
Citation: Gokool, V.A.;

Crespo-Cajigas, J.; Mallikarjun, A.;

Collins, A.; Kane, S.A.; Plymouth, V.;

Nguyen, E.; Abella, B.S.; Holness,

H.K.; Furton, K.G.; et al. The Use of

Biological Sensors and Instrumental

Analysis to Discriminate COVID-19

Odor Signatures. Biosensors 2022, 12,

1003. https://doi.org/10.3390/

bios12111003

Received: 26 September 2022

Accepted: 8 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

The Use of Biological Sensors and Instrumental Analysis to
Discriminate COVID-19 Odor Signatures
Vidia A. Gokool 1,† , Janet Crespo-Cajigas 1,† , Amritha Mallikarjun 2, Amanda Collins 2, Sarah A. Kane 2,
Victoria Plymouth 2, Elizabeth Nguyen 2, Benjamin S. Abella 3, Howard K. Holness 1, Kenneth G. Furton 1 ,
Alan T. Charlie Johnson 4 and Cynthia M. Otto 2,*

1 Global Forensic and Justice Center, Department of Chemistry and Biochemistry, Florida International
University, Miami, FL 33199, USA

2 Penn Vet Working Dog Center, Clinical Sciences and Advanced Medicine, School of Veterinary Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA

3 Department of Emergency Medicine and Penn Acute Research Collaboration, University of Pennsylvania,
Philadelphia, PA 19104, USA

4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
* Correspondence: cmotto@vet.upenn.edu
† These authors contributed equally to this work.

Abstract: The spread of SARS-CoV-2, which causes the disease COVID-19, is difficult to control as
some positive individuals, capable of transmitting the disease, can be asymptomatic. Thus, it remains
critical to generate noninvasive, inexpensive COVID-19 screening systems. Two such methods include
detection canines and analytical instrumentation, both of which detect volatile organic compounds
associated with SARS-CoV-2. In this study, the performance of trained detection dogs is compared
to a noninvasive headspace-solid phase microextraction-gas chromatography-mass spectrometry
(HS-SPME-GC-MS) approach to identifying COVID-19 positive individuals. Five dogs were trained
to detect the odor signature associated with COVID-19. They varied in performance, with the two
highest-performing dogs averaging 88% sensitivity and 95% specificity over five double-blind tests.
The three lowest-performing dogs averaged 46% sensitivity and 87% specificity. The optimized
linear discriminant analysis (LDA) model, developed using HS-SPME-GC-MS, displayed a 100% true
positive rate and a 100% true negative rate using leave-one-out cross-validation. However, the non-
optimized LDA model displayed difficulty in categorizing animal hair-contaminated samples, while
animal hair did not impact the dogs’ performance. In conclusion, the HS-SPME-GC-MS approach for
noninvasive COVID-19 detection more accurately discriminated between COVID-19 positive and
COVID-19 negative samples; however, dogs performed better than the computational model when
non-ideal samples were presented.

Keywords: canine detection; COVID-19; VOCs; SPME-GC-MS; odor signatures

1. Introduction

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began
affecting people in the United States (US) in the winter of 2019. Infection with the virus has
resulted in the deaths of over 1 million individuals in the US and over 6 million globally [1].
It has been determined that the virus primarily travels via airborne respiratory droplets,
typically generated during talking, coughing, and sneezing [2,3]. SARS-CoV-2 is generally
spread when aerosolized droplets from an infected person come into contact with a healthy
person’s mucous membranes (i.e., the eyes, nose, or mouth) or through direct physical
contact between an infected and uninfected person [4]. Some infected patients may present
as asymptomatic [5], while other cases involve fever, cough, and unexplained fatigue [6,7];
more severe cases can result in hospitalization for respiratory failure [7], heart failure [8],
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or sepsis [9]. Since SARS-CoV-2 is capable of rapid transmission, and has proven to result
in drastic health consequences, there is a pressing need for effective surveillance testing.

Currently, the most sensitive testing methods for SARS-CoV-2 are fairly time consum-
ing, and the rapid tests can fail to detect low viral loads. Nucleic amplification detection
methods such as reverse-transcriptase polymerase chain reaction (RT-PCR) are the gold
standard for the diagnosis of SARS-CoV-2. Although RT-PCR testing has a relatively high
sensitivity, false negatives can occur for several reasons, including viral content below the
test’s limit of detection, poor sample collection, and faulty technique in sample testing [10].
False negative results can lead to increased spreading of the virus from unknowingly
infected individuals [11]. Additionally, those with asymptomatic COVID-19 expression
may not proactively seek out testing due to their lack of symptoms [12].

Due to disease state misdiagnosis and lack of detection in asymptomatic carriers, there
is a persisting need for the deployment of noninvasive population screening for COVID-19.
This study investigates two prospective screening methodologies applied to clothing worn
by individuals in the community who had been tested for COVID-19: the first is the use
of trained detection dogs, and the second is the analysis of samples via headspace-solid
phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). These
noninvasive biological and instrumental systems were applied in parallel to discriminate
the complex odor signature from COVID-19 body odor samples.

Current research demonstrates that dogs can be trained to detect hypoglycemia [13],
lung cancer [14], ovarian cancer [15,16], prostate cancer [17], and urinary tract infections [18].
More recently, several research groups have trained dogs to identify signature volatile
organic compounds (VOCs) of SARS-CoV-2 in a variety of mediums; including pharyngeal
secretions [19], urine [20], saliva [20], sweat [21,22], and breath [23,24]. However, the
distinct VOCs associated with the SARS-CoV-2 virus have been minimally explored outside
of VOCs in exhaled breath [25,26]. VOCs are produced by cells during metabolic processes,
inflammatory processes, and oxidative stress. These compounds are released from the
human body via breath, urine, feces, and blood [27]. While several studies have identified
key COVID-19-associated VOCs in breath [23–26,28–30], it can be risky to utilize breath as a
medium for detection in dogs, since breath from positive patients contains live virus [28,31]
and dogs are susceptible to contracting COVID-19. In contrast, sweat from COVID-19
positive patients is a safer sample source, containing no live virus [32].

VOCs associated with the SARS-CoV-2 virus in sweat samples can be identified using
headspace analysis via solid phase microextraction (SPME), which allows for the capture of
gaseous analytes onto a coated sorbent surface, the SPME fiber [33]. Once on the SPME fiber,
the analytes can be transferred to another instrument for desorption and analysis. HS-SPME
is often used in conjunction with gas chromatography-mass spectrometry (GC-MS), where
the GC-MS separates and analyzes the compounds captured by the HS-SPME procedure.
Various works have been published on the use of HS-SPME-GC-MS for the detection and
characterization of VOCs from human specimens, including sweat, blood, saliva, urine,
breath, hair, and fingernails (see [34] for a review). Complementary detection of VOCs by
biosensors (dogs) and analytical instrumentation (HS-SPME-GC-MS) can narrow down
areas of volatile biomarkers [16] and allow for further characterization of these unique
VOC profiles, providing a critical step forward for the detection of COVID-19.

In this study, we compared the performance of dogs and the headspace analysis of
COVID-19 samples by HS-SPME-GC-MS. Both methods used T-shirts containing body
odor/sweat from both infected and healthy individuals, regardless of identifying factors
such as gender, race, age, and geography. This work demonstrates the ability to create a
multi-modal approach to complex odor detection and propels this conversation through
the task of detecting COVID-19 presence.
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2. Materials and Methods
2.1. Collection of COVID-19 Samples
2.1.1. Approvals

All animal studies were reviewed and approved by the institutional animal care
and use committee at the University of Pennsylvania (IACUC protocols 806922, 804900).
Handlers of privately owned dogs that performed the detection tasks provided informed
consent. The human study collecting T-shirts was reviewed and approved by the University
of Pennsylvania Institutional Review Board (IRB protocol 843534). Participants provided
informed consent.

