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Abstract: (1) Background: Cerebral microbleeds (CMBs) are attracting increasing attention. Never-
theless, the risk factors for CMBs remain poorly identified, and the relationship between CMBs and
cognitive impairment is still up for debate; (2) Objective: The present study analyzed the risk factors
for CMBs and probed into the potential correlations between the presence, number, and location of
CMBs and cognition; (3) Methods: This study enrolled 406 subjects who underwent both brain 3.0-T
magnetic resonance imaging scans and cognitive testing. Spearman correlation was used to assess
the relationship between the number of CMBs and cognition. Multiple linear regression was utilized
to analyze the relationship between the regions of CMBs and each cognitive domain; (4) Results: Mul-
tivariate logistic regression analysis results showed that age (odds ratio (OR) = 1.045, 95% confidence
interval (95%CI; 1.009, 1.082)), smoking (OR = 3.604, 95%CI (1.995, 6.509)), hypertension (OR = 3.607,
95%CI (2.204, 5.901)), total cholesterol (OR = 0.611, 95%CI (0.467, 0.799)), and Amyloid-β1-42 (Aβ1-42)
(OR = 1.028, 95%CI (1.018, 1.037)) were the influencing factors of CMBs. Education years (OR = 0.959,
95%CI (0.930, 0.988)), white matter lesions (OR = 2.687, 95%CI (1.782, 4.051)), and CMBs (OR = 21.246,
95%CI (5.728, 21.576)) were the risk factors for cognitive impairment. Hypertension increased the
probability of deep CMBs (OR = 12.54, 95%CI (2.21, 71.28)), while Aβ1-42 elevated the probability of
lobar CMBs (OR = 1.02, 95%CI (1.00, 1.03)). There was a linear correlation between the number of
CMBs and Montreal Cognitive Assessment scores (r = −0.756, p < 0.001). However, CMBs in each
region were not related to specific cognitive domains (p > 0.05), except CMBs in the mixed group that
were negatively correlated with attention (OR = −0.669, 95%CI (−0.034, −5.270)); (5) Conclusions:
Taken together, serum Aβ1-42 levels are related to the presence of CMBs. Cognitive impairment is
correlated with the number of CMBs rather than their region. These findings suggest that CMBs
play a role in cognitive impairment and that CMBs mark the presence of diffuse vascular injury and
neurodegenerative brain damage.

Keywords: cerebral microbleeds; risk factors; cognitive impairment; Amyloid-β1-42; phosphorylated
Tau181

1. Introduction

Cognitive impairment has become more burdensome for families and society in recent
years due to the increase in life expectancy. Although Alzheimer’s disease is the most
common cause of dementia, mounting attention is being paid to cognitive impairment
and dementia induced by vascular causes [1]. As imaging technology advances, cerebral
small vessel disease (CSVD) is being detected at an increasing rate [2]. As one of the major
neuroimaging markers of small vessel disease, cerebral microbleeds (CMBs) have been ex-
tensively studied for their risk factors and their association with cognitive impairment [3,4].

Brain Sci. 2022, 12, 1445. https://doi.org/10.3390/brainsci12111445 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12111445
https://doi.org/10.3390/brainsci12111445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://doi.org/10.3390/brainsci12111445
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12111445?type=check_update&version=2


Brain Sci. 2022, 12, 1445 2 of 13

Currently, there are no specific drugs to improve cognitive impairment, so early detection
and prevention are essential.

Cerebrospinal fluid (CSF) Amyloid-β1-42 (Aβ1-42) and phosphorylated Tau181 (p-
Tau181) are well-established hallmarks of Alzheimer’s disease (AD) [5]. Nonetheless,
cerebral small vessel disease (CSVD) occasionally coexists with elevations in Aβ and Tau
levels, which are the most common causes of cognitive impairments in the elderly [6].
Moreover, prior research has revealed that patients with CSVD can have higher levels of
Aβ and p-Tau proteins [6,7]. Additionally, the pathogenesis of CMBs is related to vessel
wall damage due to both vascular risk factors and beta-amyloid accumulation [8]. Joseph-
Mathurin N et al. stated serum Aβ1-42 as a risk factor for the occurrence of CMBs [9].
As such, it is suggested that CMBs may help explain the overlap of cerebrovascular and
neurodegenerative pathologies in cognitive impairment and dementia [3].

