inflammation [69].

- NF-κB (Figure 2 2©)

NF-κB plays a crucial role in inflammatory and immune responses and is subject to
complex regulation. It participates in a plethora of macrophages regulatory mechanisms
and is associated with extensive ROS production. Its role in healing is therefore important
at all stages of the process, whether it is at the early inflammatory phase or at the later
phase of tissue formation and remodeling [70,71].

NF-κB is a homo- and hetero-dimeric complex resulting from the five monomers in
mammals (RelA/p65, RelB, cRel, NF-κB1 p50, and NF-κB2 p52) [72]. The heterogeneity of
NF-κB targets is further increased by interactions of NF-κB dimers with other transcription
factors. The most well characterized heterodimer during inflammatory response is the
p50/p65 complex. NF-κB is kept inactive in the cytosol by binding to the inhibitory protein
IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha).
Under various stimuli (inflammation, cytosolic ROS), the IκB kinase (IKK) complex, which
is constituted of two catalytic subunits IKKα and IKKβ and a regulatory subunit IKKγ
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(or NEMO), is phosphorylated. This complex, thus activated, phosphorylates IκBα thereby
targeting the protein for proteasomal degradation. NF-κB is then free to translocate to
the nucleus and initiate the transcription of several genes [70,71,73]. ROS can also oxidize
NF-κB cysteines and inhibit its DNA binding, reducing its activity. In addition to its major
role in inflammation, an immunosuppressive one has been described in the context of
tumor microenvironment where ROS induce PD-L1 expression through NF-κB binding
to its promoter [74]. In the same way, in an inflammatory bowel disease model, ROS
activate NF-κB signaling leading to the recruitment and the polarization of intestinal
macrophages to an M2 phenotype [75]. In metabolic disorders such as obesity and type
2 diabetes, Luo et al. demonstrate that celastrol, a natural anti-oxidant, is able to suppress
M1 macrophage polarization and enhance M2 polarization through inhibition of NF-κB
nuclear translocation. This M1 polarization is mediated by the Nrf2 activation pathway [76].

- Nrf2 (Figure 2 3©)

Transcription factor Nrf2 is a basic leucine zipper (bZIP), which is a major sensor for
oxidative stress [77]. It has been described to maintain redox homeostasis and to attenuate
inflammation and thereby to be involved in wound healing [78].

Under unstressed conditions, Nrf2 is retained in the cytoplasm by Kelch-like ECH-
associated protein 1 (Keap1) that functions as an Nrf2 Inhibitor [79]. Keap1 is an adapter
protein of the E3 ubiquitin ligase Cul3-Ring-box 1, which is responsible for the ubiquitina-
tion and proteasomal degradation of Nrf2.

Upon oxidative stress, several cysteine residues on Keap1 are subjected to oxidation
which induced a conformational change in the protein and prevents Nrf2 ubiquitination and
subsequent degradation. As a consequence, Nrf2 is released from Keap1 and accumulates
in the cytoplasm. Nrf2 then translocates into the nucleus and forms a heterodimer with
bZIP proteins. On one hand, the heterodimer Nrf2 binds to anti-oxidant response elements
of target genes and regulates the expression of cytoprotective anti-oxidant genes and
detoxifying enzymes implicated in NADPH, glutathione and thioredoxin systems (HO-1
and NQO-1) [80]. Nrf2 is also implicated in NOX expression as its deletion in fibroblast
induces an upregulation of NOX4 [81]. As Nrf2 is essential to maintain redox homeostasis,
its inhibition in fibroblasts reduces specific NADPH ROS production during treatment with
ionomycin (a calcium ionophore agent) while it does not interfere with ROS levels in basal
conditions. In Nrf2 knockout mice, ROS level is increased compared to wild-type mice [81].

On the other hand, Nrf2 is described to regulate gene expression of pro-inflammatory
cytokines independently of ROS level [82]. In this case, evidence suggested that Nrf2 can
bind to the proximity of the pro-inflammatory gene (not only on anti-oxidant response ele-
ments) and interferes with the polymerase II thereby inhibiting the transcription initiation
step [82].