2.1.2. Human Participant Recruitment and Follow-Up Health Survey

People recruited on social media (from July 2020 to April 2021) were asked to partic-
ipate in the study by wearing a T-shirt overnight if they had been tested for COVID-19
within the previous 48 h. Participants filled out a survey to determine their eligibility. Data
collected included: age, type of COVID-19 test performed, whether the test was performed
within the preceding 48 h, COVID-19 test results (positive/negative/inconclusive) and
when the results were received, presence of symptoms in the past 7 days, COVID-19 vacci-
nation history, contact information, T-shirt size, how they heard about the study, and their
preferred method of communication. Potential candidates were disqualified if they were
younger than 18 years of age, not living in the United States, allergic to cotton, did not
provide contact information, were tested via rapid antigen COVID-19 test instead of a PCR
test, or if they were not tested for COVID-19 within the past 48 h.

Eligible participants were shipped an unwashed cotton T-shirt, assigned a case iden-
tification number (case I.D.), and were categorized as: positive symptomatic, positive
asymptomatic, negative symptomatic, or negative asymptomatic. Informed consent was
obtained via electronic signature (Qualtrics) or a scanned copy of the consent form with a
written signature. Participants provided a de-identified copy of their PCR test results.

Following receipt of the T-shirt and instructions (wear it overnight without washing it
or wearing any other type of nightshirt under it), participants were asked to complete a
health survey confirming test results and symptomology, including duration that the shirt
was worn, use of any fragrances, any humans or animals with whom they shared their bed,
a rating of their current stress level on a scale of 1 (little) to 10 (maximal), current or past
medical conditions, and current medications. The results of this health survey can be found
in the supplementary information (Tables S1 and S2). The term “symptom count” is used
to reference the number of separately accounted symptoms disclosed by the participant;
for example, a participant who noted coughing and headaches as symptoms would have a
symptom count of two.

2.1.3. Preparation of Sample Collection Materials

All T-shirts were handled with nitrile gloves, individually numbered on the collar
with a permanent black marker, and packaged in the same environment. The numbered
T-shirt was sealed in a one-gallon Ziploc™ bag removing as much air as possible. The case
I.D. number was on the Ziploc™ bag, as well as the enclosed instructions. The participant
was instructed to write the date and time when the T-shirt was put on and when it was
removed on the label affixed to the bag. The prepared collection materials were stored
according to size, in boxes at room temperature.

Each participant was shipped (a) one labeled T-shirt of the designated size (in a
Ziploc™ bag), (b) one labeled Tyvek return shipping bag, and (c) one set of instructions via
overnight courier. The return shipment was made via a scheduled pickup at least 24 h after
the shirt was removed, placed back in the ZiplocTM bag, and sealed in the shipping bag to
ensure a lack of infectivity [35].

T-shirts were shipped from participants back to the University of Pennsylvania be-
tween July 2020 and June 2021. The date the samples were sent to the Penn Vet Working
Dog Center (PVWDC) was accounted for in the randomization when creating training
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and test sample sets, adding another layer of variability for the dogs to generalize across.
Sample processing was performed by PVWDC and the Penn Acute Research Collaboration
coordinator team at the University of Pennsylvania. All negative shirts were processed
prior to any positive shirts. Fresh nitrile gloves were worn for handling each individual
shirt. All surfaces were cleaned with isopropyl alcohol between shirts.

Shirts were cut into six pieces: (1–2) the front cut in half, (3–4) the back cut in half,
(5) the right sleeve, and (6) the left sleeve. Once cut, the right side and left side pieces were
separated, and each half of the shirt was placed into a mason jar labeled with the case I.D.
number and the donor’s COVID-19 status (+/−). The right halves of the shirts were sent to
Florida International University (FIU) and the University of Pennsylvania Johnson Lab to
be utilized for VOC analysis or other COVID-19 studies, respectively. The left halves of the
shirts were kept for canine use.

2.1.4. Collected COVID-19 Positive and COVID-19 Negative T-Shirt Samples

Samples were collected from people across the US; only samples returned with a
completed donor health survey were considered for canine training/testing. Two hundred
and ninety-three (293) samples were collected, entered into the total dataset, and used for
training purposes in the study. Additional samples were collected, but these were not used
in the training/testing schemes. The majority of samples were obtained from participants
who identified as White or Caucasian, which was accounted for when distributing samples
throughout pre-determined training sets for canine training. The demographic distribution
of the collected T-shirt sample inventory can be found in Table A1.

The sample portions allocated for canine use were sealed in appropriately labeled
mason jars and stored in lockers kept at room temperature. Samples remained in the lockers
before and after being utilized for canine training/testing. Additionally, samples were
separated based on COVID-19 test results, so negative and positive samples were never
stored adjacent to one another. In total, for the dogs, 220 samples were used in the training
phases, and 73 samples were used in the test phase; donor demographics are shown in
Table 1. Two COVID negative samples, #291 and #432, were included in both the training
and test sample sets. All other samples were seen once by each canine.

T-shirt portions allocated for instrumental analysis using HS-SPME-GC-MS were
sent to Florida International University (FIU) in labeled ZiplocTM bags. In accordance
with the safety protocols in place at the time of analysis, all T-shirt materials received
by FIU were irradiated using a 10-min exposure to 254 nm ultraviolet (UV) light. This
procedure was conducted to ensure that no live virus was present on the samples before they
were handled.

Table 1. Donor demographic data for COVID-19 T-shirt samples used in dog training/testing.

Race/
Ethnicity

Identified Gender COVID-19
Status/Presentation Age Group Shared Bed with

Female Male NB/GQ Asym. Sym. Neg.
18–34 35–64 65+ No

One
Another
Person

Person
and Pet(s) Pet(s) UKN(+) (+) (-)

Asian or
Asian
American

12 1 - - 3 10 11 2 - 5 5 2 1 -

Biracial 1 - - - - 1 - 1 - - - - 1 -

Black or
African
American

2 1 - - 1 2 2 1 - 1 - - 2 -

Hispanic or
Latino 11 2 1 - 3 11 9 5 - 4 4 2 4 -
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Table 1. Cont.

Race/
Ethnicity

Identified Gender COVID-19
Status/Presentation Age Group Shared Bed with

Female Male NB/GQ Asym. Sym. Neg.
18–34 35–64 65+ No

One
Another
Person

Person
and Pet(s) Pet(s) UKN(+) (+) (-)

Native
Hawaiian or
Other Pacific
Islander

1 - - - - 1 - 1 - - 1 - - -

White or
Caucasian 206 45 1 9 69 174 120 118 14 82 70 36 62 2

Another
race 5 - - - 2 3 4 1 - 2 - 1 2 -

Not
reported 4 - - - 1 3 2 1 1 1 1 1 1 -

Total 239 49 2 9 79 202 147 128 15 95 79 42 72 2

NB/GQ = nonbinary/genderqueer.

2.2. Canine Odor Discrimination Methods
2.2.1. Canine Participants

Five dogs (4 privately owned, one owned by the PVWDC) were selected to participate
in the study (see Table 2). To participate in the study, dogs must have demonstrated (a) a
“trained final response” (stand-stare alert for greater than 2 s, or a sit alert) to training odor
presented on the wheel (see Figure 1), (b) the ability to sequentially search the scent wheel
ports 1 through 8, and (c) a “blank wheel response” by leaving the wheel room or sitting
on a platform when the target odor was not present in the wheel and all ports have been
searched. All dogs were initially trained on wheel searching mechanics using the universal
detector calibrant training odor (UDC) [36].

Table 2. Canine participant information.