Some previous studies have explored the risk factors of CMBs and the correlation of
CMBs with cognitive impairment. However, no consensus is yet available on the risk factors
of CMBs, especially Aβ1-42 and pTau-181 proteins [6,8]. Likewise, little is known about
whether CMBs independently result in cognitive impairment and the effect of their number
and region [3,10]. Moreover, further explorations are warranted to dissect the mechanism
by which CMBs cause cognitive impairment and their role in vascular injury and neurode-
generative pathology [3,7]. Therefore, our research used susceptibility-weighted imaging
(SWI) to accurately detect the number and region of CMBs, thus analyzing the risk factors of
CMBs and the relationship between different intracranial conditions and cognitive function
in patients with CMBs. In this way, our study aimed to conduct early imaging detection
for high-risk patients with CMBs, therefore effectively preventing CMB-related cognitive
impairment.

2. Materials and Methods
2.1. Patient Selection

This study, a case–control study, enrolled 196 patients who were hospitalized in
the Department of Neurology of the (second) Affiliated Hospital of Xuzhou Medical
University from January 2019 to May 2021 and diagnosed with CMBs through brain
magnetic resonance imaging (MRI)-SWI as the CMB group. Additionally, 210 patients
without CMBs who were hospitalized in the same period and underwent SWI examination
were selected as the non-CMB group. The inclusion criteria: (1) age ranges from 18 to
100 years old; (2) patients who have received brain MRI-SWI after admission and have
completed the tests of Mini-Mental State Examination (MMSE) and the Montreal Cognitive
Assessment Scale (MoCA). The exclusion criteria of both CMB and non-CMB groups were
as follows: (1) patients with acute stroke and brain injury; (2) patients with major brain
diseases, such as Alzheimer’s disease, Lewy body dementia, frontotemporal dementia,
Parkinson’s disease, tumor, hydrocephalus, trauma, syphilis, AIDS, and Creutzfeldt–Jakob
disease; (3) patients who took medications that affect cognitive function and suffered from
severe mental diseases; and (4) patients with other imaging changes or diseases that were
sufficient to explain cognitive impairment. The study conformed to the Declaration of
Helsinki and was approved by the ethics committee of the (second) Affiliated Hospital
of Xuzhou Medical University. All patients provided written informed consent prior to
enrollment.

2.2. Plasma Analyses

All patients fasted for 12 h, and 5 mL of venous blood was collected from the cubital
vein of the upper extremity at 8 am the next day for examination. The blood samples
were centrifuged at 3000 r/min within 1 h after collection to obtain serum. A double-
antibody sandwich enzyme-linked immunosorbent assay (ELISA) was performed with
corresponding kits (Shenzhen Anqun Biological Engineering Company, Shenzhen, China)
to measure the serum concentrations of Aβ1-42 and p-Tau181. The standard curve was
constructed strictly according to the manufacturer’s instructions. Thereafter, the serum
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concentrations of Aβ1-42 and p-Tau181 were calculated based on the absorbance value of
each well.

2.3. Brain MRI and SVD Markers

GESIGNAEXCITEHDs3.0-T superconducting whole-body magnetic resonance scan-
ners and 8-channel phased-array head coils were used in this study. All patients were
subjected to T1- and T2-weighted imaging (T1WI and T2WI), diffusion-weighted imaging
(DWI), fluid-attenuated inversion recovery imaging (FLAIR), and SWI sequences. SWI
parameters included a repetition time of 43.6 ms, time of echo of 6 ms, flip angle of 15◦,
matrix of 350 × 445, field of view of 192 × 220 mm, and slice thickness of 1.2 mm. Imag-
ing was analyzed independently by two professionally trained neuroradiologists, both of
whom were blinded to the clinical information of participants. When their conclusions
were inconsistent, the classification was conducted after discussion.

