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Abstract: Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within
the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells
and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding
microenvironment mark the tumour survival and promotion functions, which allow the cancer
cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have
been closely associated with metabolic reprogramming, which can modulate the differentiation and
functions of immune cells and thus initiate the antitumour response. The purpose of this report
is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty
acid (FA) uptake, for the metabolic symbiosis of cancer–macrophage. In this review, we provide an
update on metabolic communication between tumour cells and macrophages, as well as how the
immunometabolism indirectly orchestrates the tumour metastasis.
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1. Introduction

Cancer cells exploit profound remodelling in their metabolism, with vast tumour cells
favouring their metabolism towards aerobic glycolysis, a phenomenon exemplified by the
Warburg effect [1,2]. Cancer cell metabolism thus serves as a broader paradigm for the
hallmarks of cancer. In contrast to normal cells, cancer cells increase their metabolic activity
to tailor their high energy demands, accelerated proliferation, and adaptation to evolving
cellular roles and biological functions [3,4]. Thus, an enhanced level of tumour metabolic
environment may be exploited or hindered by a vast number of mechanisms intrinsically
linked to cancer progression including colonizing new metastatic niches and triggering
protumour immune responses.

Under dynamic metabolism, these metabolic fluxes simultaneously influence both
the composition of the local inflammatory milieu and the function of tumour-infiltrating
immune cells. In these settings, a tumour can exploit the metabolic cancer–immune cell
crosstalk to facilitate the development of a tumour-permissive environment via the secretion
of metabolic by-products or oncometabolites. Despite diverse signalling cues within the
tumour microenvironment (TME), among which cancer metabolites are available, tumour-
associated macrophages (TAMs) are generally associated with cancer-mediated metabolism
as cancers have developed a mechanism to favour the activation of protumour macrophages
that contribute to pro-tumorigenic processes and immunosuppressive responses.
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One of the prominent features related to structural insights into metabolic activity
is cellular receptors, which act as master regulators integrating signalling molecules to
initiate internal signalling pathways. Cluster of differentiation 36 (CD36) among which is
a widely expressed transmembrane glycoprotein is widely expressed and is involved in
lipid metabolism and signalling. However, this CD36 receptor has been detected in both
immune cells such as macrophages and neutrophils and cancer cells [5,6]. The purpose
of this review is to discuss the contribution roles of the CD36 receptor as a bridge for
cancer–macrophage metabolic symbiosis. Here, we focus on how the metabolic shift in
cancer and its metabolites shape functional macrophage phenotypes, and conversely, how
the immunometabolism of macrophages orchestrates the complex process of tumorigenesis
and antitumour immune response. We also discuss CD36-mediated metabolisms in these
key cells.

2. CD36 Receptor: Gene, Structure, Distribution and Function
2.1. CD36 Discovery and Structure-Function

In the early 1970s, the discovery of CD36 began when Kobylka and Carraway identified
a membrane protein in breast epithelial cells that could not be proteolyzed in milk fat
globules [7]. Later, in 1987, that molecule was described as platelet glycoprotein IV (GP
IIIb or GP IV) [8] and reported to be a protein that mediates thrombospondin-1 (TSP-1)
binding in platelets [9]. Subsequently, CD36 was implicated as a macrophage receptor
for the oxidation of low-density lipoprotein (ox-LDL) [10]. Since then, CD36 has been
widely established as a scavenger receptor and is putatively involved in membrane protein
facilitating fatty acid (FA) transport. The extensive studies into the role of CD36 in fatty
acid and lipid metabolism in health and disease were initiated by Abumrad, Grimaldi and
colleagues [11].

CD36, also referred to as FA translocase (FAT), is a heavily N-linked glycosylated
80-kDa integral protein membrane encoded by the CD36 gene that is located on chromo-
some 7q21.11 and covers 72 kilobases, including 19 known exons [12]. CD36 belongs to the
class B scavenger receptor family (SCARB3) and lysosomal integral membrane protein II
(LIMP-II) [13,14]. The protein CD36 is often described as having a ‘hairpin-like’ configu-
ration (Figure 1). Structurally, CD36 harbours two transmembrane segments leading to
two short cytoplasmic tails (N- and C- terminal) that are separated by a large glycosy-
lated extracellular loop containing a hydrophobic sequence for ligand-binding sites [15].
Furthermore, two palmitoylation sites on both N- and C- hydrophobic stretches regulate
CD36 localization to lipid raft membranes to optimize the cellular fatty acid uptake. The
extracellular loop containing disulphide bonds between cysteine residues are essential for
intracellular processing, maturation and transport [16,17]. The large hydrophobic cavity
serves as a channel through which ligands are transported from the extracellular space to
the outer leaflet of the phospholipid bilayer of membrane. Neculai and colleagues’ crystal-
lization studies provided functional insights into fatty acid transport by CD36, whereby
the extracellular domains of CD36 form a hydrophobic cavity into which the fatty acids
can be translocated to and from the membrane bilayer [18].