Dog Sex Age (Years) Breed Previously Trained Odors

Griz M 6 GSD UDC, spotted lanternfly, Middle Eastern
antiquities, live humans

Rico M 6 GSD UDC
Roxie F 6 Labrador UDC, narcotics, live humans
Toby M 3 Small Munsterlander UDC, spotted lanternfly, live humans

Tuukka F 7 Husky/GSD mix UDC

M = male, F = female, GSD = German shepherd dog, UDC = universal detector calibrant.
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2.2.2. Use of T-Shirt Samples in Training and Testing

Each week, after the dogs had been initially trained on the odor, the dogs were exposed
to two training sets containing four negative and two positive samples, all unique and only
used once throughout training. Both negative and positive samples contained only the
sleeves of the collected T-shirts. The distribution of samples was randomized to ensure
dogs were exposed to a range of ages, genders, ethnicities, races, and pre-existing medical
conditions in each training session. A similar method of randomization was used to create
the sets on which the dogs were tested at the end of their training. The majority of test sets
contained 12 novel negative samples and 2–3 novel positive samples (Tables S2 and A3).
Each of the selected samples varied in demographic categorizations and length of time
T-shirt was stored between and within tests. Two previously seen negative samples (#291
and #432) were included in the test set, leading to a total of 59 negative samples across tests.
A range of sample demographics was used to examine the generalization of the COVID-19
odor cue from person to person.

2.2.3. Distractors

In addition to the positive and negative T-shirt samples, dogs were also presented
with distractor items. These items were selected to ensure that the dogs were alerting
on COVID-19 positive T-shirts and not on any untargeted scents/odors that potentially
coincided with these samples. Items included an unworn T-shirt, a shipping envelope from
the PVWDC, a shipping envelope sourced from the research assistant sending out shirts,
latex gloves, nitrile gloves, isopropyl alcohol, and a permanent marker.

2.2.4. Training Procedure

The training progression that was implemented while training each canine (Table 2) is
outlined in Table 3 and described in further detail below.

Table 3. Training progression criteria.

Phase Holes in
Negative Lid

Sensitivity
Required to

Advance

Specificity
Required to

Advance

Minimum #
Sessions

Required to
Advance

# COVID-19 (+)
Samples/Session

# COVID-19 (-)
Samples/Session

Imprinting 1 9/10 trials overall correct 1 1 1

Phase 1 1 80%
(5/6 correct)

80%
(10/12 correct) 3 in a row 2 4

Phase 2 4 80%
(5/6 correct)

80%
(10/12 correct) 3 in a row 2 4

Phase 3 16 80%
(5/6 correct)

80%
(10/12 correct) 3 in a row 2 4

Phase 4 Fully open 80%
(5/6 correct)

80%
(10/12 correct) 3 in a row 2 4

Sensitivity = TP/(TP + FN) Rate of alert to positive samples
Specificity = TN/(FP + TN) Rate of no alert to negative/blank samples

2.2.5. Odor Learning Phase

In the initial phase of the study, dogs were rewarded for sniffing the COVID-19
positive sample. Dogs were presented with jars containing the sleeves of shirts worn by
COVID-19 positive patients as a target odor. When the dog sniffed this target odor, the
behavior was marked with a conditioned secondary reinforcer (i.e., noise generated by a
“clicker”) and paired with a food or toy reward. The target jars were covered with a mesh
lid, allowing full odor release but preventing access to the material. In the same session,
dogs were presented with jars containing the sleeves of shirts worn by people who were
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COVID-19 negative. Dogs were not rewarded, nor was their behavior marked for sniffing
the negative sample.

During this phase, the COVID-19 negative jars were covered by a lid with 1 hole in
the top, as compared to the fully open COVID-19 positive jars. This approach allowed the
dogs to utilize two differences in odor for differentiation: first, the scent profile difference
between COVID-19 negative and COVID-19 positive, and second, a concentration differ-
ence where the COVID-19 positive odor, covered with a mesh lid, was stronger than the
COVID-19 negative odor, covered with a single-hole punch lid. The concentration dif-
ference functioned as “training wheels”, which were phased out as the dogs’ training
progressed. This method is known as “errorless learning” [37] and has been used in a
previous COVID-19 detection study from the PVWDC [20].

At the beginning of each training session during the odor learning phase, the dogs
were presented with the COVID-19 positive and COVID-19 negative jars on the floor.
The location was randomized—either left or right—across ten trials. The trainer clicked
when the dog sniffed or showed a trained final response on the COVID-19 positive jar and
was ignored when the dog sniffed or showed a trained final response on the COVID-19
negative jar.

2.2.6. Odor Learning Sessions on the Wheel

After 10 trials with only two samples (1—positive, 1—negative) were completed, the
COVID-19 positive and COVID-19 negative jars were moved onto the scent wheel. The
scent wheel contains 8 total ports: two of these were the COVID-19 positive and COVID-19
negative odors, respectively, and the remaining 6 ports were distractor items (Figure 1). All
trials were video recorded.

To prevent human cues and bias, the dog and trainer were blocked from the trial
area to prevent visual observation of sample placement. The trainer remained behind a
barrier during the trial, such that they were out of sight from the dog. During each trial,
the dog was sent to search the scent wheel. A positive response to COVID-19 positive odor
was marked by the trainer with a conditioned secondary reinforcer (e.g., a clicker), then
rewarded with praise and food or a toy. False negatives (passing the target odor) and false
positives (alerting at the incorrect odor) were ignored. If the dog passed the positive odor
without presenting a trained response (false negative), they were sent back to the wheel
without a reward to execute a new search for the positive odor.

For any given session in this phase, there were 4 to 6 “blank wheels” where there were
control and distractor odors but no target odor present on the scent wheel. During a blank
trial, dogs are to sniff and pass each of the eight ports and then exit the wheel room and sit.

When the dog achieved 90% accuracy (9/10 correct trials) across all scent wheel trials
in one session, the dogs moved to the subsequent phase of training.

2.2.7. Training Phase 1

In Training Phase 1, there was no longer exposure to a positive sample prior to the
dogs’ wheel trials. Additionally, dogs were presented with double the number of positive
and negative samples in each session. Per trial, the scent wheel contained one or zero
COVID-19 positive samples and up to 4 COVID-19 negative samples. The other ports
contained distractor items, which were covered by a mesh lid. The jars containing the
COVID-19 positive shirts were covered with a mesh lid. The jars containing COVID-19
negative shirts continued to have one hole in the lid, again to restrict odor output.

Training sessions included multiple presentations of both targets and controls; how-
ever, only the initial response was used to calculate the required performance to move to
the next phase.

For a dog to move to the next phase, it needed to have a minimum true positive
response of 5/6 to positive targets on first presentation (83% sensitivity) and a minimum
true negative response of 10/12 non-targeted odors on first presentation (83% specificity).



Biosensors 2022, 12, 1003 8 of 25

Due to the number of samples, they had to complete a minimum of 3 sessions in any given
phase to achieve this benchmark. This benchmark was applied to Training Phases 1–4.

2.2.8. Training Phase 2–4

Phases 2–4 were procedurally identical to Phase 1. In Phase 2, the jars containing the
COVID-19 negative shirts used lids that had four holes punched in the top. In Phase 3,
the jars containing the COVID-19 negative shirts used lids that had 16 holes punched in
the top. In Phase 4, the jars containing the COVID-19 negative shirts had mesh lids. The
increase in holes in the COVID-19 negative jar lids slowly removed the concentration cue
that was initially provided to help the dogs distinguish it from the COVID-19 positive odor.
Training sessions included multiple presentations of both targets and controls; however,
only the initial response was used to calculate the required performance to move to the
next phase.

