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Abstract: Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular
bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen
found in livestock. It may adapt to a phagocytic environment, reproduce, and develop resistance
to harmful environments inside host cells, which is a crucial part of the Brucella life cycle mak-
ing it a worldwide menace. The molecular underpinnings of Brucella pathogenicity have been
substantially elucidated due to comprehensive methods such as proteomics. Therefore, we aim
to explore the complete Brucella suis proteome to prioritize the novel proteins as drug targets via
subtractive proteo-genomics analysis, an effort to conjecture the existence of distinct pathways in the
development of brucellosis. Consequently, 38 unique metabolic pathways having 503 proteins were
observed while among these 503 proteins, the non-homologs (n = 421), essential (n = 350), drug-like
(n = 114), virulence (n = 45), resistance (n = 42), and unique to pathogen proteins were retrieved from
Brucella suis. The applied subsequent hierarchical shortlisting resulted in a protein, i.e., isocitrate
lyase, that may act as potential drug target, which was finalized after the extensive literature sur-
vey. The interacting partners for these shortlisted drug targets were identified through the STRING
database. Moreover, structure-based studies were also performed on isocitrate lyase to further
analyze its function. For that purpose, ~18,000 ZINC compounds were screened to identify new
potent drug candidates against isocitrate lyase for brucellosis. It resulted in the shortlisting of six
compounds, i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and
ZINC04259566 that potentially inhibit isocitrate lyase. However, the ADMET profiling showed that
all compounds fulfill ADMET properties except for ZINC20115475 showing positive Ames activity;
whereas, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed hepatoxicity
while all compounds were observed to have no skin sensitization. In light of these parameters, we
recommend ZINC95543764 compound for further experimental studies. According to the present
research, which uses subtractive genomics, proteins that might serve as therapeutic targets and
potential lead options for eradicating brucellosis have been narrowed down.
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1. Introduction

Brucellosis is an endemic disease, also known as Malta fever, Mediterranean fever, un-
dulant fever, and Bang’s disease caused by bacterium, i.e., Brucella genus (almost 12 species)
belonging to a family of Brucellaceae, class Alphaproteobacteria, infecting both animals and
humans [1]. Species of this genus are Gram-negative intracellular facultative pathogens.
Brucellosis is characterized as an acute fever illness [2], associated with various symptoms
in humans such as liver and spleen disorders, reproductive abnormalities, neurological
problems, and heart-related problems, and also have been classified as a potential bioter-
rorism agent [3–5]. Brucellosis remains endemic in various emerging countries in Asia,
Africa, Middle East, and South America, where screening of livestock and vaccination fails
to control and exterminate the disease [6].

The world’s largest animal disease control agencies such as the Food and Agricultural
Organization of the United Nations (FAO) and the World Organization for Animal Health
(WOAH) all consider brucellosis to be highly contagious and warn about the disease man-
agement through the Global Early Warning System for Major Animal Diseases (GLEWS).
However, human brucellosis is still the most prevalent animal-to-human transmission
disease in the world [7,8]. The socio-economic effect of brucellosis is huge and larger in
developing nations than in industrialized ones, with an estimated 3.5 billion people at
risk of infection with one or more Brucella spp. and a high morbidity rate in humans and
animals [9]. According to Hull [10], there are 500,000 cases of human brucellosis reported
per year around the globe due to their ability to survive and multiply within the host
phagocytotic and non-phagocytotic cells. Surprisingly, Brucella did not show classical
virulence mechanisms such as producing cytolysins, plasmids, fimbria, an exotoxin, exoen-
zymes, and drug-resistant forms. However, Brucella bacteria comprise various virulence
factors such as lipopolysaccharide (LPS) [11], β-cyclic glucan [12], outer membrane proteins
(Omps) [13,14], MucR [15], T4SS secretion system, and BvrR/BvrS system which have been
identified, which permit the Brucella to interact with the host cell [16]. Also crucial to
Brucella pathogenesis is a complex of VirB proteins and their five effectors that use the
T4SS to control the host cell’s inflammatory response and vesicle trafficking [17,18]. Due
to our current lack of understanding of Brucella suis genomes, it is challenging to create a
novel species-specific therapeutic molecule experimentally [19]. Protective immunological
interventions and the development of novel treatment techniques are of great importance
in the fight against antibiotic resistance.

However, screening hundreds of macromolecules and the in vivo studies that follow
are time-consuming and resource-intensive tasks in the drug development process. To
compare the selectivity and specificity of potential therapeutic targets, subtractive genomics
is one of the most used computational methods. Many researchers [20–23] have extensively
reported the application of subtractive genomics techniques against distinct pathogenic
strains for the discovery and identification of new species-specific therapeutic targets.

Our present work employed subtractive genomic analysis against a comprehensive
examination of the Brucella suis strain’s whole proteome in order to identify potential
therapeutic targets [24,25]. Following this research, we may conclude that Brucella suis’
resulting proteins may be the most promising therapeutic targets and shortlisted candidates
that can be used for establishing a universal drug molecule that may provide a basic pipeline
for drug discovery against brucellosis. Virtual screening against a chosen target was also
performed utilizing the Zinc library to discover promising inhibitors for the treatment of
brucellosis. The ZINC database is a collection of commercially accessible chemicals with
ready-to-screen biologically relevant descriptions. Each molecule in the library is prepared
for docking using a variety of common docking programs and includes details on the
vendor from whom it may be purchased.
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2. Results

The primary objective of this research was to use a subtractive genomic method for
the whole proteome of Brucella suis 1330 in order to discover potential new therapeutic
targets against this pathogen. Table 1 provides a brief overview of the study’s methodology
and results.

Table 1. Subtractive genomic analysis scheme toward the identification of novel therapeutic targets
against B. suis.