Furthermore, in macrophages, a high level of Nrf2 decreases LPS-induced cytokines
while, in its absence, pro-inflammatory cytokines are upregulated [83,84]. Microarrays
analyses, on bone marrow derived macrophages from Nrf2 knockout mice, indicated that
genes induced during M1 polarization are downregulated [82,83]. Other indirect evidence
suggests that Nrf2 induces M2 macrophages polarization. Overexpression of HO-1, a
Nrf2 target gene, induces an anti-inflammatory response in cultured macrophages [85].
In a model of delayed diabetic wound healing, Nrf2 activation accelerates the wound
process while Nrf2 inhibition mimics the effects of diabetes and the delayed process [84].
In inflammatory bowel diseases, Nrf2 has been reported to protect against colitis. The
first study describing this role, performed by Khor et al., reveals that Nrf2 knockout mice
are more sensitive to chemically induced colitis [86]. Further studies indicate that Nrf2
prevents the early stages of carcinogenesis associated with colitis [87].

Nevertheless, Nrf2 has been also described to favor the progression of cancer cells.
In TAM, nuclear translocation of Nrf2 is increased and its targeted anti-oxidant genes are
overexpressed. In Nrf2 knockdown macrophages, treatment with cancer cell medium
blocked the induced over-expression of M2 markers and down-regulation of M1 mark-
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ers [88]. Controversially, in macrophages exposed to the tumor fluid, data indicate that
Nrf2 nuclear localization is reduced, indicating an alteration in the oxidative status [89].

In wound healing, signaling pathways are closely linked and are activated at different
stages of the process. Their activation is not stage-specific but presents a continuum.
Their roles are in some cases redundant and allow the activation of the same target genes,
therefore having an identical overall effect. In some cases, transcription of target genes
from one signaling pathway will activate another pathway. It is therefore difficult to know
exactly the role of each signaling pathway in wound healing.

4. Metastasis

Many wound healing cellular actors, molecular mechanisms and signaling pathways
are also implicated in metastasis [2]. Therefore, elucidating the link between wound
healing and metastatic cancer progression may allow the development of better therapeutic
strategies against these two pathologies.

4.1. Metastasis Hallmarks

Metastatic spread comprises a complex succession of cellular biological events leading
to the dissemination of cancer cells from the tumor to the surrounding tissues and to distant
organs, through blood and lymphatic vessels [90]. Furthermore, it also involves crosstalk
between cancer cells and components of the tumor microenvironment [91].

The metastatic process begins with the hypoxia at the primary tumor site due to
excessive cell proliferation [92]. Reduced oxygen level induces HIF-1α stabilization and its
nuclear translocation, which promotes the expression of various genes involved among
others in angiogenesis, glucose metabolism, extracellular matrix remodeling, epithelial-
mesenchymal transition, metastasis, cancer stem cell maintenance and immune inva-
sion [93]. In parallel, hypoxia-induced necrosis results in a continuous release of cellular
debris, notably High Mobility Group Box protein-1 (HMGB1) by dying tumor cells [94].
HMGB1 has been shown to be up-regulated in tissue biopsies from cancer patients [95].
Interestingly, HMGB1 plays opposite roles depending on its redox state. Oxidized HMGB1
induces the production of pro-inflammatory cytokines whereas the reduced form interacts
with TAM therefore regulating monocyte recruitment, angiogenesis and immune suppres-
sion [96]. In fine, altering the redox status of HMGB1 may be considered as a therapeutic
approach to combat metastasis and favor wound healing.

Angiogenesis provides oxygen and nutrients supply essential for cancer cells to disso-
ciate from the basal membrane delineating the epithelial compartment from the stroma.
This requires the degradation of the extracellular matrix (ECM), through the activation
of matrix metalloproteinases [97]. Under normal circumstances, cells detachment from
the ECM leads to the induction of an apoptosis called anoikis, a form of programmed cell
death that occurs in anchorage-dependent cells [98]. However, cancer cells develop a trans-
differentiation program known as epithelial–mesenchymal transition (EMT), which render
the cells resistant to anoikis [99]. Anoikis plays an important role in the prevention of
metastasis and promoting its induction might be an interesting therapeutic strategy. Finally,
cells acquire stemness properties. Stemness is the ability of a cell to perform self-renewal
and is capable of pluripotency. This is an important feature for supplying material for
wound closure and for the establishment of cancer cells at the metastatic sites [100].