2.2.9. Test Phase

Dogs completed five test sessions consisting of three trials each. The sessions were
run double-blind (i.e., the handler did not know the location of the positive sample, and
the experimenter left the room prior to the start of each trial); such that the dog would not
inadvertently be cued to alert on any sample. Two of the test sessions contained one blank
trial, in which there was no positive sample. The remaining sessions contained 3 trials
with a novel COVID-19 positive sample each trial. As such, there were 13 total COVID-19
positive samples shown to the dogs, as well as 59 COVID-19 negative samples (Table S2).
The positive samples were purposefully selected to be diverse in race, age, vaccination
status, time the shirt was collected, and the number of symptoms (See Table A2).

2.2.10. Behavioral Analysis

The test phase data was behaviorally coded (translated into numerical values) by two
research assistants using BORIS [38]. The coders recorded the duration of time each dog
spent at each odor port for each trial in the 5 test sessions. The coders were unaware of the
location of the positive sample.

2.2.11. Statistical Analysis

A binomial mixed-effects logistic regression with sample type as the fixed effect and
dog as a random effect was conducted to determine the effects of a COVID-19 positive or
COVID-19 negative status of a sample on the duration of time spent at port for each dog.
Analyses were carried out in R using GLMER [39].

2.3. HS-SPME-GC-MS Methods
2.3.1. Sample Set Demographics

A subset of the samples used in the dog trials were transferred to FIU for HS-SPME-
GC-MS analysis. Due to this subgrouping, the HS-SPME-GC-MS samples reflect a different
distribution of demographics than are reflected by the dog trial samples (Table 1). Table 4
shows a demographic breakdown of the donors contributing to HS-SPME-GC-MS character-
ized T-shirt samples. Eleven (11) sample donors did not provide demographic information.
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Table 4. Donor demographic data for COVID-19 T-shirt samples informing computational models.

Race/
Ethnicity

Identified Gender COVID-19
Status/Presentation Age Group Shared Bed With

Female Male NB/GQ Asymp.
(+)

Sympt.
(+)

Neg.
(-) 18–34 35–64 65+ No

One
Another
Person

Person
& Pet(s) Pet(s)

Asian or
Asian

American
5 - - - 1 4 4 1 - 2 3 - -

Hispanic
or Latino 2 2 1 - 3 2 3 2 - 1 1 1 2

White or
Caucasian 100 25 0 3 37 85 58 57 10 36 36 19 34

Another
Race 2 - - 1 1 2 - - 1 - 1 -

Not
Reported - - - 7 *× 4 × - - - - - - -

Total 109 27 1 3 49 96 67 60 10 40 40 21 36

NB/GQ = nonbinary/genderqueer * symptomology not reported. × demographic information not reported.

2.3.2. HS-SPME-GC-MS Analysis Procedure

Following sample irradiation, T-shirt samples were prepared for reagent-free sampling
by removing a 4 × 4 inch piece of fabric from the underarm section using sterilized scissors.
This piece was then placed inside a 40 mL headspace vial, which was pre-cleaned according
to the methods published by Gokool et al. (2022) [40]. Samples were stored at room
temperature (20 ◦C) between sample collection and analysis.

Samples were placed in a digital heating bath set at 50 ◦C immediately prior to
sample extraction. A clean 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane
(DVB/CAR/PDMS) SPME fiber was exposed to the headspace of the T-shirt samples at a
1-inch fiber exposure setting. No previous sample equilibration was performed. After 24 h,
SPME fibers were unexposed and removed from the sample headspace.

Analytes on the SPME fibers were thermally desorbed at 270 ◦C for 4 min (3-inch fiber
height) into the heated inlet of the GC (Agilent 8890; Agilent Technologies, Santa Clara,
CA, USA). A splitless injection method with a 1 mL/min column flow was implemented
on a HP5-MS UI capillary column (15 m × 0.250 mm I.D. × 0.25 µm phase thickness;
Agilent Technologies). Helium was used as the carrier gas. Oven temperature parameters
started at 40 ◦C (1.25 min hold), increased to 165 ◦C (5 ◦C/min rate), and concluded at
270 ◦C (30 ◦C/min rate). The total method runtime was 29.75 min. A mass spectrometer
(Agilent 5977B MSD; Agilent Technologies) with an electron impact ionization (EI) source
and quadrupole mass analyzer was used with the following parameters: MS source was
maintained at 230 ◦C, MS Quad at 150 ◦C, transfer line at 280 ◦C, EI source at 70 eV, and
scan range at m/z 50–550.

2.3.3. Statistical Analysis

A semi-quantitative approach was taken for the analytical procedure because of
the novelty of the samples collected (bodily emanations from individuals who tested as
positive or negative for COVID-19). Due to a lack of pre-existing knowledge of the sample
and sample matrix, the researchers opted for a pattern recognition-based approach to
data analysis.

Linear discriminant analysis (LDA) was used to model the class separation of COVID-
19 positive/negative samples. LDA is a dimensionality reduction technique that is used
for supervised classification problems. The technique creates a linear combination of the
submitted features to form separation between the classes.
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2.3.4. Data Pre-Processing

An untargeted approach was applied to the dataset to uncover underlying relation-
ships and their contributing compounds. All 148 received T-shirt samples were analyzed
using HS-SPME-GC-MS. The resulting GC-MS chromatograms were pre-processed using a
proprietary piece of software developed at FIU; this software has previously been applied in
the pre-processing of human odor data collected by HS-SPME-GC-MS [40]. The collective
dataset was evaluated for compounds eluting at approximately the same time. In addition
to the 148 COVID-19 positive/COVID-19 negative samples, three blank unworn T-shirts
were sampled to establish background signals from the fabric substrate. Compounds that
were present in all the background samples were removed. The following calculations were
determined using a dataset consisting of square-root transformed, total ion chromatogram
(TIC) peak areas for retention time-aligned peaks.

3. Results
3.1. Canine Behavioral Coding Interrater Analysis

An inter-rater analysis was run in R to determine the reliability of the participating
video coders. Six randomly chosen videos out of the 25 total test videos (24%) were used
for this analysis The inter-rater analysis was run based on a single-rating, consistency,
two-way mixed effects model. The model displayed an intraclass coefficient of 0.843, with a
95% confidence interval of 0.793 to 0.882. These findings indicate that the video coding was
performed with good to excellent reliability [41].

3.2. Canine Training Data

Dogs spent different amounts of time in each training phase prior to achieving the
benchmark to be tested (see Figure 2). In the last phase, where both the negative and
positive samples had fully open lids, there was a divide between Roxie and Rico, who spent
very little time (5 sessions) in this phase as opposed to earlier phases, and Tuukka, Toby,
and Griz, who spent the most time in this phase (12, 13, and 11 sessions, respectively).
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Figure 2. This graph shows the number of sessions each dog spent in each phase of training prior
to the test phase. After imprinting, dogs had to spend a minimum of 3 sessions in each phase to
meet the benchmark of 5/6 correct alerts on COVID-19 positive samples and 10/12 correct passes on
COVID-19 negative samples.
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3.3. Testing Data

This study examined dogs’ ability to detect COVID-19 positive odor samples on T-
shirts. An analysis was performed to assess whether dogs alerted significantly more often
on the COVID-19 positive samples than the COVID-19 negative samples. An alert was
characterized as a two-second stand-and-stare alert (Griz, Toby, Tuukka, and Rico) or a sit
at the positive sample (Roxie). Dogs are more likely to alert on the positive samples than
the negative samples, X2 = 2.92, z value = 8.645, p < 0.0001. Table 5 shows the sensitivity
and specificity of each dog in the study.

Table 5. Dogs’ sensitivity and specificity at test.

Dog Sensitivity Specificity

Griz 11/12 * (91.7%) 51/56 * (91.1%)
Toby 11/13 (84.6%) 59/60 (98.3%)
Tuukka 9/13 (69.2%) 55/60 (91.6%)
Rico 5/13 (38.5%) 56/60 (93.3%)
Roxie 4/13 (30.8%) 46/60 (76.6%)

* Griz was accidentally clicked and rewarded after alerting on a positive sample during a test trial; because dogs
were not being clicked and reinforced during testing, this trial was removed from his results before analysis.