CD36 is a multiligand receptor because of its high affinity for many ligands. The
interaction between distinct ligands and the CD36 surface receptor in specific cell types was
shown to mediate signalling pathways. Ligand of CD36 can be classified as lipid-related
ligands such as long-chain FAs (LCFAs), ox-LDL and oxidized phospholipids (ox-PLs) or as
protein-related ligands including TSP-1 and TSP-2. As FA translocase, CD36 plays a role in
the uptake and membrane transport of LCFAs. CD36 participates in atherosclerotic lesion
formation due to its substantial capacity to bind and endocytose ox-LDL into macrophages
and impairs adipocyte insulin in a CD36-dependent manner [19,20]. While CD36 has often
been implicated in adhesion and scavenging functions, data presented by Dawson and
colleagues showed that antiangiogenic TSP-1 associated with CD36 induces the inhibition
of both migration and tube formation by TSP-1 [21]. Moreover, CD36 can also associate
with other transmembrane proteins such as integrins, an interaction believed to be crucial
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for apoptotic cell engulfment. Further studies reported that macrophages phagocytose
apoptotic cells via an integrin system including phosphatidylserine (PS) and αvβ3, which
on human macrophages is associated with CD36 [22]. In innate immunity, CD36 also acts as
a pattern-recognition receptor (PRR) by recognizing molecular patterns that are associated
with pathogens [23]. It also helps in the clearance of cell debris and phagocytosis [24].
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Figure 1. Schematic presentation of the CD36 structure. CD36 harbours two transmembrane domains
in a large extracellular region containing ligand-binding sites. CD36 has two cytoplasmic tails
(N-terminal and C-terminal) that contains four palmitoylation sites. The C-terminus contains two
ubiquitination sites. The large extracellular loop contains 10 N-linked glycosylation sites and two
phosphorylation sites. CD36 also contains three disulphide bonds between extracellular cysteines. In
addition, the hydrophobic pocket is involved in ligand binding and serves as a tunnel through which
hydrophobic ligands are transported from the extracellular space across the phospholipid membrane
bilayer. Arrowhead and numbers denote the approximate position of amino acid residues.

2.2. CD36 Distribution and Functions

As a surface protein, CD36 is highly distributed in several cell types and tissues,
such as in adipocytes, macrophages, mitochondria, adipose tissue, skeletal muscles and
cardiac muscles. Distribution of CD36 has been extensively linked to delivery of FAs in
adipocytes via CD36-mediated endocytosis [25]. These studies proved that cell surface
CD36 is exclusively localized within lipid rafts. Therefore, the disruption of lipid rafts
is necessary to inhibit LCFAs in adipocytes. Excess FAs taken up by CD36 are primarily
converted to triacylglycerol (TAG) storage as cytoplasmic lipid droplets in adipose tissues
while in skeletal muscles they are utilized in fatty acid oxidation (FAO) [26,27]. Macrophage
ingests ox-LDL by binding and internalization in antigen-presenting cells [28], whereas
dendritic cells phagocytose apoptotic cells both via the CD36 receptor [29,30]. Interestingly,
CD36 also has been found to express on human skeletal muscle mitochondria membrane,
where it is responsible for mitochondrial LCFAs transport and subsequent oxidation [31].
Enhanced CD36 expression and consequent elevated LCFAs uptake and TAG accumulation
can contribute to lipid accumulation in cardiac muscle cells and skeletal muscle [32], insulin
resistance and type 2 diabetes [33].
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It is possible that the CD36 receptor is abundant in cancer cells lines, tumour tissues
and their adjacent normal tissues including stromal cells and immune cells. CD36 is increas-
ingly emerging as a favourable prognostic biomarker of tumour, primarily in epithelial
origin tumours such as acute myeloid leukaemia, breast cancer, cervical cancer, colorectal
cancer, gastric cancer, glioblastoma, hepatocellular carcinoma, oral squamous carcinoma,
ovarian cancer, pancreatic cancer and prostate cancer (Table 1). Not unexpectedly, most
tumours shift toward de novo FA synthesis. They can also exploit multiple ways to scav-
enge lipids and extensively rewire their metabolism. This mechanism is to sustain their
membrane biosynthesis during rapid proliferation, to balance energy storage and energy
expenditure and generate signalling molecules.