Sl. No. Subtractive Approaches Used Bioinformatics Server and Tools Number of Proteins

1 The whole proteome of B. suis 1330 NCBI database 2974

2 Removed non-paralogous (>80%
identical) CD-Hit suite 0

3 Essential proteins involved only in
unique metabolic pathways KAAS at KEGG 503

4 Proteins nonhomologous to H.
sapiens BLASTp (E value 10−3) 421

5 Essential proteins DEG 15.2 server (E value ≤ 10−5) 350

6 Novel drug target proteins
non-homologous to ‘anti-targets’

using BLASTp (E value < 0.005, Identity
< 25%, Query length > 30%) 114

7 Virulent proteins Using BLASTp against VFDB (E value
≤ 10−5) 45

8 Resistant proteins Using BLASTp against ARG-ANNOT
V6 (E value ≤ 10−5) 42

9 Highly conserved protein BLASTp 1 (Isocitrate lyase)

2.1. Unique Metabolic Pathways Analysis

Complete metabolic pathways of both B. suis (109 pathways) and human host (330 path-
ways) were downloaded from the Kyoto Encyclopedia of Gene and Genome (KEGG) server.
We compared both the human and B. suis metabolic pathways manually to find both the
common and unique metabolic pathways. The results showed that 71 pathways were
common (Supplementary Table S1) both in humans and Brucella suis and 38 pathways
were unique to B. suis. We selected unique metabolic pathways which were comprised of
proteins unique to B. suis and excluded the common metabolic pathways. Consequently,
the total unique metabolic pathways consisted of 503 proteins (Figure 1).

2.2. Prioritization of Non-Homologous Proteins

Homologous proteins have developed over time in shared bacterial and human cellular
systems. As a result, it is important for therapeutics designed to bind pathogen target
proteins to not cause unwanted reactions in the host by binding their homologous proteins.
We subjected 503 unique metabolic pathways of B. suis to run a BLASTp with a cutoff value
10−3 against the whole proteome of humans to identify only non-homologous proteins
for novel drug target prioritization. We selected only non-homologous proteins to avoid
the undesirable side effects of the drug. The BLASTp results showed 82 proteins were
homologous to the human host with high similarity with the human proteome and were
excluded. The remaining 421 non-homologous proteins were analyzed in the next step.

2.3. Identification of the Essential Proteins

The Database of Essential Genes (DEG) provides complete information of the essential-
ity of proteins of the bacteria determined from the experimental analysis. Those proteins
having high similarity with proteins of DEG were selected as essential proteins. We ran
a BLASTp of non-homologous 421 proteins against the DEG database with a default pa-
rameter 60% sequence identity. The results showed that 350 proteins were essential for the
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survival of B. suis. Targeting the essential proteins with a recommended drug may halt the
vital activity of B. suis.
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2.4. Druggability Potential of Essential Proteins

The current study was further improved by looking for the druggability potential
of the shortlisted protein sequences of B. suis. We ran a BLASTp of the non-homologous
essential proteins against the DrugBank database with an E-value 10−5. This analysis
led to the identification of 114 proteins that may act as drug targets approved by the
Federal Drug Authority (FDA) in a DrugBank database with its recommended IDs. As
the research concentrated on the discovery of powerful drug targets, these 114 proteins
exhibited substantial similarities with the authorized FDA drug targets (experimentally
demonstrated data for drug targets) and were chosen for future investigation. However,
the excluded 136 may potentially function as therapeutic targets since they are important,
non-homologous proteins.

2.5. Predicting the Virulence Factor (Proteins) of B. Suis

The VFDB database comes up with complete information of protein virulence. The
VFDB explored the importance of virulent proteins in disease progression. The VFDB
results revealed that 45 proteins out of 136 were correlated with the virulence of B. suis.
However, these 45 proteins can be used as a novel and potent drug target against B. suis
strain 1330.

2.6. Identification of the Resistance Proteins

The pathogens resistant to drugs are more hassle to treat the disease, which requires
a higher dose that shows a diverse effect in patients. The pathogen acquired with drug
resistance is due to continuous exposure to a drug or the drug used in a higher dose. We
subjected the FASTA sequence of shortlisted virulent proteins to the ARG-ANNOT V6
online tool. The results showed that 42 out of 45 proteins were correlated with the resistivity
of a pathogen. These 42 proteins are mostly involved in the degradation and efflux of
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numerous drugs. However, these 45 proteins can be used as a potential drug target. The
list of these 42 drug target-like proteins is provided in Supplementary Table S2.

2.7. Prediction of Subcellular Localization

All proteins require a specific location for their optimal function. Transporting proteins
to an unspecified region may result in server diseases [26]. All the organism’s cells have a
special compartment. After synthesis and modification, all the proteins must be destined
to the appropriate compartment to do their proper function. Subcellular localization affects
the protein function by monitoring access to and availability of molecular interaction
partners [27]. All FASTA sequences of shortlisted proteins were subjected to the online
server PSORTb for the prediction of subcellular localizations of proteins. The subcellular
localization of proteins is determined on the basis of overall amino acid composition
of proteins, sequence homology and motifs, known targeting sequence, and combined
information from the above methods [28]. Based on the subcellular localization of proteins,
we design vaccine and drugs against the specific localized protein target. The cytoplasmic
proteins may act as a drug target and outer membrane proteins may act as a vaccine
target. The results of current study showed ~23 cytoplasmic, ~14 periplasmic, ~6 outer
membrane, and ~4 inner membrane proteins. Figure 2A represents the graphical sketch of
subcellular localization.
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Figure 2. Subcellular localization and PPI. (A) Quantitative representation of subcellular localization
of shortlisted essential, druggable, pathogen-specific proteins predicted through PSORTb, and Cello2
and (B) Protein–protein interaction analysis for ICL. The STRING results showed different interactions
of proteins with each other represented by nodes and edges. The number of nodes represents proteins
such as splice isoforms and post-translational modified proteins. Each node represents a specific
protein encoded by a single gene. The color of nodes explains the protein interaction as first shell
interactors and query protein are represented by colored nodes while the second shell interactors are
represented by white nodes.