3.3.1. Factors Affecting Canine Behavior and Alert on Positive Samples

The authors examined how the dogs’ alert duration on positive samples was affected
by demographic and symptomatic factors reported by the T-shirt sample donors. A linear
mixed-effects regression with gender, age group, number of symptoms, and pet-owning
status as the fixed effects and dog as a random effect was performed. None of these factors
significantly affected alert duration (gender: F(56) = 1.11, t = 1.62, p = 0.11; age group:
F(56) = −0.24, t = −1.06, p = 0.29; symptom count: F(56) = −0.01, t = −0.06, p = 0.95; pet
ownership: F(56) = −0.64, t = −1.06, p = 0.29). Table 6 shows the results for alerts to positive
test samples organized by the trial run. Table A2 depicts the dogs’ alert rate to the positive
test samples; this information is organized by sample feature/characteristic (i.e., gender,
age, etc.).

Table 6. Trial set individual positive results.

Trial

# of Dogs
who

Correctly
Alerted

# Correctly
Alerted,
above

Chance
Dogs

Gender Age SymptomCount Race/
Ethnicity

Bed Shared
with Pet?

1 2/5
4/5

2/3
2/3

F
M 45–54

35–44
5
5

White
Hispanic

No
Yes, 1 dog

2
4/5
3/5
3/5

3/3
1/3
2/3

F
F
M

25–34
35–44
55–64

3
6
5

White
Hispanic

White

No
Yes, 1 cat

No

3
3/5
3/5
4/5

2/3
3/3
2/3

F
F
F

25–34
25–34
55–64

4
0
7

Asian
White

African
American

No
No

Yes, 1 or
more dogs

4 2/5
3/5

2/3
3/3

M
F

65+
25–34

0
7

White
Asian

No
No

5
3/4
4/5
3/5

2/2
3/3
3/3

M
F
F

25–34
45–54
35–44

3
1
7

White
White
White

No
No

Yes, 1 or
more cats
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3.3.2. Factors Affecting Canine Behavior and Alert on Negative Samples

Additionally, the authors examined how the dogs’ alert duration at negative samples
was affected by demographic factors reported by the study participants. A linear mixed-
effects regression with gender, age group, and pet-owning status as the fixed effects and
dog as a random effect was performed. None of these factors significantly affected alert
duration (gender: F(279) = −0.04, t = −0.19, p = 0.84; age group: F(279) = −0.05, t = −1.28,
p = 0.20; pet ownership: F(279) = 0.06, t = 0.49, p = 0.62).

3.3.3. Factors Affecting Canine Behavior and Alert on Positive or Negative Samples

A linear mixed effects model of duration at port with sample type (positive or negative)
and sample number as fixed factors was created. The sample number denotes the order
in which the samples were received over time. There is a main effect of sample type,
B1 = −1.11, t(170) = −3.64, p= 0.0004, meaning canines spend statistically different amounts
of time at the port for a positive sample (holding in place to alert) versus a negative sample
(short interaction, no alert).

Importantly, there is no interaction between sample type and sample number,
B1 = −0.001, t(170) = −1.03, p = 0.3. The earlier positive and negative samples did not have
significantly different durations at odor than the later positive and negative samples. The
time at which a sample was collected did not significantly affect the time spent alerting (for
a positive) or passively sniffing (for a negative sample).

3.4. HS-SPME-GC-MS Results

Initial analysis of the formed dataset revealed a separation of data points. The observed
separation is believed to be driven by one or more unidentified class characteristics. As seen
in Figure 3, there is subgrouping occurring within the dataset that has not been attributed to
a sole influence or characteristic, such as COVID-19 status. The separation may be due to a
confounding effect or a combination of class characteristics. The characteristics which have
been investigated and ruled out as sole contributors to the dataset grouping are gender,
age, vaccination status, and pet ownership. An insight into subgrouping composition was
achieved when viewing the dataset in terms of self-identified race.
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Figure 3. Initial COVID T-shirt PCA labelled by donor’s COVID-19 status.

The consideration of donor race indicated that all donors in one subgroup (right) share
the racial identification of “White or Caucasian.” Due to this observation, the following
co-interactions were considered for further explanation of data subgrouping: (a) race and
COVID-19 status, (b) race and symptomatic presentation, (c) race and gender, (d) race and
age, and (e) race and vaccination status. Although these co-interactions were investigated,
they were not seen to provide any further explanation for the observed phenomenon.
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The peaks of interest contributing to the subgrouping (i.e., the split observed) seen
in Figure 3 were identified (by retention time) and removed from the dataset. This action
constituted a removal of 15 peaks of interest. This caused the dataset to decrease from
126 features of interest to 111 features of interest. The removal of this subsetting factor
mitigates the risk of building an instrumental model off erroneous information, which
is not related to the COVID-19 positive/negative status of a donor. The refined dataset
no longer demonstrated the previously observed, unexplained subgrouping indicating
that the developed instrumental model would not be informed by the unidentified effect
(Figure 4).
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Model Development

Following the pre-processing procedure described above, the dataset containing
retention-time-matched peaks of interest was square-root transformed. Note that the
dataset was refined to remove peaks found to be present in all of the analyzed background
samples (unworn T-shirts) and peaks that contributed to the subgrouping viewed in Fig-
ure 3. This dataset was used to build a linear discriminant analysis (LDA) model using
JMP®, Version 16.1.0. (SAS Institute Inc., Cary, NC, USA 1989–2021). LDA is a supervised
learning technique that uses a linear combination of features of interest (variables) to dis-
criminate between classes. LDA allows for linear modeling of the COVID-19 positive and
COVID-19 negative samples using the TIC peaks of interest (identified in the GC-MS data)
to separate and differentiate between COVID-19 status in the sample set.

The LDA model displayed in Figure 5 demonstrates the separation of 54 COVID-
19 positive and 94 COVID-19 negative donor profiles. The displayed model was seen
to perform moderately when all data points were used to train it; true positive rate
(TPR) = 96.3%, true negative rate (TNR) = 96.8%, false positive rate (FPR) = 3.2%, and false
negative rate (FNR) = 3.7%. This model resulted in five misclassified samples with three
False Positives and two False Negatives. When leave-one-out cross-validation (LOOCV)
was applied to the model, the performance was very poor, with TPR = 57.4%, TNR = 61.7,
FPR = 38.3%, and FNR = 42.6%. LOOCV was performed using R-3.6.1, an open-
source software.
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Figure 5. COVID T-shirt LDA model and model performance.

Further review of the misclassified donor samples, seen in the unvalidated model,
revealed that the five misclassified individuals retained the class characteristic of “sharing
their bed with at least one pet cat or pet dog”. The researchers believe that the transfer of
pet fur and dander onto the collection substrate influenced the collected volatile organic
compound profiles. This pet fur and dander was visible on several of the samples collected
with this donor characteristic, as can be seen in Figure A1.

It was beyond the scope of this project to train a predictive model to differentiate
between COVID-19 positive and COVID-19 negative samples despite the presence of
animal interferents. As such, individuals who attested to sharing their bed with their pet
animal(s) were removed from the dataset informing the LDA model. With the removal of
these individuals, the model was tuned and cross-validated, demonstrating considerably
less ambiguity than the previous iteration. The exclusion of individuals who shared the
bed with their pet(s) reduced our sample population to 91. The updated model included
80 features of interest, reduced from the 111 features used to develop the model in Figure 5.
There is a clear delineation between COVID-19 positive and COVID-19 negative donor
profiles, as expressed in Figure 6.
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The LDA model displayed in Figure 6 demonstrates the separation of (33) COVID-
19 positive and (58) COVID-19 negative donor profiles. Both the non-validated model
(informed by all data points) and the LOOCV model performed with a TPR = 100%,
TNR = 100%, FPR = 0.0%, and FNR = 0.0%. The model did not “miss” any COVID-19
positive individuals. The donors in this subset stated that they did not share a bed with
their pets. However, these donors did not indicate ownership of a pet. The previously
discussed splitting of the dataset (seen in Figure 3) was not observed to be linked to pet
ownership or sharing a bed with a pet.