Table 1. Contributions of CD36 expression in various type of cancer tissues.

Type of Cancer Contribution of CD36 References

Acute myeloid leukaemia Increases leukaemia burden and shorten survival in vivo [34]

Breast cancer
Essential survival mechanism in HER2-positive breast cancer
Activates expression of pro-proliferation and migration genes while inhibiting
expression of apoptotic genes

[35]

[36]

Cervical cancer
Promotes the epithelial–mesenchymal transition and metastasis in cervical cancer
by interacting with TGF-β
Promotes cervical cancer cell growth and metastasis via up-regulating the
Src/ERK pathway

[37]

[38]

Colorectal cancer
Promotes metastasis by increasing MMP28 and decreasing e-cadherin expression
Increases in cellular proliferation via upregulation of survivin in CRC cells

[39]

[40]

Gastric cancer
Promotes peritoneal metastasis via fatty acid uptake [41]

Promotes metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway [42]

Glioblastoma Increases glioblastoma progression and tumour initiation in cancer-stem cells [43]

Hepatocellular carcinoma Promotes epithelial–mesenchymal transition, enhances migration and invasion [44]

Oral squamous carcinoma Initiates and promotes metastasis and worsens prognosis
Promotes lymph node metastasis

[45]

[46]

Ovarian cancer Omental adipocytes reprogram tumour metabolism due to high exogenous fatty
acid uptake [47]

Facilitates the proliferation and migration and lymph node metastasis [48]

Pancreatic cancer Mediates pancreatic cancer development and progression [49]

Prostate cancer Increases cancer cell proliferation and migration, and increase tumour burden
in vivo [50]

3. Metabolic Reprogramming and Metastasis

Cancer metastasis is an intricate process and a complex phenomenon that has been ex-
tensively studied, yet metabolic reprogramming controlling this highly inefficient metastatic
cascade has not been widely explored. The invasion–metastatic cascade is the consequence
of cancer cells’ undergoing metabolic alterations and adaptations to thrive nutrient star-
vation and interference with metabolic and immune profiles in circulation and metastasis
TMEs [51]. In these settings, the level of tumour metabolic environment may be exploited
or hindered by a vast number of mechanisms intrinsically linked to cancer progression,
including colonization of new metastatic niches and immunosurveillance escape. Metabolic
reprogramming could promote metastasis by (1) the upregulation of oncometabolites and
enzymes involved in metastasis-signalling cascades; (2) adipocyte–cancer crosstalk leads
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to metabolic demands, thus allowing cancer cells prone to invasion and metastasis; and
(3) metastasis is facilitated by metastasis-associated macrophages via secreted cytokines
and oncometabolites.

3.1. CD36 Responds to Exogenous Fatty Acids

Generally, fatty acids (FAs) are biomolecules that are involved in an abundance of
cellular events [52], such as providing substrates for energy production [53], developing cell
membrane structure and modulating signalling pathways [54]. Highly proliferative cancer
cells require FAs to support cell growth [55,56], disseminate [57–59], regulate membrane
assembly [60], activate proliferative signalling and meet bioenergetic requirements [60,61].
In mammalian cells, FAs can be acquired through direct exogenous uptake from the local
surrounding niche, or via activation of the de novo synthesis pathway using nutrients such
as glutamine and glucose. During metastatic progression onset, the rapid-growing cancer
cells often leads to the need for an ever-increasing blood supply, resulting in hypoxia and
nutrient deprivation. Studies have shown that cancer cells acquire the increased uptake of
exogenous FAs to compensate for reduced glucose de novo FA synthesis and to sustain
their FA metabolism during conditions of metabolic stress.

For instance, Pascual et al. reported that PA enhances the metastatic potential in CD36+