CMBs are visible as the hypointense ovoid signal on T2-weighted gradient-recalled
echo and SWI because of the paramagnetic properties of the blood breakdown product
hemosiderin [11]. These lesions may be up to 10 mm in diameter, but the most common
diameter is 2–5 mm [12]. According to the Microbleed Anatomical Rating Scale (MARS) [13],
CMBs were classified into deep, lobar, and infratentorial CMBs (Figure 1). Lobar regions
included cortical and subcortical regions (including subcortical U fibers). Deep regions
comprised the basal ganglia, thalamus, internal capsule, external capsule, corpus callosum,
and deep and periventricular white matter (DPWM). Infratentorial regions included the
brainstem and cerebellum. CMBs distributed in 2 or more areas were named mixed regions.
All areas are provided in the anatomical diagram for easy reference. We did not distinguish
between definite and possible CMBs but only counted their total numbers as per MARS.
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Figure 1. Susceptibility-weighted imaging showing an example of the cerebral microbleeds in the
lobar (a), deep (b), infratentorial (c), and mixed regions (d).

White matter hyperintensities are broadly defined as areas that exhibit high signals in
T2-weighted and FLAIR sequences [14]. The Fazekas scale [15–17] (0–6 points) was utilized
to score the paraventricular and deep white matter lesions (WMLs), respectively, and the
scores of the two parts were summed to calculate the total scores. Afterwards, WMLs were
ranked in the light of the scores: Grade 0, 0 scores (no WMLs); Grade 1, 1–2 scores (mild
WMLs); Grade 2, 3–4 scores (moderate WMLs); and Grade 3, 5–6 scores (severe WMLs).

Lacunes typically appear on FLAIR imaging as 3–15 mm ovoid areas of hypointense
signal, usually (though not always) surrounded by a hyperintense rim [11]. The number of
lacunes was counted.

Brain atrophy was defined as reduced brain tissue volume, decreased brain parenchyma,
flat cerebral gyrus, widened and deepened brain sulci, and enlarged ventricles, cisterns,
and subarachnoid spaces. Brain atrophy was assigned into presence and absence groups.

2.4. Assessment of Cognitive Function

Cognitive function was assessed with the Beijing version of MMSE and MoCA by
physicians blinded to the results of imaging examinations. Both examinations were gener-
ally completed once within 15 min and 1 week before and after the SWI examination.

The Beijing version of MMSE [18] included 20 assessment items, which were utilized
to examine multiple cognitive domains, such as language, attention, memory, orientation,
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and calculation. The total score was 30 points, and the cut-off value of the education level
was 17 points for the illiterate group, 20 points for the elementary school education group,
and 26 points for the secondary school education or higher group.

The MoCA scale [19] comprised seven cognitive domains: (a) visual space and exec-
utive function, (b) naming, (c) attention, (d) language, (e) abstract thinking, (f) delayed
memory, and (g) orientation. The total score was 30 points. A score greater than 26 was
classified as normal cognition. If the years of education were below 12, the evaluation
result was increased by 1 point. The higher the score, the better the cognitive function.

2.5. Vascular Risk Factors

Hypertension was defined as a systolic blood pressure of ≥140 mmHg and/or a
diastolic blood pressure of ≥90 mmHg or the use of blood pressure-lowering medica-
tion. Individuals were considered diabetic when their fasting blood glucose level was
≥7.0 mmol/L or when they used glucose-lowering medication. Smoking and drinking
behaviors were categorized as “ever” or “never” smoking or drinking. A “Drinker” refers
to females consuming alcohol over 50 g per day and males drinking alcohol over 60 g
per day. Medication use (glucose-lowering, blood pressure-lowering, and lipid-lowering
medication) and education levels were recorded during medical history collection [6].