4. Discussion

This study demonstrates a multi-modal comparative approach to the detection of
COVID-19; the researchers utilized both dogs and HS-SPME-GC-MS to discriminate be-
tween COVID-19 statuses using human sweat samples. One of the challenges of many prior
COVID-19 detection studies was that dogs were trained with relatively small sample sets,
which lacked substantial demographic variation and focused on hospitalized COVID-19 pa-
tients [20,42,43]. Hospital populations are likely to be more severely affected by COVID-19
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and be isolated during care. Whereas asymptomatic or mildly affected individuals are more
likely to remain in the community and contribute to the spread of the virus. As such, their
inclusion in the sample population is integral to identifying COVID-19 positive individuals
in the populace. Another constraint posed by small sample sets, but evaded in this work,
is the limited ability to determine the dogs’ capacity in generalizing to a broader donor
population regarding age, race, and severity of illness, among other factors.

Both the dogs and the HS-SPME-GC-MS approach were able to discriminate COVID-19
positive from COVID-19 negative in this community-based population. Obtaining samples
from a home environment led to an unexpected confounding factor: the presence of animal
hair on the T-shirts. It is important to note that in this study 38.5% of individuals reported
sharing their beds with a pet. The dogs’ performance was not affected by the presence of
animal hair; however, the HS-SPME-GC-MS-informed model was. Despite the presence
of animal hair interferents, the results of the study were consistent with the finding of
Grandjean et al. (2022), who similarly tested dogs on samples from 335 individuals from
two community screening centers [44]. Recent publications by Chaber et al. (2022) and
by Grandjean et al. (2022) tested canine discrimination between COVID-19 positive and
COVID-19 negative using sweat samples collected from France, UAE, and Australia [43,44].
These studies recounted high canine sensitivity and specificity, even reporting dogs could
identify positive cases before the PCR test. These studies suggest that dogs could prove to
be an effective population screening method [14,17].

Although the dogs were able to correctly identify and alert to COVID-19 positive
samples and distinguish these amongst COVID-19 negative samples in this study, there
was considerable variability observed in the dogs’ detection accuracy. Overall, the dogs
gave correct responses (alerting on positive samples and ignoring negative samples) to
62.5% of the presented positive samples and 90% of the presented negative samples.
When the canines were regrouped into high-performance (2/5) and low-performance
(3/5) canines, a clear delineation in performance was seen. The high-performance group
produced correct responses (alert to positive/pass negative) to 85% of positive samples and
94.8% of negative samples. In contrast, the low-performance group had correct responses
to only 46.2% of positive samples and 87.2% of negative samples.

It is not always clear which dogs will perform well on specific odor detection tasks,
and canine performances can vary widely (see Gonder-Frederick et al. (2017) for an
example in diabetic alert dogs [45]). Canine performance is known to vary based upon
several factors, including canine-oriented factors such as personality traits [46,47], specific
polymorphisms in olfactory receptor genes [48], and handler-oriented factors, including
the identity and familiarity of the handler [49] and the handler’s belief about the odor’s
location and positive/negative status [50]. Identification of the specific VOCs may help
provide the tools to evaluate the effects of canine-oriented factors. Further research can
explore how to identify potentially high-performing detection dogs prior to training, to
prevent significant loss of time and capital.

Importantly, the dogs did not display a significantly different performance in detecting
COVID-19 within a specific demographic group, nor was their performance affected by
the storage time of the samples used. The dogs were trained on a large number of samples
from a variety of demographic groups. Additionally, dogs saw samples that ranged from
298 days (oldest negative sample seen by last tested dog) and 283 days (oldest positive
sample seen by last tested dog) to 21 days (newest negative sample seen by first tested
dog) and 63 days (newest positive sample seen by first tested dog), in terms of when the
odor/scent was collected on the shirt to the time they were presented to the dogs (See
Table A3). The consistent performance of the dogs suggests that the sample collection and
storage procedures (collect onto cotton T-shirts and store in a sealed container at room
temperature) produce a sample with a stable odor profile and non-depleted headspace
through long periods of static storage. The canines’ performance in testing reinforces the
idea that training detection dogs using a diverse set of samples supports their ability to
generalize odors (see [51] for a similar concept in machine learning).
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HS-SPME-GC-MS was used as a reagent-free technique for the capture and detection
of VOCs present in human body odor samples. The human scent profiles obtained through
this procedure were used to develop an LDA model for the predictive classification of
COVID-19 status, informed by sweat expression. In this experiment, the developed LDA
model depicted in Figure 5 was seen to perform very poorly in comparison to the model
shown in Figure 6. The difference in model performance was linked to the inclusion of
samples collected from donors who reported sharing a bed with their pet(s). The removal
of these individuals from the LDA model allowed for the creation of a predictive model
that had no misclassifications when cross-validated using a leave-one-out approach. The
necessity of the removal of these individuals is contrasted by the results seen in the dog
scent work, where the dogs were able to differentiate COVID-19 positive and negative
samples regardless of the presence of pet interferents. The new predictive model for the
differentiation of COVID-19 positive and COVID-19 negative T-shirt samples was informed
by a sample set of 91 participants who did not share their beds with a pet. The model
contained 80 features of interest, indicating a high degree of complexity in the characteristic
VOC profile representative of COVID-19 expression in sweat. At its best performance,
the developed LDA model (Figure 6) had a TPR = 100%, TNR = 100%, FPR = 0.0%, and
FNR = 0.0% (validated using LOOCV). The contributing sample set, however, did not
retain the same degree of diversity as the original sample population (reduced from 148 to
91 samples). The model requires further training, including the submission of more
variation in donor demographics, if it is to be implemented in a non-academic setting.

4.1. Contrasts between Instrumental and Biological Methods Used for COVID-19
Positive/Negative Odor Discrimination

The duality of the methodology, using dogs and conventional analytical instrumenta-
tion, creates a parallel view of the strengths and challenges posed by each approach. Both
techniques were demonstrated to be capable of discriminating between COVID-19 status
when informed by human odor signatures. The use of scent work dogs demonstrated a
method that allowed for the training of a detection system (dog) that was able to discrim-
inate between samples sourced from a range of genders, races, and age groups, among
other factors, without a demonstrated bias in their decision-making. However, while the
training method utilized in this study proved to be effective for this set of participants, it
also revealed variations in odor recognition between dogs, such as behavioral responses,
that could not be controlled for. In a canine approach, the dog is the sensor, and unlike
analytical instruments, canine abilities are highly variable between animals.

In contrast, the analytical approach was HS-SPME-GC-MS, a technique that uses
components that are all commercially available and is easily reproduced. The LDA model,
which was informed by the HS-SPME-GC-MS data, demonstrated a “perfect” determination
of COVID-19 status. While the performance was superior to that of the dogs, the approach
exhibited drawbacks of its own. In the context of canines being used as sensors, the dogs
were calibrated to interpret odors sourced from domesticated animals, more specifically ca-
nine fur and dander, as background and not of interest to their task of identifying COVID-19
positive T-shirt samples. Dogs have previously been noted to distinguish specific target
odors in environments with abundant and varied distracting odors [52]. The disparity in
performance between the LDA model and dog trials speaks to the fact that while the dogs
were trained to ignore non-targeted odors in their training, the LDA model was still in its
training phase and had yet to learn how to disregard animal interferents in the dataset.