metastasis-initiating oral squamous cell carcinomas, in a CD36-dependent manner. In addi-
tion, CD36-dependent lymph node metastases increased in size and frequency upon being
treated with PA, without affecting the primary tumour growth [45]. The finding is consis-
tent with Pan et al., whose experiments established CD36 as a key mediator of FA-mediated
metastasis in gastric cancer. They demonstrated that CD36 promotes migration and in-
vasion in gastric cancer via uptake of exogenous PA and activation of GSK-3β/β-catenin
signalling [42]. However, Jiang et al. demonstrated that PA promoted metastasis in gas-
tric cancer and induced CD36 expression through activating the hexosamine biosynthetic
pathway (HBP). They also observed that O-GlcNAcylation promotes CD36 transcription by
activating the NF-κB pathway and consequentially enhances FA uptake [62]. Importantly,
recent research indicates that oral carcinomas and melanomas in mice fed a palm-oil-rich
diet and tumour cells that were exposed briefly to PA in vitro remained highly metastatic
even after serial transplantation into secondary recipient mice [63]. Specifically, the deple-
tion or knockdown of CD36 in oral squamous carcinoma cells led to a loss of PA-induced
prometastatic memory. Notably, increased intratumoural Schwann cells population acti-
vated by metastatic cells downstream of dietary PA is correlated with the CD36+ metastatic
signature. Tao et al. reported additional evidence to verify the regulatory role of CD36 on
hepatocellular carcinoma in vivo. Their results reveal that CD36 accelerates proliferation
and metastasis of hepatocellular carcinoma by enhancing FA absorption through AKR1C2
and jointly affect the FA metabolism.

The relevance of exogenous FA and CD36-mediated metastasis was further supported
by findings from Zhang et al., laboratory [64]. They described that oleic acid (OA) pro-
motes metastasis and proliferation of colon carcinoma cells HCT116. Further experiments
proved that dietary OA upregulated CD36 expression which promotes tumour growth
and metastasis in cervical cancer cells HeLa [38]. Their results indicated that OA promotes
metastasis and growth of cervical cancer by inducing CD36-dependent activation of Src
kinase and downstream of the ERK1/2 pathway. Collectively, these studies suggest that
cancer cells can compensate for impaired FA synthesis by enhancing exogenous FA uptake
by upregulating fatty acid transporter CD36 to perform invasion and metastasis. In the
case of studying colorectal cancer, overexpression of CD36 is associated with a significant
increase in invasion and metastasis [39]. They also observed that CD36 regulates MMP28
expression, which is inversely associated with E-cadherin expression. Based on these
findings, it seems likely that CD36 promotes colorectal cancer metastasis by upregulating
MMP28 and E-cadherin cleavages.

In the context of angiogenesis, the correlation of CD36 and VEGF receptor 2 with
angiogenic switch is observed markedly reduced in the absence of TSP-1. Interestingly, TSP-
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1 acquires sequential activation of CD36 to attenuate angiogenesis and therefore inducing
apoptosis or blocking VEFGR2 pathway in the endothelial cells [65]

3.2. CD36 and Metabolic Symbiosis

Reprogramming the metabolism of fatty acids is increasingly being recognized as
essential for cancer cells within tumour compartments to comply with metabolic symbiosis.
It is well established that the immediate metabolic environment within a tumour is con-
stantly modified by the symbiotic relationships between cancer cells and stromal cells. For
instance, the metastatic dissemination of breast cancer is correlated with the secretion of
breast-associated adipocytes via induced CD36 expression. Hereby, adipocytes profoundly
influence the invasiveness and metastasis of malignant breast cancer by inducing metabolic
reprogramming by elevating the expression of CD36, accompanied by accelerated FA
uptake. Intriguingly, STAT3 and ERK1/2 are activated by an upregulated expression of
CD36 receptors which is required for adipocyte-induced epithelial–mesenchymal transition
(EMT) [66]. Thus, the activation of STAT3 signalling may account for the enhancement
of metastasis through the upregulation of MMP9 and TWIST [67]. Wang et al., reported
that breast cancer tissue located adjacent to adipose tissue expressed a high level of CD36
and fatty acid transport protein-1 (FATP1). Upon adipocytes co-cultivated with breast
cancer cells, the expression of CD36 and FATP1 was elevated compared to adipocytes
cultivated alone.

Adipocyte-ovarian cancer co-culture was demonstrated to express high levels of
CD36, which coincided with an increased cellular FA uptake and lipid accumulation in
ovarian cancer [47]. Importantly, Ladanyi et al., reported that the inhibition of CD36
expression in ovarian cancer resulted in a significantly reduced of both baseline and
adipocyte-stimulated invasion and migration in a xenograft mouse model. However,
Mukherjee et al., findings described the significant role of FABP4 in regulating adipocyte-
mediated metastasis in ovarian cancer [68]. Their findings showed ovarian cancer cells
cocultured with adipocytes had elevated CD36 and FABP4 expression, whereas knockout
of FABP4 resulted in inhibition of several tumorigenic pathways including proliferative and
migration in ovarian cancer cells. Further evidence establishing the link between adipocytes
and cancer, CD36+ oral squamous cell carcinoma stimulated by high-fed diet or adipocyte-
cultured medium strongly elevated pro-metastatic potential [45]. In accordance with
previous studies, the regulatory role of phosphatidylinositol transfer protein, cytoplasmic 1
(PITPNC1) in adipocytes and gastric cancer omental metastasis was discovered. Tan et al.
found that PITPNC1-mediated FA metabolic reprogramming was regulated by co-cultured
omental adipocytes and consequently facilitated gastric cancer omental metastasis in CD36-
dependent manner [69].