2.6. Statistical Analysis

SPSS 22.0 software was utilized for statistical analysis of relevant data. Normal
distribution was tested, and the quantitative data conforming to normal distribution were
summarized as mean ± standard deviation. The independent-sample t-test was used
to compare data between two groups. The data that did not obey a normal distribution
were expressed as the median (quartile), and the Mann–Whitney U test was utilized for
comparisons between two groups. Qualitative data were all presented as counts and
percentages, and comparisons between two groups were analyzed with the χ2 test. The
factors with p < 0.05 tested by χ2 were included in the multivariate regression analysis. A
binary logistic regression analysis was used to identify the influencing factors of CMBs and
cognitive impairment. A disordered multi-class logistic regression analysis was conducted
to analyze the risk factors of CMBs in different regions (lobar, deep, infratentorial, and
mixed regions). In the cognitive impairment group, Spearman correlation was utilized to
determine the correlation between the number of CMBs and MoCA scores. Multiple linear
regression was used to analyze the relationship of the regions of CMBs with MoCA scores
and each cognitive domain of MoCA by setting dummy variables.

3. Results
3.1. Analysis of Risk Factors of CMBs
3.1.1. The Univariate Analysis of the Risk Factors for CMBs

Of the 406 participants, 196 patients suffered from CMBs. There was no statistically
significant difference between the CMBs group and the non-CMBs group in terms of gender,
years of education, the number of drinkers, history of diabetes, coronary heart disease, the
proportion of individuals using lipid-lowering medications, and the levels of triglyceride
(TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and blood uric acid (BUA) (p > 0.05). In addition, subjects in the CMBs group were
older than those in the non-CMBs group. Meanwhile, the smoking rate, the proportion of
individuals with a history of hypertension and the use of antithrombotic drugs, and the
levels of Hcy, Aβ1-42, and pTau-181 were higher in the CMBs group than in the non-CMBs
group, accompanied by lower total cholesterol (TC) levels (p < 0.05; Table 1).
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Table 1. Characteristics of the study population grouped according to the presence or absence of CMBs.

Clinical Characteristics Non-CMBs
(n = 210)

CMBs
(n = 196)

t/χ2

Value
p-Value

Men/Women 151/59 140/56 0.011 0.915
Age (mean ± SD), years 68.10 ± 6.54 69.93 ± 6.87 −2.751 0.006

Education (mean ± SD), years 7.01 ± 2.62 6.89 ± 3.44 1.801 0.075
Smoker (n (%)) 29(13.80) 55(28.06) 12.549 <0.001
Drinker (n (%)) 28(13.33%) 25(12.76%) 0.030 0.863

Hypertension (n (%)) 87(41.43%) 148(75.51%) 23.433 <0.001
Diabetes (n (%)) 42(20.00%) 37(18.88%) 0.082 0.775

CHD (n (%)) 33(15.71%) 45(22.96%) 3.428 0.064
Antithrombotic medication 52(24.76%) 74(37.76%) 7.997 0.005
Lipid-lowering medication 36(17.14%) 22(11.22%) 0.816 0.366

TC (mean ± SD) 4.08 ± 1.02 3.66 ± 0.81 4.618 <0.001
TG (mean ± SD) 1.48 ± 0.49 1.68 ± 1.38 −1.811 0.061

HDL-C (mean ± SD) 1.13 ± 0.31 1.08 ± 0.29 1.819 0.070
LDL-C (mean ± SD) 2.39 ± 0.94 2.37 ± 0.77 0.203 0.404

BUA (mean ± SD), µmol/L 301.30 ± 79.56 312.37 ± 79.73 −1.399 0.400
HCY (mean ± SD), µmol/L 16.93 ± 8.35 20.20 ± 10.17 −3.552 <0.001

Aβ1-42(mean ± SD), µmol/L 44.75 ± 24.80 70.71 ± 37.49 −8.171 <0.001
pTau-81(mean ± SD), µmol/L 21.29 ± 12.67 25.17 ± 10.10 −3.396 0.001

3.1.2. The Multivariate Analysis of the Risk Factors for CMBs

The variables with p < 0.05 tested by χ2 were utilized as the independent variable and
the presence and absence of CMBs as the dependent variable (assignment: yes = 1, no = 0)
to conduct the multivariate logistic regression analysis (the forward Wald method). The
results manifested that age, smoking, history of hypertension, TC, and Aβ1-42 were the
influencing factors of CMBs (p < 0.05; Table 2).