4.2. ROS and Metastasis

One of the principal mechanisms underlying metastasis in human cells is the disrup-
tion of the redox balance. This imbalance in redox homeostasis is induced by an increase
in free radicals, mainly ROS [101]. Cancer cells have elevated expression levels of NOXs
(NOX1, NOX2, NOX4, NOX5), leading to high levels of ROS [101,102]. Consequently, can-
cer cells have been shown to be more tolerant to oxidative stress via increased expression
of catalase and superoxide dismutase. However, the lack of robust anti-oxidant defenses
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may have detrimental consequences in the tumor microenvironment and in the adjacent
normal cells [103].

- Dual effect of ROS

Although several processes of metastasis are redox-sensitive, it is still controversial
whether ROS have oncogenic/metastatic or tumor suppressive functions. The answer
appears to depend on ROS levels and the cancer stage, leading many authors to consider
ROS as a “double-edged sword” [101]. Low to moderate ROS levels can promote survival
of cancer cells by inducing EMT and stem cell differentiation, enhancing angiogenesis and
switching to glycolytic metabolism. Conversely, excessive production of ROS induced by
chemotherapy and radiotherapy is detrimental to the survival of cancer cells and causes
cellular damage [104,105]. Concerning the stage of the disease, it has been reported that in
the early stages of cancer, ROS promote cancer initiation by inducing base pair substitution
mutations in pro-oncogenes such as Ras and tumor suppressor genes such as p53 [106].
As cancer progresses, an intracellular excess of ROS triggers apoptosis of tumor cells. To
escape this ROS-induced apoptosis, tumor cells produce high levels of anti-oxidants [106].
In the last stages of tumor development, ROS have a pro-metastatic role promoting the
spread of cancer cells.

- ROS and angiogenesis

Additionally, ROS are involved in angiogenesis. Angiogenesis is mainly mediated
by VEGF whose expression can be regulated by nutrient deprivation and hypoxia, both
of which increase levels of ROS [107,108]. Activation of angiogenesis by ROS can involve
different signaling pathways. Firstly, ROS have been shown to activate PI3K/Akt/mTOR
signaling cascade in different cancer cell lines (MCF-7, HepG2, H-1299, PC-3), enhancing
HIF-1α and VEGF expression and ultimately angiogenesis [109,110]. The role of ROS
has been confirmed by several studies showing that catalase and glutathione peroxidase
overexpression or NOX4 knockdown lead to a decrease in VEGF and HIF-1α levels and
inhibit angiogenesis in human ovarian cancer cells [111,112]. Further, oxidative stress
can induce angiogenesis in a VEGF-independent manner through the activation of the
TLR/NF-κB pathway. West et al. demonstrated the proangiogenic effects of TLR1/2 stimu-
lation by oxidative stress, represented by lipid oxidation products, in murine and human
melanoma [113]. In addition, angiogenesis is also mediated by matrix metalloproteinases
and upregulated by ROS [114].

- ROS, EMT and anoikis resistance

Several studies have proven that ROS are a major cause of EMT. ROS-induced EMT
has been reported to be NOX4-dependent in human metastatic breast epithelial cells [115]
and in lung cancer cells [116]. NOX4 is an important source of ROS induced by TGF-β
and under hypoxia, two important mediators in cancer metastasis [117,118]. Furthermore,
NOX4 inhibition significantly attenuated the distant metastasis of breast cancer cells to
lung and bone [119].

Resistance to anoikis seems to concern not only the field of cancer but also this phe-
nomenon may be interesting in wound healing. Indeed, ROS are considered as one of the
key players in anoikis sensitivity. In recent studies, ROS generation induced by NOX4
has been involved in anoikis resistance of gastric [120] and lung cancer cells [121]. ROS
promote EMT by inducing the expression and activity of MMPs that mediate proteolytic
degradation of ECM components [122,123]. TGF-β1, a well-established player of EMT
induction, regulates MMP-9 to facilitate cell migration and invasion via the activation of
NF-κB through a ROS-dependent mechanism [123]. Similarly, ROS production induced
MMP-2 secretion and activation results in pancreatic cells invasion [122]. In colorectal can-
cer, the EMT process is highly regulated through some of the classic tumorigenic signaling
pathways, such as the NF-κB, HIF-1, and TGF-β1 pathways [124]. Intriguingly, TGF-β1
induces EMT through Nrf2 activation as well as ROS production in lung adenocarcinoma
cells [116]. Indeed, Nrf2 is a key transcriptional regulator that drives anti-oxidant gene
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expression and protection from oxidative damages. Oxidative stress plays a critical regula-
tory role in these pathways by degrading inhibitors or inducing nuclear translocation and
consequent transcription [124].