In recent years, pre-clinical and clinical evidence highlights the significant role of
lipid metabolism as a major influence on both immune and clinical responses of cancer
patients. Current cancer nano-immunotherapy protocols are based on the precision therapy
and cancer diagnose therapy. For instance, hyaluronic acid nanoparticles or iron-oxide
nanomedicines could be used as diagnostic or therapeutic tool in cancer [70]. Additionally,
nano-immunotherapy aims to reprogram both specific and innate immune responses, to
enhance the intrinsic anti-tumoural activity. Pharmacological reprogramming of lipid
metabolism in tumour-associated macrophages showed efficacy in suppressing tumour
immunosuppression and cancer immunotherapies. Therefore, strategies to dampen TAMs’
immunosuppressive M2-like signature are of high interest to boost the efficacy in cancer
immunotherapy research. One promising strategy is to target CD36 as therapeutic potential
of metabolic interventions on the complex modulation of lipid metabolism in both CD36-
faciliated cancer metastasis and TAMs immunosuppression.

4. Involvement of CD36 and Macrophages in Metastasis

In 1863, Rudolph Virchow proposed that the inflammatory profiles present on-site of
the tumour lesions in the inflamed tissue area which are abundantly infiltrated by immune
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cells may contribute to cancer development [71]. His findings noted the correlation be-
tween chronic inflammation and the development of cancer by discovering the presence of
leukocytes in neoplastic tissues. Over the past decades of cancer research, a comprehensive
understanding of inflammation and TME has increasingly been investigated. The persis-
tence of chronic inflammation is one of the important characteristics of tumour progression
that promotes all stages of tumorigenesis from malignant to the establishment of tumour in-
vasion and metastasis. In fact, the TME is highly infiltrated by a broad spectrum of immune
cells which acquire specialized functions and phenotypes. Tumour-associated immune
cells comprise T-cells, dendritic cells, B-cells, macrophages, neutrophils, and natural killer
cells [72]. Among of these cells, tumour-associated macrophages (TAMs) stand out. An
approximate 50% of the macrophage’s population has been detected in solid tumours and
been confirmed to have a fundamental pro-tumoural role.

Generally, macrophages phenotypic heterogeneity and plasticity are reflected in their
gene expression pattern, specialized tissue-specific functions, and cytokine production,
which are orchestrated depending on the activation stimulus. Macrophages can be schemat-
ically identified as classically activated, M1 (pro-inflammatory and anti-tumoural pheno-
type) and alternatively activated, M2 (anti-inflammatory and pro-tumoural phenotype).
Macrophages adopt the M1 phenotype following activation by lipopolysaccharides (LPS)
and interferon-gamma (IFNγ), and by producing pro-inflammatory cytokines such as
tumour necrosis factor alpha (TNF tumour necrosis factor alpha (TNFα), interleukin (IL)-6,
IL-12, and IL-1β, nitric oxide (NO) production and exhibiting phagocytic traits. On the
contrary, IL-13 and IL-4 have been demonstrated as the stimuli that favour M2 subpopu-
lation polarization, delivering anti-inflammatory cytokines such as transforming growth
factor β (TGF-β), IL-10, IL-4, IL-13, IL-8, IL-1Ra, and vascular endothelial growth factor
(VEGF), and associated with wound healing and tissue repairing. Importantly, activation of
macrophages is a complex and significantly controlled process, which includes the variance
of intracellular signalling and transcription pathways. During persistent inflammation
within the TME, TAMs in established tumours are usually biased toward the M2-like
phenotype-acquired macrophages, which contributes to the initiation of tumour invasion,
migration, angiogenesis, and immunosuppression.