2.8. Significant and Novel Drug Targets Prediction

It has been reported that cytoplasmic proteins are an excellent therapeutic target and
may be readily targeted with drugs [29]. Additionally, ~70 percent of FDA-approved
medications are claimed to target enzymatic proteins because of their substantial participa-
tion in numerous pathways. Finally, among 42 candidate therapeutic targets, one protein
was identified as an essential, non-homologous, druggable target against Brucella suis i.e.,
isocitrate lyase. Based on its cytoplasmic subcellular distribution, length > 100 amino acids,
enzymatic nature, and role in important metabolic pathways, this discovered protein was
advanced to additional structure-based investigations.
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2.9. Isocitrate lyase

The enzyme isocitrate lyase (EC 4.1.3.1), often known as ICL, is a key enzyme in the
glyoxylate cycle. It plays a role in metabolic adaptability to environmental changes. To
replenish the tricarboxylic acid cycle during development on fatty acid substrates, this
enzyme catalysis is the reversible synthesis of succinate and glyoxylate from isocitrate, a
critical step in the glyoxylate cycle. The protein helps in the catalysis of reactions such as,

ICL
D-threo-isocitrate −→ glyoxylate + succinate

It is widely studied as a potential drug target against MTB for the designing of
novel therapeutics [30,31], Candida albicans [32], Paracoccidioides brasiliensis [33] and for the
development of new anti-buruli ulcer natural products [34]. However, ICL protein has
never been explored as a drug target for B. suis, and thus, in the current study it is proposed
as a potential novel drug target.

2.10. Protein–Protein Interaction Analysis

The protein–protein interaction (PPI) and their functional annotation make the pillar
of cellular machinery as it controls a wide range of biological processes [35]. Revealing
PPI information helps us in the identification of drug targets [36,37]. One has to identify
various interactions and govern the outcome of the interactions to precisely understand
the PPI and their importance in the cell [38]. In the current study, we used the STRING
database for the prediction of PPI of shortlisted protein, i.e., isocitrate lyase.

Similarly, an empty and filled node represents protein with uncharacterized and
characterized 3D or predicted structure, respectively. The STRING results showed that our
shortlisted protein may act as hub protein because they make various interactions with
other nearby proteins to perform a crucial function. If we target isocitrate lyase, it may halt
the function of other interactor proteins since proteins work in a group [39].

We uploaded the isocitrate lyase NCBI ID (WP_004691511.1) to the STRING database
online server and found the interactions with other proteins in the B. suis biovar 1330. The
isocitrate lyase was represented by BMEI0409 and it mediates interactions with other pro-
teins nearby like: malate synthase G, involved in the glycolate utilization (glcB); aconitate
hydratase (BMEI1855), (BMEII0009), (BMEI1952), (BMEII1061), (BMEI1939), (BMEII1060),
(BMEII1062), (BMEII1064); and ureidoglycolate lyase (allA) and (BMEI0799). The PPI
results showed that isocitrate lyase had a total number of nodes 11, average node numbers
7.09, average local clustering coefficient 0.95, the total number of edges 39, PPI enrichment
p-value 3.81 × 10−11, and 11 expected number of edges as shown in (Figure 2B). These
proteins are involved in a variety of critical functions. By inhibiting the isocitrate lyase, the
remaining interactor proteins may also lose their function. Therefore, isocitrate lyase can
be proposed safely as a potential drug target.

2.11. Comparative Structure Homology Modeling and Validation

The 3D structure of isocitrate lyase was constructed through an online bioinformatics
tool called Phyre2. This server uses unconventional remote homology prediction ap-
proaches to build 3D models of desired proteins, predict active sites, and analyze the effect
of amino-acid variants (e.g., nsSNPs) of a protein sequence. We retrieved the FASTA se-
quence of isocitrate lyase with an NCBI accession number (WP_004691511.1) and uploaded
it to the Phyre2 server. The Phyre2 results give us different PDB structures of proteins
based on sequence similarities and percent identity. The Phyre2 used a different template
and showed different percent identity and confidence scores. The templates 6EDW, 3E5B,
and 1F61 all had confidence scores of 100 and percent identity 42, 99, and 66, respectively.
We selected the modeled structure which used the 3E5B as a template (Figure 3A).
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Figure 3. Modeled structure of isocitrate lyase. ICL modeled protein structure using a template-
based approach. The predicted secondary structure of isocitrate lyase is exhibited by different signs
and colors, such as: green helices represent alpha-helices, blue arrows indicate β-strands, a sign of
interrogation (?) assigns a disordered region, and the paint line indicated the coil. The confidence of
the predicted secondary structure is indicated by colors, red means high confidence, and blue color
shows low confidence of secondary structure prediction (A) its validation via Ramachandran plot
resulting in the structure validity for 90% and (B) secondary stricture prediction via Pyre2 tool (C).

The successfully constructed structure of isocitrate lyase was confirmed with online
bioinformatics tool, Procheck. It checks the stereochemical properties of modeled protein
and residue-by-residue geometry and compares them with ‘ideal’ values obtained from
a database of well-refined and well-defined high-resolution protein 3D structures in the
Protein Data Bank. The Procheck results showed that 90.1%, 8.5%, 1.1%, and 0.3% of
residues lie in most favored regions, additionally allowed regions, generously allowed
regions, and disallowed regions, respectively, as shown in Figure 3B. Likewise, Phyre2 also
predicts the secondary structure of proteins based on the primary sequence of amino acid.
The Phyre2 results disclosed that the secondary structure of isocitrate lyase is comprised of
53% of alpha-helix, 22% disordered regions, and 8% of beta-strand (Figure 3C).