Table 2. The results of the multivariate analysis of the risk factors for CMBs.

Variable B SE Ward p OR (95%CI)

Age 0.044 0.018 6.030 0.014 1.045 (1.009, 1.082)
Hypertension 1.283 0.251 26.070 <0.001 3.607 (2.204, 5.901)

Smoking 1.282 0.302 18.059 <0.001 3.604 (1.995, 6.509)
Antithrombotic

medication 0.068 0.272 0.062 0.803 1.070 (0.628, 1.822)

TC −0.493 0.137 12.966 <0.001 0.611 (0.467, 0.799)
HCY 0.010 0.014 0.498 0.481 1.010 (0.982, 1.039)

Aβ1-42 0.027 0.005 34.876 <0.001 1.028 (1.018, 1.037)
pTau-181 −0.010 0.011 0.788 0.375 0.990 (0.969, 1.012)

Note: TC (Total cholesterol), HCY (Homocysteine).

3.1.3. The Risk Factors for CMBs in Different Regions

A multinomial logistic regression model was constructed with the common risk factors
as independent variables and CMBs in different regions as dependent variables. The results
are listed in Table 3.
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Table 3. The analysis of the risk factors for CMBs in different regions.

Lobar CMBs (n = 67)
OR (95%CI)

Deep CMBs
(n = 47)

OR (95%CI)

Infratentorial CMBs
(n = 27)

OR (95%CI)

Mixed CMBs (n = 55)
OR (95%CI)

Men 1.10 (0.44–2.73) 0.93 (0.33–2.64) 0.93 (0.23–3.84) 0.97 (0.37–2.57)
Age 1.12 (1.00–2.12) 1.08 (1.01–1.16) 1.32 (1.10–1.44) 1.11 (1.00–1.20)

Smoking 2.55 (0.95–6.81) 4.67 (1.62–13.41) 1.75 (0.34–9.09) 2.33 (0.79–6.85)
Drinking 1.50 (0.53–4.24) 1.06 (0.28–4.03) 2.57 (0.60–10.99) 1.34 (0.60–3.29)

Hypertension 0.89 (0.39–2.02) 12.00 (2.66–54.21) 5.33 (1.08–26.26) 2.67 (1.06–6.74)
Diabetes 1.02 (0.37–2.81) 0.72 (0.19–2.68) 0.46 (0.06–3.78) 1.36 (0.48–3.84)

CHD 2.24 (0.88–5.67) 1.74 (0.56–5.39) 2.24 (0.53–9.48) 1.37 (0.45–4.16)
Antithrombotic

medication 0.91 (0.38–2.17) 0.37 (0.10–1.35) 0.24 (0.03–1.92) 1.27 (0.51–3.17)

Lipid-lowering
medication 2.44 (1.04–5.77) 0.65 (0.18–2.39) 0.92 (0.18–4.60) 1.51 (0.56–4.06)

TC 0.43 (0.24–0.75) 0.49 (0.26–0.92) 0.61 (0.27–1.35) 0.82 (0.51–1.32)
TG 1.78 (1.07–2.97) 1.98 (1.18–3.34) 1.09 (0.37–3.23) 1.79 (1.06–3.04)

HDL-C 0.29 (0.07–1.24) 0.16 (0.03–0.99) 0.21 (0.02–2.34) 0.34 (0.07–1.61)
LDL-C 0.91 (0.56–1.47) 0.89 (0.50–1.58) 1.04 (0.49–2.19) 1.14 (0.69–1.87)
BUA 1.00 (0.99–1.01) 1.00 (0.99–1.01) 1.00 (0.99–1.01) 1.00 (0.99–1.01)
HCY 1.07 (1.03–1.12) 1.05 (0.99–1.09) 1.05 (0.98–1.11) 0.98 (0.91–1.05)

Aβ1-42 1.02 (1.01–1.03) 1.00 (0.98–1.02) 1.02 (1.00–1.03) 1.01 (1.00–1.03)
pTau-181 1.04 (1.01–1.07) 1.00 (0.95–1.05) 1.06 (1.02–1.11) 1.03 (0.99–1.07)

Note: CHD (coronary heart disease), TC (Total cholesterol, TG (Triglyceride), HDL-C (High-density lipoprotein
cholesterol), LDL-C (Low-density lipoprotein cholesterol), BUA (Blood uric acid), HCY (Homocysteine).