TAMs frequently co-exist in the same microenvironment as tumour cells and stromal
cells; thus polarization of TAMs is significantly regulated by a heterogenous milieu of
microenvironmental cues such as cytokines, chemokines, and other growth factors [73]. It
has been established that TAMs resembling M2 phenotypes, secrete immunosuppressive
cytokines such as IL-10, prostaglandins, and reactive oxygen species (ROS), VEGF, and
induces EMT for invasion and metastasis (Figure 2). These reciprocal interactions between
TAMs and metastasis are the consequences of adaption to cellular metabolism by both
tumour cells and stromal cells to overcome environmental stress in the circulation and
metastatic niche. In fact, TAMs undergo metabolic reprogramming in response to altered
tumour cell-derived metabolic cues, through the activation of glycolysis, FA synthesis and
amino acid metabolism. Here, we mainly focus on how fatty acid metabolism of TAMs
shapes their functional phenotype through CD36 FA receptors.
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Figure 2. The bidirectional interaction between cancer cells and macrophages regulated by CD36 re-
ceptor in promoting metastasis. Due to hypoxic conditions, cancer cells in tumour microenvironment
(TME) increase the uptake of exogenous fatty acids for survival, energy source and rapid proliferation.
Depending on the type of cancer, literatures have mentioned CD36 promotes metastasis, invasion
and angiogenesis by activating the downstream GSK-3β/β-catenin, O-GlcNAcylation, AKR1C2,
ERK1/2 and MMP28 signalling pathways. However, the recruitment of macrophage to TME and
become tumour-associated macrophages (TAMs) is significant for cancer progression. TAM tends
to have a higher level of FA uptake and accumulation via CD36, which accordingly enhance the
fatty acid oxidation (FAO) of TAMs to generate more energy. This phenomenon also upregulates
the lipid biosynthesis to produce more nitric oxide (NO) and reactive oxygen species (ROS) and
secrete high level of immunosuppressive cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8),
tumour necrosis factor-α (TNF-α) and more. The dynamic interaction between cancer cells and TAMs
constantly favouring the tumour evasion and ultimately metastasis. NADPH, nicotinamide adenine
dinucleotide phosphate; TAG, triacylglycerol; VEGF, vascular endothelial growth factor; MMPs,
matrix metalloproteinase; PPARγ, peroxisome proliferator- activated receptor gamma; FABP4, fatty
acid-binding protein; STAT3, signal transducer and activator of transcription 3; mTORC2, mammalian
target of rapamycin complex 2.

4.1. CD36 Regulated TAMs-Facilitated Metastasis in TME
4.1.1. TAMs and Their Pro-Tumorigenic Functions

As mentioned above, the interaction of tumour cells and adjacent immune cells es-
pecially TAMs can greatly impact the tumorigenesis from different aspects. Successful
metastasis of cancer cells also hinges on the mechanism of TAMs coupled with their FA
metabolism alterations. Macrophages within the TME contribute to a growth-suppressive
state, but these cells may later be reprogrammed by the tumour microenvironmental cues
within the TME to develop pro-tumorigenic functions. It is noteworthy that FAs are critical
metabolites during macrophage polarization. Proinflammatory M1 macrophages syn-
thesize FAs to exploit them as precursors of inflammatory mediators by relying on high
glycolytic metabolism to promote rapid ATP generation. On the contrary, anti-inflammatory
M2 macrophage displays intact TCA cycle and metabolic modification to enhanced FAO
and mitochondrial OXPHOS, which is driven by FA uptake [74].
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FA uptake in M2 macrophage occurs via the lipolysis of circulating lipoproteins
through CD36 mediation. The internalized FAs can transcriptionally activate the nuclear
receptor peroxisome proliferator-activated receptor gamma (PPARγ) and the peroxisome
proliferator-activated receptor gamma coactivator-1 beta (PGC-1β) [75]. Mechanistically,
the PPARγ activation in M2 macrophages regulates the activation of the oxidative program
in these cells. PPARγ acts as a FA sensor and FAO enzyme transcriptional activators. In
view of the necessity of FA generation to fuel FAO and the importance of FAO for M2
activation. Huang et al., found that the uptake of TAG substrate via CD36 and its sub-
sequent lipolysis by lysosomal acid lipase (LAL) is more highly expressed in M2 than in
M1 macrophages and is vital for full macrophage M2 activation upon IL-4 induction [76].
These findings suggested that the uptake and lipolysis of exogenous TAGs may serve
to generate FAO during M2 activation. Likewise, TAMs, which share phenotypic and
anti-inflammatory properties with M2 macrophage, were also observed to have high level
of FAO. According to Su et al., TAMs accumulate FAs by increasing FA uptakes through
CD36 receptor [77]. Their findings implicate that FA accumulation and FAO are both
essential for differentiation and pro-tumour functions of TAMs. Interestingly, a recent study
found that the pro/anti-tumour functions of TAMs were linked and dependent on the type
of FA enriched within the cells. According to Odegaard et al., oleic acid (OA) enhances
expression of the anti-inflammatory alternative state (M2) macrophage by activating the
nuclear receptor PPARδ [78]. In addition, tumour-promoting inflammation mediated by
the upregulation and activation of NLR family pyrin domain containing 3 (NLRP3) inflam-
masome in macrophages resulted in colorectal cancer [79] and gastric cancer migration [80].
Their findings further supported by Hofbauer et al. studies which demonstrated that
activation of NLRP3 inflammasome in TAMs mediated by beta-2-microglobulin (β2m)
promotes multiple myeloma progression [81].