Nevertheless, in PDB databases, three isocitrate lyase structures were available from
Brucella abortus 2308 (PDB ID: 7RBX), Brucella melitensis (PDB ID: 3E5B), and Brucella
melitensis (P43212) (PDB ID: 3EOL). The multiple sequence alignment was performed for
these PDB sequences with modeled protein to study the sequence’s similarities among them.
It showed that WP_004691511.1 protein is 93.3% similar to 7RBX and 3E5B, while 99.07%
to 3EOL, resulting in almost 99% similarities. The sequences vary at 153 (G to D), 156 (N
to D), 330 (C to R), and 400 (M to V amino acids) positions (Figure 4A). The ICL protein
structures of all three strains were superimposed individually on the template strand of B.
suis. When aligned to the template, the ICL proteins from B. suis strains showed an overall
RMSD value of 1.99 Å (Figure 4B). This showed that the available protein structure of ICL
from these strains can also be used for the B. suis ICL.
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2.12. Active Site and Ligand Prediction of Modeled Protein

The ligand binding to its active site is required for a protein to function properly.
A huge number of bioinformatics tools are available to predict the ligand binding site
and it is the first step in understanding the function of the protein and facilitating the
docking and virtual screening-based drug discoveries. Experimentally or computationally
modeled 3D structure of a protein is a prerequisite for the prediction of the ligand binding
site. We uploaded the 3D modeled structure of isocitrate lyase to the Molecular Operating
Environment (MOE) standalone tool. The MOE identified a ligand binding site on the
template that makes use of a similar 3D structure with a known ligand binding site, based
on geometry computation to identify binding pockets. The result gives us different active
sites with functional residues. Based on high energy, we selected the first ligand binding
site (Figure 5A) having active site residues.

The prediction of ligands of proteins is the most challenging job in the field of bio-
chemistry, pharmacy, and protein chemistry. The biochemical function of a protein can be
elucidated by comparing the protein with a well-refined 3D structure and known functional
ligand, although a similar folding pattern of protein is not a guarantee for a similar function.
Likewise, the same biochemical characteristics may be shown by proteins having different
folding patterns. Now it seems clear that the binding site of the protein is the primary
determinant of protein function rather than its folding pattern [40,41]. In the current study,
we used the ProBis online tool for ligands prediction. A 3D structure of isocitrate lyase was
uploaded to the ProBis tool. The results showed that isocitrate lyase had high sequence
and structure homology with isocitrate lyase from Brucella melitensis complex with isocitric
acid (ICT) as ligand with a PDB ID (3P0X) (Figure 5B).
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2.13. Molecular Docking Study Virtual Screening

Plenty of bioinformatics tools have been developed and widely used for the molecular
docking of the ligand with protein, particularly for the drug discovery approach [39,42].
The MOE, which helps to characterize, visualize, and evaluate protein interactions with
ligands or other proteins, was utilized in the current study. The MOE is a very user-friendly
tool for molecular docking study among all docking tools. It shows a good graphical
representation of ligand active site interaction. In MOE, receptor-ligand binding affinities
with all possible binding geometries are selected based on a numerical value called an
S-score. A low S-score shows the highly docked compound. Molecular docking of isocitrate
lyase was performed with a standalone bioinformatics tool (i.e., MOE). The active site
was found as discussed earlier. The protein was prepared for docking study followed
by protonating its 3D structure, along with energy minimization while setting all the
parameters at default values followed by ligand docking with isocitrate lyase using MOE.
The result showed the binding of isocitric acid ligand (ICT) with the protein with five
different conformations and orientations. We selected conformation 1 of the ligand on the
basis of high binding energy, i.e., −6.9527, whereas the lowest binding score was −4.57.
The docking result showed that Glu 281, Ser 283, and Ala 227 mediate hydrogen bonds,
whereas Lys 191 form three ionic interactions with the ligand as shown in Figure 6.
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The 18,000 ZINC library was subjected to virtual screening using rigorous docking
to the active site of isocitrate lyase. It gave several docked conformations of compounds
that were defined by docking scores. Lower binding affinity compounds (i.e., those with a
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binding affinity less than the reference ICT inhibitor at−6.95 kcal/mol) were excluded from
assessment as potential hit candidates. More than 10,000 compounds were found to have
greater binding energies compared to ICT, which ranged in the limit of between −7.0–12.0
kcal/mol for the screening results (Figure 7A (brown hue)). These 10,000 molecules suggest
that ICL inhibition may be a potential lead. Due to their lower binding affinity than ICT
inhibitors, the compounds were chosen for further exploration in this work because of their
significant inhibitory effect against ICL (Figure 7B). There were only six possible thera-
peutic candidates against ICL, which were ZINC95543764, ZINC02688148, ZINC20115475,
ZINC04232055, ZINC04231816, and ZINC04259566 to inhibit B. suis 1330 serovar.
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compounds showing the binding energies ranging from the −3 to −12 kcal/mol. The resulted
showed that about 3852 compounds docked at same position with the binding energies of −7 to
−7.5 kcal/mol (brown color). (B) showing the overall summary of virtual screening from total of 18,00
compounds to 10, 000 high ranked compounds and finally resulted in the identification of six potential
inhibitors i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and
ZINC04259566.

2.14. Interaction Analysis of Shortlisted Compounds with ICL

Shortlisted compounds were examined using post-molecular docking interaction
analysis to better understand ICL’s pharmacological activity and binding mechanism.
Each ligand had several interactions with the receptor in molecular docking research.
ZINC20115475 > ZINC02688148 > ZINC04231816 > ZINC04232055 > ZINC04259566 >
ZINC95543764 is the docking rank order based on docking score.

ZINC20115475 was shown to have a binding energy of −10.9 kcal/mol in a dock-
ing study. The six-ring aromatic ring mediates two pi and hydrogen bonds with Gln72,
and Gly353 each with a bond distance of 3.63 and 3.59, along with an energy of −0.7,
correspondingly (Figure 8A).

ZINC02688148’s binding score was found to be −9.8 kcal/mol. Through its aromatic
ring, which has a bond distance of 3.78 and energy of −0.7 kcal/mol, it binds Lys317 to one
pi-hydrogen (Figure 8B).

With a binding score of −9.0 kcal/mol, ZINC04231816 was well-suited for ICL’s
binding pocket. A single aromatic-hydrogen interaction between Ala386 and the aromatic
ring mediates four hydrogen bonds as hydrogen acceptors from Arg116, Arg123, and
Gln72 through its O13, O14, with a bond distance 2.91–3.14 and an energy range of −1.3 to
−4.0 kcal/mol (Figure 8C).

The ZINC04232055 was found to mediate four hydrogen bonds as hydrogen acceptors
with Gln72, Ala386, Arg123, and Arg119. It resulted in binding energy of −8.6 kcal/mol
(Figure 9A).
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Figure 9. Molecular docking. Molecular docking analysis for the shortlisted compounds
(A) ZINC04232055, (B) ZINC04259566, and (C) ZINC95543764.