3.1.4. The Multivariate Analysis of the Risk Factors for CMBs in Different Regions

A multinomial logistic regression model was constructed with the meaningful indi-
cators in Table 3 as independent variables and CMBs in different regions as dependent
variables. The results are displayed in Table 4.

Table 4. Multivariate analysis results of the risk factors for CMBs in different regions.

Lobar CMBs
(n = 67)

OR (95%CI)

Deep CMBs
(n = 47)

OR (95%CI)

Infratentorial
CMBs
(n = 27)

OR (95%CI)

Mixed CMBs
(n = 55)

OR (95%CI)

Age 1.02 (0.94–1.10) 1.13 (1.04–1.24) 0.95 (0.83–1.08) 1.04 (0.97–1.12)

Smoking 2.35 (0.62–8.89) 6.02 (1.53–23.71) 0.40 (0.03–5.65) 2.37 (0.70–7.95)

Hypertension 0.64 (0.24–1.71) 12.54
(2.21–71.28) 4.40 (0.78–24.81) 2.11 (0.78–5.70)

Antithrombotic 0.01 (0.00–0.29) 0.15 (0.02–1.40) 1.48 (1.04–2.39) 0.43 (0.07–5.70)
medication

Lipid-lowering 9.46 (4.20–20.65) 2.55 (0.22–28.94) 3.48 (1.44–8.39) 3.27 (0.52–20.79)
medication

TC 0.26 (0.13–0.54) 0.26 (0.12–0.55) 0.52 (0.19–1.40) 0.59 (0.32–1.06)
TG 2.57 (1.14–5.83) 4.48 (1.94–10.39) 1.19 (0.31–4.59) 2.91 (1.29–6.59)

HDL-C 0.64 (0.10–4.17) 1.28 (0.12–13.64) 0.19 (0.01–5.86) 0.99 (0.15–6.69)
Aβ1-42 1.02 (1.00–1.03) 1.01 (0.99–1.03) 1.02 (0.99–1.04) 1.01 (0.99–1.03)

pTau-181 0.99 (0.95–1.04) 0.95 (0.89–1.02) 1.07 (0.99–1.15) 0.99 (0.95–1.05)
Note: TC (Total cholesterol), TG (Triglyceride), HDL-C (High-density lipoprotein cholesterol).

3.2. Analysis of the Relationship between CMBs and Cognitive Impairment
3.2.1. The Univariate Analysis of the Characteristics of Cognitive Impairment

No statistically significant difference was observed in gender, smoking rate, alcohol
consumption rate, the proportion of individuals with a history of diabetes, coronary heart
disease, and use of antithrombotic drugs and lipid-lowering drugs, and the levels of
TG, HDL-C, LDL-C, and BUA between the cognitive impairment group and the non-
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cognitive impairment group (p > 0.05). Subjects were older in the cognitive impairment
group than in the non-cognitive impairment group. In addition, the cognitive impairment
group had shorter years of education, a higher proportion of individuals with a history
of hypertension, higher Hcy, Aβ1-42, and pTau-181 levels, and lower TC levels than the
non-cognitive impairment group (p < 0.05; Table 5).

Table 5. Characteristics of the study population grouped according to the presence and absence of
cognitive impairment.

Cognitive
Impairment

(n = 160)

Non-Cognitive
Impairment

(n = 246)
t/χ2 p-Value

Men/Women 115 (71.9%) 176 (71.5%) 0.005 0.942
Age, years (mean ± SD) 70.07 ± 6.71 68.45 ± 6.45 2.429 0.016

Education, years (mean ± SD) 5.84 ± 2.81 6.75 ± 2.96 −3.085 0.002
Smoker (n (%)) 32 (20.0%) 52 (21.1%) 0.077 0.782
Drinker (n (%)) 18 (20.0%) 35 (14.2%) 0.518 0.384