Another notable difference between the techniques is the issue of time. Using HS-
SPME-GC-MS for status determination requires considerably more time per sample than
required when using trained detection dogs. Excluding method development and training
periods, the final procedure for determining if a single sample was COVID-19 positive
or negative would require approximately 25h using HS-SPME-GC-MS; meanwhile, all
five trained canines could be run on a single scent wheel line-up containing the sample
in 10 min.
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4.2. Limitations

The sample sets used to train/test the canines and computational model both skewed
toward the same demographic categories. In terms of race, the sample sets were pre-
dominantly white or Caucasian, and in terms of gender, they were predominantly female.
Additionally, the overarching dataset of total collected T-shirt samples lacked contributions
from non-binary, genderqueer, and non-cis-gendered individuals.

While conducting a crowdsourcing campaign for sample donations allowed for a
large number of samples to be collected from a geographically diverse set of donors, the
procedure required some sacrifice of oversight into how the samples were handled pre-
processing. The T-shirt samples used in this study were handled by multiple individuals
from sample kit preparation to its final analysis, either by canine or HS-SPME-GC-MS
analysis. At each point of interaction, the opening of containment vessels creates an
opportunity for VOCs of interest to escape and interferents to settle onto the samples.
In addition, the samples were stored in permeable membranes (Ziploc™ bags) from the
time of collection until either (a) they were transferred to a glass mason jar and kept for
storage by PVWDC or (b) they were transferred to FIU. Samples that were allocated for
FIU remained in the permeable containment at room temperature until arriving at the
facility. The storage of samples at room temperature or in permeable containers allows for
the continuous emission of highly and nominally volatile compounds from the sample.
The long-term storage of samples under these conditions creates opportunities for sample
depletion and may have impacted the performance of both experiments by lowering the
abundance of total analytes in the samples.

It is important to note that the canine and HS-SPME-GC-MS experiments were not
informed by the same sample sets. While all samples were collected by PVWDC and
processed in the same manner, not all of the specific samples used to train or test detection
dogs were used to inform the LDA model. Of the 291 samples used in canine training and
148 used to inform the computational models, 79 samples were used to inform both models.
The increased number of samples used in training the canines may have beneficially
impacted their ability to generalize the COVID-19 odor signature despite the presence of
pet interferents.

Samples processed at FIU were subjected to UVC light exposure at 254 nm for 10-min
prior to analysis. Hudson et al. (2009) noted that prolonged exposure to UVA/UVB light
resulted in a distortion of human scent profiles, with some VOCs reducing in abundance
and other compounds appearing as UV light exposure increased [53]. However, the Hudson
study looked at direct, continuous exposure to the light source for 0, 1, 3, 5, or 7 weeks [53].
This study utilized a shorter exposure time of 10 min which has been previously reported
to not adversely impact the VOC profiles being investigated [18].

4.3. Advantages and Disadvantages

In contrasting the use of canines and instrumental analysis to detect COVID-19 infec-
tion, the disadvantages of one approach appear to be compensated by the other in terms of
mobility, speed of detection, development time, and performance rate. The HS-SPME-GC-
MS method was developed using conventional benchtop GC-MS instrumentation with the
HS-SPME procedure requiring heat baths and stabile working surfaces to prevent damage
to the fibers while in use. The canines on the other hand are quite mobile once trained, they
can easily be taken to new areas and be prepared to conduct their duties in under an hour
where the movement of a GC-MS unit would require a day’s time in pull-down and set-up.

When viewing speed of detection, the canine method boasts a high-throughput rate
with all five dogs being able to screen a sample in under ten minutes. In contrast, the HS-
SPME method requires roughly 25 h for a sample to be analyzed and interpreted. In practice,
samples are analyzed in batches to increase the efficiency of this method, the average per
sample time equates to 3 h. While the canine method is much faster in its deployment,
the average training time (per canine) was reported to be 31 weeks with an additional
5 weeks of testing. The HS-SPME-GC-MS method was developed in 16 weeks, owing
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8 weeks to sample analysis and another 8 weeks to data interpretation and computational
analysis. While the canine method may be faster to deploy, the HS-SPME-GC-MS method
was quicker to develop.

In terms of ease of use, both methods require the participation of a trained expert with
an analytical chemist being required to operate and interpret the results of a HS-SPME-GC-
MS procedure and a trained canine handler being needed to conduct the canine association
trials. Neither method is designed to be performed by a lay person.

Finally, when comparing performance at detecting COVID-19 infection, the final
HS-SPME-GC-MS model demonstrated perfect performance with a LOOCV performance
of 100% sensitivity and 100% specificity compared to the overall canine performance of
63% sensitivity and 90% specificity. The general performance of these two approaches
is noted to be within a similar, competitive range as that of other previously published
COVID-19 detection methods (Table 7). All in all, the disadvantages posed by one method
were seen to be an excelling point in the paired approach, supporting the argument for a
dual investigation of disease detection through canine and instrumental avenues.

Table 7. COVID-19 detection method comparisons.

Detection Method Sample Medium Average Specificity
and/or Sensitivity Reference

RT-PCR Nasopharyngeal swab 98% sensitivity
100% specificity [54]

Saliva 69% sensitivity
100% specificity [54]

Antigen test Nasal swab 72.1% sensitivity
98.7% specificity [55]

Nasopharyngeal 65.7% sensitivity
100% specificity [56]

Canine screening Breath—
face masks

83.1% sensitivity
88.6% specificity [57]

Face masks and clothes 86% sensitivity
92.9% specificity [19]

Skin swab 92% sensitivity
91% specificity [58]

Axillary sweat 97% sensitivity
91% specificity [44]

Axillary sweat 89.6% sensitivity
83.9%specificity [57]

Body odor—T-shirts
(including axillary sweat)

63% sensitivity
90% specificity Current study

HS-SPME-GC-MS Body odor—T-shirts
(including axillary sweat)

100% sensitivity
100% specificity Current study

SPME-GC-MS Blood serum 94% sensitivity
83% specificity [59]

Quartz
microbalance Blood serum 94% sensitivity

80% specificity [59]

Colorimetric paper
sensor Breath 78.3% sensitivity

83.6% specificity [60]

4.4. Prospective Application of Research

This work demonstrated an approach to the dual investigation of canine and instrument-
based detection of disease using volatile metabolomic expression. The instrumental model
performed with high sensitivity and efficiency and was quick to train and implement. This
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approach has the potential to be translated into a miniaturized GC-MS approach or be used
to inform the development of sensor device, applying the concept of an instrument-based
detection system while improving upon mobility and speed of use issues. In fact, devel-
opments in chemiresistive sensors allow for their use with low-manufacturing costs, and
ability to be incorporated into large sensor arrays for the detection of VOCs [61].

When viewing the canine approach, the performance of individual canines caused
disparities in performance metrics. It is important to note that the canines participat-
ing in this study largely consisted of “pet dogs”. This is in contrast to such works as
Grandjean et al. (2022), who utilized seven operational “working dogs” for their COVID-19
detection study and was able to achieve an average 97% sensitivity and 91% specificity [44].
This observation is indicative of the fact that canine performance is based on the aggre-
gate performance of individual beings with varied abilities and that recruiting from a
pre-filtered pool of professional detection dogs would likely improve the performance
of this approach in its formal application as a diagnostic technology. A recent study by
Kantele et al. (2022), which also implemented canines experienced in scent work, demon-
strated great performance in the detection of a “wild-type” variant of COVID-19 with an
overall 92% sensitivity and 91% specificity [58]. However, they also noted a decrease in
performance when the canines were confronted with a previously unseen mutation of the
SARS-CoV-2 virus. As such, it was implied that incorporating relevant COVID-19 variants
in the training samples would allow for better overall performance.