ZINC04259566, on the other hand, was observed to initiate two hydrogen bonds from
Arg116 and Thr120 as hydrogen acceptors. One pi-cation interaction between the aromatic
ring and Arg116 was also found. The binding score was −8.5 kcal/mol (Figure 9B).

ZINC95543764 docked with ICL at −8.1 kcal/mol, and its aromatic ring mediates a
single pi-hydrogen bond with the Leu372 residue (Figure 9C). A description of binding
interactions formed inside ICL’s active cavity by the selected compounds is shown in
Table 2.

Additionally, docking studies predicted the Ki (inhibitory concentration) of the short-
listed compounds. The probability that a drug may inhibit an enzyme and result in a
clinically meaningful pharmacological interaction with an enzyme substrate is estimated
using the Ki. The Ki has often been computed in correlation to the body’s inhibitor concen-
tration, and it serves as the basis for a program or particular drug information websites
to assess whether a drug is an inhibitor or not. The predicted Ki values for the lead com-
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pounds were in the range of 9.87–1020 nm (Table 3). The binding energy and pKi of the
compounds showed a relatively strong correlation among them (r2 = 0.99) (Figure 10).

Table 2. Docking scores and identified bond types predicted through MOE tool for shortlisted compounds.

S. No. Ligand Receptor Interaction Distance (Å) E (kcal/mol)

1
ZINC95543764
6-ring CD1 LEU 372 pi-H 3.88 −0.8

2
ZINC20115475
6-ring CG GLN 72 pi-H 3.63 −0.7
6-ring CA GLY 353 pi-H 3.59 −0.7

3
ZINC02688148
6-ring CB LYS 317 pi-H 3.78 −0.7

4

ZINC04232055
O 21 CB ARG 119 H-acceptor 3.62 −0.5
O 22 NH2 ARG 123 H-acceptor 3.13 −3.7
O 31 CB ALA 386 H-acceptor 3.37 −0.5
O 41 NE2 GLN 72 H-acceptor 3.03 −2.9

5

ZINC04231816
O 13 NH1 ARG 116 H-acceptor 3.14 −1.3
O 14 NE ARG 123 H-acceptor 3.15 −2.0
O 14 NH2 ARG 123 H-acceptor 2.98 −4.0
O 32 NE2 GLN 72 H-acceptor 2.91 −3.9
6-ring CB ALA 386 pi-H 3.91 −0.5

6

ZINC04259566
O 25 NH2 ARG 116 H-acceptor 3.13 −0.8
N 28 CA THR 120 H-acceptor 3.26 −0.5
5-ring NH1 ARG 116 pi-cation 3.25 −1.1

Table 3. The predicted binding affinities and Ki values for compounds.

Compounds Binding Affinity
(kcal/mol) Predicted Ki pKi

ZINC95543764 −8.1 1.02 µm 5.9914
ZINC20115475 −10.9 9.87 nm 8.005683
ZINC02688148 −9.8 64.48 nm 7.190575
ZINC04232055 −8.6 493.49 nm 6.306722
ZINC04231816 −9.0 229.47 nm 6.639274
ZINC04259566 −8.5 557.52 nm 6.25374

2.15. ADMET Profiling

A critical step in the identification of new drugs is the characterization of ADMET
characteristics, since it saves time and money during clinical trials [43,44]. Based on drug-
likeness, ADME profiles, and blood–brain barriers (BBB) analyses, the online SwissADME
was utilized to compute the pharmacokinetic parameters of the nominated compounds.
The Lipinski Rule of 5 was utilized as a basis for the drug-likeness characterization. Drug-
like compounds should have molecular weights below 500 amu, hydrogen bond acceptor
sites below 10, hydrogen bond donors below 5, and lipophilicity values (LogP) below 5.
According to RO5, this is the recommended molecular weight range for orally delivered
drugs and compounds. Consequently, it was observed that ZINC20115475, ZINC02688148,
and ZINC04259566 fulfilled the Rule of Five (RO5) while ZINC95543764, ZINC04232055,
ZINC04231816 showed one violation. However, these six compounds were observed to
have no BBB permeability. Drug-likeness standards were followed by compounds that
advanced to the next step.
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In order to estimate the preliminary ADME properties, the pkcsm tool was used.
These properties were characterized by the solubility in pure water (mg L), absorption
in the gastrointestinal tract (HIA), permeability, inhibition of the liver enzyme CYP 2C19,
inhibition of the CYP 2C9 enzyme, inhibition of the CYP 2D6 enzyme, inhibition of the CYP
3A4 enzyme, and inhibition of the Caco2 permeability. These compounds showed water
solubility within the range of −2 to −5 with the ZINC02688148 compound having high
water solubility. Caco2 permeability was observed as −0.025 to 0.94 with ZINC04259566
having high cell permeability and ZINC95543764 having the least permeability. Moreover,
all compounds showed good to potent HIA permeability (Table 4). Based on these activities,
we recommend ZINC95543764 compound for further experimental studies.

Additionally, Ames mutagenesis study used the pkcsm tool to identify the chemicals
and predict their toxicity, max. tolerated dose (human), minnow toxicity, T. Pyriformis
toxicity, oral rat acute toxicity (LD50), hepatotoxic, and skin sensitization evaluation. Con-
sequently, all compounds showed a negative Ames test except ZINC20115475. This means
that these molecules do not cause mutagenicity, as we know that the basis for the prediction
of toxicity from a chemical structure is that the properties of a chemical are implicit in its
molecular structure. Biological activity can be expressed as a function of partition and
reactivity, that is, for a chemical to be able to express its toxicity, it must be transported
from its site of administration to its site of action, and then it must bind to or react with
its receptor or target. This process may also involve the metabolic transformation of the
chemical. So according to that, the compound ZINC20115475 may, because of its chemical
structure, cause mutagenicity and is indicated as positive for Ames test. Therefore, we
excluded this compound from our further studies due to violation of Ames toxicity. On the
other hand, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed
hepatoxicity while all compounds were observed to have no skin sensitization. T. pyriformis
showed maximum tolerance to ZINC20115475 (0.367 log ug/L), while less tolerance was
seen for the remaining compounds. The detailed information is shown in Table 5.
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Table 4. ADMET profiling for shortlisted compounds.