- ROS and stemness

Cancer stem cells possess a particular redox status, since they have lower ROS levels
and increased anti-oxidant capacity than differentiated cancer cells [125,126]. Increasing ev-
idence shows that these low amounts of ROS are actually needed to maintain the quiescence
and self-renewal potential of cancer stem cells (CSC). Previous studies have demonstrated
that ROS contribute to reduce stemness and to enhance differentiation of CSC. For example,
glioblastoma stem cells have potent anti-oxidant defense mechanisms and H2O2 has been
shown to inhibit their self-renewal and induce their differentiation [127]. ROS have been
reported to promote hematopoietic stem cell differentiation with a progressive increase in
ROS levels with the advancing differentiation stages. Moreover, inhibition of ROS produc-
tion has been found to attenuate the differentiation of hematopoietic stem cells [128]. In
summary, hypoxia-associated increase in ROS in tumor cells promotes stemness. Although
oxidative stress promotes the development of CSC, ROS level declines after this acquisition
of stemness, allowing the maintenance of the sub-population.

4.3. Oxidative Stress and Metastasis: Cellular Actors Involved

Macrophages, neutrophils and fibroblasts are major ROS producers in the tumor mi-
croenvironment [92]. Here, we will focus on macrophages and fibroblasts since neutrophils
activation in wound healing and metastasis has been already extensively reviewed [129].

- Macrophages

In cancer, macrophages present in the tumor are known as TAM and can represent
up to 50% of the tumor mass [130]. ROS can be both beneficial and detrimental for the
anti-cancer immune function. Therefore, they may indirectly impact cancer progression
by altering cancer immune surveillance [131]. Although macrophages have anti-tumor
effects as immune cells, experimental and clinical evidence have revealed that TAM con-
tribute to tumor progression and metastasis. High levels of TAM are associated with weak
prognosis and decreased overall survival in various cancers [132–135]. The effect of ROS in
TAM polarization toward a M1 or M2 phenotype has been discussed, as several studies
showed that ROS can stimulate both activation statuses in TAM [49,50,136,137]. M1 and
M2 macrophages are two extremes in a continuum of macrophage functional states, which
reflect the different effects that can be observed on tumor cells [138].

O2
•– production promotes M2 polarization through activation of ERK and JNK sig-

naling pathways [49,50]. Moreover, administration of the anti-oxidant BHA blocked TAM
infiltration and tumor progression, which suggests a beneficial effect of ROS inhibition in
tumor therapy [50]. Indeed, another ROS scavenger, oligo-fucoidan, has been reported
to inhibit M2 polarization and TAM infiltration in subcutaneous colorectal tumors [139].
Conversely, Wu et al. demonstrated that increased NOX-dependent ROS production by
irradiation of macrophages promotes a pro-inflammatory M1 phenotype that is associated
with improved response to radiotherapy in rectal cancer [137]. Similarly, iron overload has
been reported to polarize macrophages towards an M1 phenotype by increasing ROS pro-
duction and reduction in ROS levels by N-Acetyl-Cysteine repressed M1 polarization [136].
These results confirm a link between ROS generation and M1 polarization of macrophages.
Apart from polarization, ROS also govern TAM apoptosis. For example, inhibition of
autophagy in macrophages increases ROS levels, provokes TAM apoptosis and leads to
regression of the primary tumor [140]. TAM are also major players in the regulation of
tumor angiogenesis in colorectal cancer [141]. They have been demonstrated to enhance
the expression of angiogenic proteins in the tumor microenvironment in an oxidative
stress-dependent manner by regulating the activity of NOXs [142].
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- Fibroblasts

In wound healing, fibroblast’s function includes renewal of ECM, the regulation of
epithelial differentiation and the regulation of inflammation. Cancer-Associated Fibroblasts
(CAFs) are the most predominant stromal cell type in the tumor microenvironment [143].
They are major producers of ROS [144], which facilitates metastasis through the activation
of angiogenesis [145]. Moreover, cancer cells induce ROS overproduction in CAFs con-
tributing to a pro-oxidative tumor microenvironment [146]. Conversely, ROS produced by
CAFs enhance ROS generation in cancer cells, increasing tumor aggressiveness [147]. CAF-
mediated ROS production are involved in the increased metastasis potential of prostate
carcinoma. CAF drive cancer cells to secrete cyclooxygenase-2 (COX-2)-mediated ROS,
which is mandatory for EMT, stemness and dissemination of metastatic cells [148]. Fi-
nally, CAFs, in a mouse model of squamous skin carcinogenesis, promote macrophage
recruitment and neovascularization in close association with NF-κB [149].