4.1.2. CD36-Mediated Lipid Droplet Accumulation in TAMs

Lipid droplets (LDs) are constituted as cellular organelles specialized in neutral lipid
storage for metabolic energy and hydrolysis. LDs hubs as energy storage for triacylglyc-
erols (TAGs) released as FAs for mitochondrial oxidation (FAO), making LDs significantly
correlated with FA metabolism. In addition, LDs are linked to multiple cellular functions,
such as lipid synthesis, protein storage, membrane synthesis and viral replication [82]. As
observed in IFN- γ activated macrophages, increased exogenous FAs uptake and inhibition
of mitochondrial respiration by iNOS-derived NO are required to induce LDs accumulation.
Thus, their study established a novel metabolic pathway whereby carbon atoms in acyl
chains of TAG derived from exogenous FAs and glucose provided carbon to the glycerol
headgroup of TAG. Other data also indicated long-chain FA metabolism and the accumula-
tion of LDs are strongly linked to the regulatory phenotype of macrophages. The formation
of LDs and its derived FAs, specifically unsaturated FAs, facilitates the mitochondrial
respiration, hence contributing to the polarization of TAMs [83]. Accordingly, their findings
emphasized that oleate and LD-derived FAs facilitate mitochondrial respiration regulates
the suppressive phenotype of myeloid cells, in resulting in endogenous FAs contributing to
the polarization of CD206+ TAMs.

Studies suggest besides regulating macrophage polarization, LDs formation also
determines the magnitude of inflammatory response in macrophages attributed to up-
regulation of hypoxia-inducible LD-associated (HILPDA) protein [84]. Based on van
Dierendonck et al.’s findings, the tight regulation of lipid efflux from LDs by the upregu-
lation of HILPDA and the downregulation of adipose triglyceride lipase (ATGL) protein
levels, leads to reduced pro-inflammatory precursors and suppresses the production of
prostaglandin-E2 (PGE2) and the proinflammatory cytokine IL-6. Despite this, the changes
in cellular LD dynamics can result in an advanced macrophage functional activity along as
well as a synergistic effect on the differentiation of THP-1 cell line macrophages [85]. The
contribution of LDs content by further addition of an external source of FFAs (NA-oleate)
to PMA stimulated THP-1 macrophages showed a marked increase in CD68 expression
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along with higher phagocytosis, ROS and NO generation, and release of proinflammatory
cytokines. The stimulation of PMA stimulated THP-1 with an external source of FFAs
triggers the release of calcium from the intracellular pool that affects the LD biosynthesis
and/or maturation through Rab5a via AKT phosphorylation. Overall, the advantageous
consumption of endogenous FAs mediated by CD36 in macrophages directly contributed
to the function and polarization of TAMs, and was further mediated by the accumulation
of LDs.

4.1.3. TAMs-Mediated Migration and Invasion

During metastasis onset, the recruitment and accumulation of TAMs to the hypoxia
metastatic niche will trigger TAM-derived inflammatory cytokines, which in turn are in-
volved in the regulation of the EMT process. For instance, TAMs prime Gas6/Axl-NF-κB
activation in both stromal and cancer cells co-culture, which then increase the tumour
growth and metastasis in oral cancer cells [86]. Meanwhile, a recent study found EMT
high tumours showed significant enrichment of TAMs and their overexpression of im-
munosuppressive cytokines IL-10 and TGF-β [87]. TME-produced immunosuppressive
cytokines have been identified as active precursors supporting inflammatory response and
mediating tumour progression and EMT. Biologically, macrophage secretes soluble factors
involved in the EMT process such as IL-1β, IL-8, tumour necrosis factor-α (TNF-α) and
TGF-β via activation of acyl-CoA synthetase that catalyses the thioesterification of FAs.
Apart from cytokines, TAMs also regulated EMT by secreting matrix metalloproteinases
(MMPs) including MMP-1, MMP-2, MMP-3, MMP-7 and MMP-9, cysteine cathepsin and
serine proteases. These proteolytic enzymes of TAMs are important for hydrolysing the
extracellular matrix (ECM), activating growth factors, and promoting angiogenesis. Mean-
while, neovascularization is crucial for supplying essential nutrients and oxygen to the
growing tumour, and consequently promotes metastasis. Studies have demonstrated TAMs
contribute tumour neovascularization by upregulating angiogenesis-related growth factors
by inducing pro-inflammatory mediators such as VEGF, TGF-β, IL-1 and IL-6 [88].