Name
Water
Solubility (log
mol/L)

CaCo2
Permeability
(log Papp in
10−6 cm/s)

HIA (%
Absorbed)

Skin
Permeability
(log Kp)

BBB
Permeability
(log BB)

Structure

ZINC95543764 −2.862 −0.025 90.747 −2.735 No
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Name
Max. Tolerated
Dose (Human)
(log mg/kg/day)

Minnow
Toxicity (log
mM)

T. Pyriformis
Toxicity (log
ug/L)

Oral Rat
Acute Toxicity
(LD50)
(mol/kg)

Ames Test Hepatotoxic Skin
Sensitization

ZINC95543764 0.438 −0.815 0.285 2.473 No No No
ZINC20115475 0.481 −1.927 0.367 2.312 Yes No No
ZINC02688148 0.571 −2.841 0.285 3.173 No Yes No
ZINC04232055 0.352 −1.6 0.285 2.828 No Yes No
ZINC04231816 0.411 −1.781 0.285 2.981 No Yes No
ZINC04259566 0.807 0.319 0.285 2.535 No Yes No

2.16. Conservancy Analysis of Predicted Sequences with Other Strains

The extent of the pharmacological spectrum over the whole homologous bacterial
population might be inferred through comparison of the predicted sequences’ conservation
pattern with other strains that are utilized conventionally. Therefore, the conservancy anal-
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ysis was performed for ICL protein (WP_004691511.1) to examine the ICL presence in other
strains. The BLASTp of ICL resulted in the local alignment of protein with six different Bru-
cella strains ICL proteins with 99% identity, i.e., WP_004691058.1 (99.77%), WP_006071281.1
(99.53%), WP_006201131.1 (99.30%), WP_004689882.1 (99.53%), WP_006279211.1 (99.30%),
and WP_004684105.1 (99.07%) showed that these proteins are 100–98% conservation among
them (Table 6). The predicted protein always should be conserved in a wide range of
bacterial strains for ensuring an effective drug and vaccine target against a specific bacterial
pathogen [45]. Here, ‘isocitrate lyase ICL’ displayed a higher conservancy pattern with
homologous proteins of other Brucella suis strains from different geographical locations.
Hence, ‘ICL protein’ could be a potent broad-spectrum drug target for Brucella suis.

Table 6. Conservancy analysis isocitrate lyase (ICL); (BLASTp results against other B. suis strains).

S. No. Sequence ID Organism Identity (%)

1 WP_004691058.1 Brucella 99.77
2 WP_006071281.1 Brucella suis 99.53
3 WP_006201131.1 Brucella suis 99.30
4 WP_004689882.1 Brucella 99.53
5 WP_006279211.1 Brucella suis 99.30
6 WP_004684105.1 Brucella 99.07

3. Materials and Methods

The present investigation used a subtractive genomic approach to identify pharmaco-
logical targets unique to Brucella suis [46]. Figure 11 demonstrates the whole protocol used
in this investigation, whereas the research follow-up with analysis in detail is given below
sequentially.
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3.1. Data Retrieval

The human proteome from the UNIPROT database and the B. suis proteome from
the National Centre for Biotechnology Information (NCBI) database [47] were obtained
(Table 7. Proteins’ essentiality was determined using the DEG database, and druggable



Bioengineering 2022, 9, 633 16 of 23

proteins were found using DrugBank. In contrast, both human and Brucella metabolic
pathways were retrieved from the KEGG server.

Table 7. Complete Proteome of Human-Host and Brucella suis.

Strain ID Strain Name Proteins

GCF_0000007505.1 1330 2974
9606 Human ~200,000

Brucella suis bms 109 pathways
Human host hsa 330 pathways

3.2. Phase I: Subtractive Genomic Analysis

The subtractive genome analysis has been described as a promising, efficient, and
novel in silico technique utilized to find therapeutic drug targets [48]. The subtractive
genome analysis technique is based on sorting of the unique protein (missing in the human
host) from the complete proteome of both host and pathogen in order to improve drug
development pipeline by avoiding the cross-reactivity of the medications with human-
host proteome. Steps included in the subtractive genome study are discovering non-
paralogous sequence, non-homologous sequence, predicting essential proteins, finding
proteins participate in metabolic pathways, and identification of proteins that may serve as
a therapeutic target.

3.3. Prioritization of Pathogen-Specific Metabolic Pathways

The human-host and Brucella suis metabolic pathway databases KEGG [49] and Au-
tomatic Annotation Server (KAAS) were utilized for the study. We used the three-letter
KEGG organism codes ‘bms’ for B. suis and ‘has’ for H. sapiens to extract the metabolic
pathways ID and associated information from the KEGG database. There were just a few
metabolic pathways that could be found in both; thus, they were clustered together as a
single metabolic pathway. The NCBI database was used to get the FASTA sequence of
proteins involved in the unique metabolic pathways of B. suis.

3.4. Non-Homologous Proteins Identification

A BLASTp search against the human proteome, with a cutoff value of 0.0001, was used
to analyze the unique metabolic pathways proteins (E-value 10−3). Excluded proteins with
high sequence similarity (>80%) to the human proteome were retrieved in the following
phase of subtractive genomic analysis, and the remaining proteins were further studied.

3.5. Prioritization of Essential Proteins among the Whole Proteome of Brucella suis

In order to prioritize the essential proteins of the B. suis, the proteins were analyzed via
BLASTp with a threshold value of 10−5, against the Database of Essential Gene (DEG) [50]
consisting of proteins responsible for the survival of the organisms. Those proteins which
had sequence similarity with essential proteins of the DEG were further analyzed and the
non-essential proteins were excluded.