5. Conclusion and Future Perspectives

Although the intertwining of wound healing and metastasis have already been well
described in the literature, this review highlights the molecular and cellular similari-
ties between these two processes. Notably, accumulating evidence designates ROS and
macrophages as major regulators of these pathologies, in which disturbance can lead to
either pathological wounds or cancer cells spread. These two actors are intrinsically linked
since macrophages are the main source of oxidative stress and, at the same time, their
differentiation and polarization require ROS. In this context, both appear as potential
therapeutic targets.

As recapitulated in Figure 3, a high level of ROS is a common feature in the develop-
ment of non-healing wound and metastasis. Controlling oxidative stress level in wound
and tumor cells environment can be an interesting strategy both to promote wound healing
and to prevent metastatic spread. The excessive ROS accumulation could be managed by
(1) scavenging agents, (2) limiting its production and/or (3) increasing anti-oxidant defenses.
ROS-scavenging hydrogel showed enhanced wound healing abilities by down-regulating
pro-inflammatory cytokines, up-regulating the M2 phenotype of macrophages and promot-
ing angiogenesis and the production of collagen [150]. Secondly, the production of ROS
can be limited through NOXs inhibition. To date, few studies have focused on this area
due to the lack of specificity and pharmacological knowledge on NOXs inhibitors [151].
Nevertheless, a dual protective effect against oxidative stress has been demonstrated by
beta3-adrenergic receptor stimulation on macrophages. Indeed, it results in the inhibition
of NOXs activity, a decreased NOX2 level and an increased catalase expression [152]. Al-
though this study was conducted for preterm birth management, the use of beta3-adrenergic
receptor agonists can be applied to other pathologies associated with excessive oxidative
stress production. Finally, the use of anti-oxidants such as vitamins, polyphenols and
flavonoids has been widely studied [102,153]. Unfortunately, when used as monotherapy,
clinical studies did not provide any therapeutic benefit. Along with the tremendous rise of
the immune-checkpoint modulators as anti-cancer drugs, this led researchers to investigate
the potential synergistic effects of ROS blockade and immunotherapy. For example, recent
studies reported that vitamin C supplementation improved anti-cancer immunotherapies
efficiency in various murine tumor models [154,155].
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Reprogramming of macrophages appears as the second target for the management of
cancer metastasis and, by extension, of wound healing. Indeed, since macrophages are also
involved in wound pathophysiology, this therapeutic approach can also be interesting in
wound healing. Administration of the anti-oxidant BHA blocked M2 macrophage differenti-
ation resulting in suppression of tumorigenesis in three different mouse cancer models [50].
Similarly, another ROS scavenger, oligo-fucoidan, induced monocyte polarization toward
M1-like macrophages and repolarized M2 macrophages into M1 phenotypes; therefore,
inhibiting colorectal tumor progression [139].

It is worth mentioning that some limitations of targeting oxidative stress as a promising
treatment in wound healing and metastasis relies on the balance needed between beneficial
and harmful effects of ROS. As a double-faceted agent, ROS also play a pivotal role in
orchestrating wound healing mechanisms [156] and as potent genotoxic agents causing
DNA damage in cancer cells [102]. As proof, radiotherapy and chemotherapy induce
oxidative stress necessary for their anti-tumoral activity [104,105]. Furthermore, due
to some disparities in the mechanisms of these two diseases, questions arise as to the
modalities and timing of administration of therapies. Defective wound healing would
require local treatment while systemic treatment seems more suitable to prevent and
treat metastases.

In summary, this review offers a compilation that may provide a better understanding
of the pivotal role of oxidative stress in both wound healing and metastasis, encompass-
ing the contribution of macrophages. Although the treatment of metastases or chronic
wounds is a real challenge, new therapeutic approaches involving administration of redox
modulators need to be considered.

6. Methods

This literature review was based on searches on PubMed, Web of science, Springer
and Wiley databases, with no time limit but giving preference to recent articles.
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