More recently, accumulating evidence suggested that reprogramming TAMs can be
achieved by exposing macrophages to endocrine disruptors to induce anti-tumorigenic
activity and promote M1 polarization. Lu et al. demonstrated macrophage polarization
toward inflammatory M1 phenotype and high secretion of pro-inflammatory cytokines can
be stimulated by the exposure bisphenol A (BPA) [89]. Notably, endocrine disruptors such
as BPA and phthalate are known as pro-oncogenic drivers in cancer. Quagliariello et al.
demonstrated that exposure to BPA co-incubated with doxorubicin increased inflammation
in cardio myoblasts [90]. Another study further explored that at very low doses of BPA can
induces prostate cancer cells migration [91], and similar effects were observed in breast can-
cer cells [92,93]. However, the link between BPA and CD36 expression has been determined
in non-alcoholic fatty liver disease (NAFLD), which BPA increases hepatic lipid uptake
by stimulating ROS-induced CD36 overexpression [94]. Based on this evidence, further
studies must be investigated to understand the underlying mechanism and association of
BPA with CD36 in cancer progression and immune response.

4.2. CD36 Targeted Nano-Immunotherapy

Current approach in the field of cancer nano-immunotherapy have provided new
attractive strategies to hamper TAM-driven pro-tumorigenic processes. Rational designs of
drug-nanoparticle are specifically developed to effectively controls the ability of TAMs to
regulate TME, for the purpose of specific macrophage-targeting against cancer. Kuninty
and colleagues present novel “tail-flipping” nanoliposomes to target specifically to M2-like
macrophages via bio-mimicking anionic and oxidized phospholipids that are internalized
and recognized by macrophages as a natural clearance mechanism [86]. Their studies
proved that their nanoliposomes delivered to M2-TAMs via CD36 receptor able to alter their
functionality by inhibiting STAT-6 pathway which led to inhibition of macrophage-induced
tumour cell migration. Furthermore, the direct effect of these altered TAMs was examined
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on orthotopic 4T1 breast tumour model. Their findings showed that approximately 70% of
tumour growth as well as inhibition of pre-metastatic niche formation in lungs was reduced
by muramyl tripeptide (MTP)-manipulated TAMs. In summary, the current nanoliposome
systems represent as an effective approach to target and manipulate M2-TAMs, which can
be exploited for developing cancer nano-immunotherapy treatment.

In addition, the efficacy of the new era nano-immunotherapy depends on its potential
to manipulate the cancer–macrophage interaction and immune factors in TME, including
cytokines and inflammatory pathways. As mentioned previously, cytokines are significant
to mediate the cancer–macrophage interaction via inflammatory responses, which can
either promote or inhibit the growth and metastasis of cancer cells. Therefore, these
inflammation-based immunotherapies have been largely supplanted in nanotherapeutics
to boost immunostimulatory cytokines. Recently, Gao and colleagues developed a nano-
delivery system derived from macrophage membrane coated ROS-responsive nanoparticles
(MM-NPs) efficiently bind with CD36 membrane antigens [95]. Macrophage-coated NPs
sequester multiple proinflammatory cytokines, suppressing inflammation. In summary,
CD36-targeted nano-immunotherapy plays a pivotal role to revolutionize the treatment
of cancer.

5. Concluding Remarks

We present here the recent findings on the essential role of CD36 receptor not only in
controlling cellular FA uptake and utilization and its influence on FA metabolism in cancer
cells but also influences the crosstalk with macrophages in TME. Many significant studies
had revealed the effects of FAs on the bidirectional communication between tumour cells
and immune cells during cancer progression, particularly in metastasis. The evidence for
a key metabolic role of CD36 in TAM-mediated metastasis is strong, therefore targeting
the related metabolites and FAs involved in the metabolism may provide an emerging
approach for cancer treatment and manipulation of TAMs. As mentioned above, TAMs and
its alteration in FA metabolism represent a novel approach that may alter the landscape of
future immunotherapy in treating cancer.
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