3.6. Druggability of Selected Sequences

All the essential, non-homologous proteins were then evaluated by BLASTp against
the Drug Bank database [51]. The Drug Bank consists of a number of drug targets like
proteins with specific target ID which are authorized by Food and Drug Administration
(FDA). The default parameter of E-value 10−5 was applied to BLAST the proteins against
the Drug Bank to find the novel drug targets.

3.7. Determination of Virulence Factor (Proteins)

The virulence of proteins helps bacteria to destroy the host-immune system with
the help of colonization and invading the host immune cell and, as a result, the disease
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is caused. For the determination of the virulence of proteins, VFDB (virulence factor of
pathogenic bacteria) online database [52] was used. The shortlisted proteins of B. suis were
subjected to BLAST against the VFDB.

3.8. Identification of Resistance Proteins

The Antibiotic Resistance Gene-ANNOTation V6 (ARG-ANNOT V6) tool was used for
the prediction of novel resistance protein sequences from the whole genome and proteome
of a pathogen. All the resistant protein data were collected and analyzed from different
experimental published work and different online sources, and protein sequences were
retrieved from the NCBI database. The shortlisted proteins’ FASTA sequence were then
subjected to BLAST against the resistance proteins of the ARG-ANNOT V6 database with a
threshold of 10−5 [53].

3.9. Subcellular Localization and Protein–Protein Interaction Analysis of Shortlisted Proteins

All the shortlisted proteins were then subjected to PSORTb version 3.0.2 [54] and
the Cello v.2.5 [55] online tool in order to identify subcellular localization. Subcellular
localization (SCI BLAST) uses the PSORTb and Cello v.2.5 web servers to BLAST all of
the nominated proteins. There is the cytoplasm, membrane, periplasmic membrane, and
extracellular space in the subcellular localization.

The protein–protein interaction was evaluated via a bioinformatics online database
called STRING [56]. It is comprised of experimentally known and predicted physical and
(direct) and functional (indirect) interactions of proteins with each other in close proximity.

3.10. Structure Modeling and Validation

Since the three-dimensional (3D) PDB structure of isocitrate lyase out of three short-
listed proteins was not present in the Protein Databank (PDB) [57], the 3D structure of
isocitrate lyase was constructed by online server, Phyre2 [58]. Only the FASTA sequence is
needed for the construction of the 3D structure of protein which was retrieved from the
NCBI database.

Moreover, different bioinformatics tools such as Procheck and PsiPred were used for
the validation of constructed 3D structure of a protein. The Procheck server examines each
residue conformation and geometry of the 3D protein structure [59]. It uses the PDB’s well-
defined and well-refined high-resolution protein structure to determine the best possible
values for key protein properties. There is an online server called Phyre2 that predicts
protein secondary structure (random coils, sheets, and helices). A protein’s secondary
structure was predicted by Phyre2 using PsiPred and its amino acid sequence.

3.11. Prediction of Active Site and Potential Ligand

For the identification of active site, MOE software was used. The prediction of active
site residues relied on detecting the conserved regions beyond the family [60,61], powerful
sequence-based scoring functions [62], information from the well define 3D structure, and
analyzing the features such as the geometry of the amino acid residues, [63] electrostatic
and chemical properties [64].

A computational online tool ProBis (protein binding site) was used for the ligand
prediction. The Probis tool is comprised of a database for the foretelling of the ligand based
on the sequence similarity with deposited 3D structure in PDB database [65].

3.12. Molecular Docking and Virtual Screening

For the docking experiment to proceed, the protein’s 3D structure must be available.
The isocitrate lyase receptor was a three-dimensional model of the enzyme’s structure, and
the inhibitor was a predicted ligand. The protein and ligand complex were thus selected
and prepared for docking experiments. Ligand and other heteroatoms were removed
from the protein during the filtration process (including water molecules). AutoDock
v4.2 [66] was used for the remainder of the protein production. All hydrogen addition, the
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fusion of non-polar hydrogen atoms, and the addition of Kollman charges are components
of the receptor preparation. A local shell was used to store the receptor when it was
prepared. AutoDock was used for molecular docking and the standard docking approach
was followed. For the ligand’s docking and implementation, 250 times Lamarckian GA
settings yielded 27,000 maximum generation generations and 2,500,000 evaluations. The re-
docking was performed to assess the performance of the docking program for its capability
of reproducing the same crystal conformation of the bound ligand. The X, Y, and Z-axis
grid points were set to 50, 52, and 50, correspondingly, with grid center values of 42.32,
64.849, and 13.3979.

The ZINC library of 18,000 molecules was recovered in SDF format and kept in local
bash depositories to continue identifying potent drug-like molecules. A 3D PDB file was
generated from the downloaded 2D compound file using Open Babel [67]. A FROG2 was
used to minimize the ligand library’s energy using the MMFF94 force field and steepest
descent technique for 1500 steps. Additional steps included adding gastieger charges to
the ligand library, rotating all rotatable bonds in AutoDock, and then saving the optimized
ligand library in PDBQT format for additional virtual screening. Vina split was used to
divide the built PDBQT library into the corresponding files. The redocking experiment’s
settings and grid box configuration were carried over to the virtual screening.

3.13. ADMET Profiling

Safe drug therapy assessment is a critical concern in the drug development process.
Early detection of potent pharmaceutical toxicity and side effects is critical for minimizing
drug development time and price [68]. Therefore, pharmacokinetic parameters such as
absorption, distribution, metabolism, and excretion (ADME) for the shortlisted drug-like
compounds were examined using the SwissADME tool [69]. The pkCSM tool (http://
biosig.unimelb.edu.au/pkcsm/ accessed on 14 Februry 2022) was then used to investigate
the compounds’ toxicity profile, minimal human side effects, immunotoxicity, mutagenicity,
teratogenicity, neurotoxicity, increased penetration, and carcinogenicity.

3.14. Conservancy Analysis of Predicted Sequences with Other Strains

The extent of the pharmacological spectrum over the complete homologous bacte-
rial population may be inferred by comparing the conservation pattern of the predicted
sequences with other conventionally utilized strains. The BLASTp software on the NCBI
website was used to conduct a conservancy analysis of the projected drug target sequences.
Here, we performed a protein–protein BLAST with all default settings except for the
organism option, where we specified the B. suis 1330 strain.