It is believed that the ideal expansion and application of this work lies in the optimiza-
tion of both approaches to reduce the identified deficiencies. The optimized methods would
then be highly poised for joint application as a fast-screening approach implementing ca-
nine detection followed by a more accurate secondary analysis of suspected individuals via
an instrument-based procedure. This joint approach of utilizing detection animals followed
by benchtop instrumentation to improve the efficiency of delivering medical diagnoses has
been demonstrated to be extremely effective as seen by APOPO’s efforts in tuberculosis
detection using giant pouched rats, which reduces four days of analysis time to a 20-min
screening and supplemental confirmatory testing [62]. Jointly accessing the speed of use of
canines and high-performance capabilities of the instrumental approach is the ideal path
forward for this dual assessment technique.

5. Conclusions

Together, the completed experiments demonstrate the capacity to simultaneously
create and test instrumental and biological approaches for the detection of novel odor
signatures. This ability was expressed through the discrimination of COVID-19 expression
in body odor collected on T-shirts. Both experiments demonstrate the capacity of human
body odor to be used as a sample source for determining COVID-19 status. The described
methods were characterized by different assets: (a) a rapid, mobile approach implementing
canines and (b) a reagent-free instrumental analysis method with high degrees of repro-
ducibility. The two highest performing canines were able to distinguish the COVID-19
positive and negative individuals with an average performance of 88% sensitivity and
95% specificity; building upon this, the instrumental model (with pet interferents removed)
reached an ideal performance of 100% sensitivity and 100% specificity. Ideally, in future
work, both methods can be used in conjunction to be able to efficiently screen and detect
diseases in a noninvasive manner. In this work, the issues that hindered one experiment
were not seen to affect both. Moving forward, it is suggested that multiple relevant COVID-
19 variants be included in the training samples for both approaches, as it was seen to affect
diagnostic performance in a previous canine study. Further concurrent investigations of
combined canine and instrumental detection schemes may shed light on how to overcome
issues in one approach, informed by the other.
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Appendix A

Table A1. Demographic distribution of collected T-shirt samples.

COVID-19 Status/Presentation Asymp. (+) Symp. (+) Asymp. (−) Symp. (−)

Race/ethnicity

Asian Or Asian American - 3 8 2
Biracial - - 1 -
Black Or African American - 1 2 -
Hispanic Or Latino - 3 11 -
Native Hawaiian or Other Pacific
Islander - - 1 -

White Or Caucasian 9 69 141 33
Another race - 2 2 1
Not reported - 1 1 2

Identified gender
Female 5 60 144 33
Male 4 19 21 5
Nonbinary/genderqueer - - 2 -

Age group
18–34 3 40 83 22
35–64 4 35 77 14
65+ 2 4 7 2

On medication?
Yes 5 54 102 29
No/NA 4 24 64 9
NA 0 1 1 -

Stress levels
0–5 8 47 124 23
5–10 1 32 42 15
Unanswered - - 1 -

Shared bed with
another human?

Yes 4 35 69 16
No 5 44 98 22

Shared bed with an
animal?

Yes 3 40 71 18
No 6 39 96 20

Total 9 79 167 38

https://www.mdpi.com/article/10.3390/bios12111003/s1
https://www.mdpi.com/article/10.3390/bios12111003/s1
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Table A2. Canine Test Trial Results- Response to COVID-19 Positive Samples.

Sample Characteristic Sample Categories

# of Correct Alerts from
Above-Chance Dogs/

Total # of Times Samples
with This Characteristic

Were Seen by These Dogs

Gender F
M

24/27
8/11

Age

25–34
35–44
45–54

55–65+

13/14
6/9
5/6
6/9

Symptom count

0
1–3
4–5
6–7

5/6
8/8
7/12
9/12

Race/ethnicity

White
Asian

Hispanic
African American

20/23
5/6
3/6
2/3

Bed shared with pet? Yes
No

10/12
22/27
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Table A3. Table of canine test samples.

Sample # Test Used Sample Status
Date Sample

Placed in
Collection Bag

Days until Sample
Used in Earliest Test

(Toby)

Days until
Sample Used in

Latest Test (Roxie)

190 Test 1 negative 10 September 20 168 229
284 Test 1 negative 20 January 21 36 97
29 Test 1 negative 19 September 20 159 220
208 Test 1 negative 23 December 20 64 125
240 Test 1 negative 6 January 21 50 111
218 Test 1 negative 2 December 20 85 146
203 Test 1 negative 27 November 20 90 151

3 Test 1 negative 9 September 20 169 230
186 Test 1 negative 3 July 20 237 298
268 Test 1 negative 16 January 21 40 101
210 Test 1 negative 15 December 20 72 133
69 Test 1 negative 24 August 20 185 246
417 Test 2 negative 2 February 21 35 93
28 Test 2 negative 25 September 20 165 223
14 Test 2 negative 13 August 20 208 266
90 Test 2 negative 29 October 20 131 189
406 Test 2 negative 31 January 21 37 95
261 Test 2 negative 8 January 21 60 118
251 Test 2 negative 12 January 21 66 124
273 Test 2 negative 3 February 21 34 92
280 Test 2 negative 19 January 21 49 107
452 Test 2 negative 8 February 21 29 87
427 Test 2 negative 16 February 21 21 79
453 Test 2 negative 9 February 21 28 86
407 Test 3 negative 28 January 21 54 110
426 Test 3 negative 13 February 21 38 94
244 Test 3 negative 16 December 20 97 153
271 Test 3 negative 18 January 21 64 120
286 Test 3 negative 21 January 21 61 117
162 Test 3 negative 25 January 21 57 113
365 Test 3 negative 19 February 21 32 88
290 Test 3 negative 20 January 21 62 118
410 Test 3 negative 4 February 21 47 103
308 Test 3 negative 16 January 21 66 122
363 Test 3 negative 16 February 21 35 91
341 Test 3 negative 28 February 21 23 79
243 Test 4 negative 20 January 21 77 128
292 Test 4 negative 24 January 21 73 124
306 Test 4 negative 13 January 21 84 135
344 Test 4 negative 26 February 21 40 91
93 Test 4 negative 10 November 20 148 199
192 Test 4 negative 6 October 20 183 234
254 Test 4 negative 11 January 21 86 137
287 Test 4 negative 21 January 21 76 127
150 Test 4 negative 30 December 20 98 149
129 Test 4 negative 10 November 20 148 199
282 Test 4 negative 20 January 21 77 128
236 Test 4 negative 2 December 20 126 177
439 Test 5 negative 9 March 21 84 145
437 Test 5 negative 9 March 21 84 145
438 Test 5 negative 10 March 21 83 144
515 Test 5 negative 3 May 21 29 90
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Table A3. Cont.

Sample # Test Used Sample Status
Date Sample

Placed in
Collection Bag

Days until Sample
Used in Earliest Test

(Toby)

Days until
Sample Used in

Latest Test (Roxie)

309 Test 5 negative 18 January 21 134 195
291 Test 5 negative 20 January 21 132 193
349 Test 5 negative 16 March 21 77 138
355 Test 5 negative 27 April 21 35 96
432 Test 5 negative 26 February 21 95 156
316 Test 5 negative 27 January 21 125 186
297 Test 5 negative 22 January 21 130 191
508 Test 5 negative 2 May 21 30 91
232 Test 1 positive 18 November 20 99 160
223 Test 1 positive 2 December 20 85 146
250 Test 2 positive 1 January 21 67 128
113 Test 2 positive 30 July 20 222 283
195 Test 2 positive 10 November 20 119 180
146 Test 3 positive 16 December 20 97 158
248 Test 3 positive 11 December 20 102 163
312 Test 3 positive 19 January 21 63 124
124 Test 4 positive 10 September 20 209 270
262 Test 4 positive 13 January 21 84 145
299 Test 5 positive 1 January 21 151 212
108 Test 5 positive 24 November 20 189 250
137 Test 5 positive 30 November 20 183 244
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