4. Discussion

Current work culminates into a comprehensive understanding of outlined objectives
by systematic in silico application of drug design modules against B. suis. Brucella is a
zoonotic, Gram-negative intracellular pathogen that infects cattle, small ruminants, dogs,
and pigs, whereas non-zoonotic Brucella species may infect many animals, including hu-
mans [70]. Brucellosis in animals may cause miscarriage, reduced milk supply, reproductive
issues, and hygromas [70,71]. To stop disease, infected animals are killed. B. melitensis and
B. abortus have cattle vaccinations, while B. suis does not [71,72]. Due to its high infection
rate and economic burden on agriculture and health sectors, effective therapies such as
novel medications and vaccines are needed.

Computational biology facilitates the study and interpretation of large amounts of
data [73]. Predictions that have never been made before are being made using data mining
techniques. Several genome annotations have emerged in the post-genomic age that
is beyond the comprehension of human beings [73]. Computational biology is used to
find prospective therapeutic targets in the realm of infectious diseases. Reducing genetic
data to its essential components is one such approach, i.e., subtractive genomics [74].
Genomic analysis at its core is a promising strategy for tackling infectious pathogens

http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
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that affect several species. Pathogens rely on their conserved-core genes for their very
life [74], therefore developing a treatment that specifically targets these genes might be an
effective strategy for eliminating bacterial infection. Research on Escherichia albertii [75], A.
baumannii [76], Mycobacterium spp. [77], etc., provided evidence for this claim. The study
against these pathogens identifies the drug target from the core genome that are previously
not highlighted.

Therefore, the current study applied the subtractive genomic approach for the prior-
itization of novel targets against B. suis (Figure 11). The study characterized 42 putative
druggable proteins from whole proteome subtractive analysis of the B. suis 1330 strain.
Using this method, we were able to identify an essential, non-homologous protein linked
with the pathogen and postulate that it may be a therapeutic target, i.e., isocitrate lyase
(ICL) was discovered to be present in the unique metabolic pathway (Table 1) having
unique protein only in the B. suis genome, as shown in Table 2.

To avoid the two decarboxylation stages of the tricarboxylic acid (TCA) cycle, isoc-
itrate lyases (ICLs; isoforms 1 and 2) catalyze the reversible conversion of isocitrate to
glyoxylate and succinate in the glyoxylate cycle [78]. The previously unexplored genome
of B. suis has marked the identification of ICL as one of the key findings of the study. ICL
has been classified as a promiscuous target for M. tuberculosis due to its persistence and
constitutes a target for antituberculotic agents [31]. Similarly, Chung et al. also target the
ICL protein for Candida albicans [79]. ICL has recently been widely targeted for the cure of
numerous bacterial infections and thus can also be used as a potential target for B. suis 1330.
Nevertheless, the conservancy analysis validated it as a single target for all Brucella spp.

The binding site and binding ligands were also predicted to have more detailed knowl-
edge regarding protein structure. The ICL structure was modeled and validated using
Phyre2, Procheck, and PSIPRED tools. Lastly, PSORTb analysis showed the suitability of
the protein as a drug target as it was cytoplasmic. Moreover, using the molecular docking
approach for the identified drug target, we identified six compounds, i.e., ZINC95543764,
ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and ZINC04259566 (from
shortlisted 10,000 compounds having high binding affinity compared to control ICT) that
potentially inhibits isocitrate lyase as the most favorable interactions with the target active
site residues. The predicted Ki and binding affinity correlation showed that these com-
pounds might be able to block or dampen a biological response by competitively binding
and thus blocking ICL activity.

Furthermore, CDC reported that major brucellosis occur due to the resistance of these
strains. Therefore, it is imperative to have a protective plan in case of major future outbreaks.
The vast array of information regarding the proteomes of Brucella suis can be clinically
implemented for possible pathogen identification and its therapy against ICL. The obtained
results can be manipulated to accelerate drug designing and gain further knowledge of
pharmacogenomics in the treatment of brucellosis. Moreover, the applied subtractive
genomics can aid in the identification of proteins targeted by existing FDA approved
targets other than brucella.

This study may facilitate future researchers to develop effective drug compounds and
vaccines against strain-specific B. suis. Nevertheless, the study has some limitations as all
methods were carried out on a computational approach. Furthermore, research into this
study is required at the experimental level to confirm the findings. In vitro and in vivo
studies are needed to make the analysis more robust.

5. Conclusions

Understanding the proteome of a pathogen is important as it facilitates further compre-
hensive analysis of proteins in various biochemical and pathological pathways that help in
the identification of novel drug targets. Subtractive genomics can aid in arraying the vast in-
formation regarding genomics and proteomics of various pathogens, providing acceleration
in drug designing and pharmacogenomics in the treatments of bacterial infection. There-
fore, the current study applied the subtractive genomics approach for the prioritization of
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potent drug targets against the B. suis 1330 strain. It smears multiple essential analyses at
different stages, i.e., non-homologs, essential, drug target-like, and unique to pathogens
proteins. In this study, a number of proteins along with isocitrate lyase (ICL) was shortlisted
as a novel drug target against B. suis. Consequently, the shortlisted essential proteins may
be further studied and used as a therapeutic target by novel drug and vaccine candidates
for B. suis. The present work uses a pharmacoinformatic approach to investigate the natural
products ZINC library (n = 18,000) against ICL as a possible inhibitor. The six compounds,
i.e., ZINC95543764, ZINC20115475, ZINC02688148, ZINC04232055, ZINC04231816, and
ZINC04259566 were identified as potential inhibitors based on ligand–protein binding
pattern (lowest estimated binding energy). However, the ADMET profiling showed that all
compounds fulfill ADMET properties, except for ZINC20115475 showing positive Ames ac-
tivity, whereas ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed
hepatoxicity, while all compounds were observed to have no skin sensitization. In light of
these parameters, we recommend the ZINC95543764 compound for further experimental
studies. However, experimental validation with computational approaches is required for
further analysis to improve the efficacy of predicted targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9110633/s1. Table S1: Common Metabolic Pathways
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