Hypertension (n (%)) 103 (64.4%) 132 (53.7%) 4.567 0.033
Diabetes (n (%)) 34 (21.3%) 44 (17.9%) 0.709 0.400

CHD (n (%)) 33 (20.6%) 45 (18.3%) 0.707 0.401
Antithrombotic medication (n (%)) 48 (30.0%) 78 (31.7%) 0.132 0.716
Lipid-lowering medication (n (%)) 22 (13.8%) 36 (14.6%) 0.062 0.804

TC, mmol/L (mean ± SD) 3.74 ± 0.91 3.96 ± 0.96 −2.340 0.020
TG, mmol/L (mean ± SD) 1.67 ± 1.30 1.52 ± 0.79 1.350 0.178

HDL-C, mmol/L (mean ± SD) 1.01 ± 0.31 1.12 ± 0.30 −0.704 0.482
LDL-C, mmol/L (mean ± SD) 2.35 ± 0.82 2.40 ± 0.89 −0.554 0.580

BUA µmol/L (mean ± SD) 310.01 ± 81.50 304.50 ± 78.65 0.685 0.494
HCY, µmol/L (mean ± SD) 18.86 ± 8.92 17.04 ± 7.91 2.093 0.037

Aβ1-42, pg/mL (mean ± SD) 65.25 ± 36.87 52.10 ± 31.17 3.726 <0.001
pTau-81, pg/mL (mean ± SD) 26.07 ± 10.99 22.24 ± 11.99 3.244 0.001

Note: CHD (coronary heart disease), TC (Total cholesterol), TG (Triglyceride), HDL-C (High-density lipoprotein
cholesterol), LDL-C (Low-density lipoprotein cholesterol), BUA (Blood uric acid), HCY (Homocysteine).

3.2.2. The Univariate Analysis of the Imaging Characteristics of Cognitive Impairment

Imaging characteristics of the study population grouped in accordance with the pres-
ence and absence of cognitive impairment. There were statistical differences in the distribu-
tion of CMBs and WMLs between the cognitive impairment group and the non-cognitive
impairment group (Table 6).

Table 6. Imaging characteristics of the study population grouped according to whether subjects
experienced cognitive impairment.

Cognitive
Impairment

(n = 160)

Non-Cognitive
Impairment

(n = 246)
χ2/Z p-Value

Lacunes 4.308 0.516
0 16 30 OR 95%CI

1–5 90 116 1.455 0.747–2.832
6–10 27 59 0.858 0.402–1.832
>10 27 41 1.235 0.568–2.686

CMBs 58.623 <0.001
None 48 162 OR 95%CI
Lobar 37 30 4.162 2.332–7.429
Deep 22 25 2.970 1.539–5.731

Infratentorial 13 14 3.134 1.379–7.121
Mixed 40 15 9.001 4.582–17.680
WML 9.829 <0.001

0 69 165 OR 95%CI
1 43 46 2.235 1.353–3.692
2 25 20 2.989 1.558–5.735
3 23 15 3.667 1.805–7.447

Brain atrophy 0.869 0.351
inexistence 124 200 OR 95%CI
existence 36 46 1.262 0.773–2.061

Note: CMBs (Cerebral microbleeds), WML (White Matter Lesions).
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3.2.3. The Multivariate Analysis of the Risk Factors for Cognitive Impairment

Multivariate logistic regression analysis (the forward LR method) was conducted
with the factors, with p < 0.05 tested by χ2 as independent variables and the presence and
absence of cognitive impairment as the dependent variable. The results demonstrated years
of education, WML, and CMBs as the risk factors for patients with cognitive impairment
(Table 7).

Table 7. Multivariate analysis results of the risk factors for cognitive impairment.

B SE WALD p OR (95%CI)

Age 0.032 0.019 2.729 0.099 1.032 (0.994, 1.071)
Education

years −0.040 0.014 7.910 0.005 0.959(0.930, 0.988)

Hypertension 0.212 0.257 0.681 0.409 1.237(0.747, 2.048)
TC −0.168 0.130 1.669 0.196 0.846 (0.656, 1.091)

HCY 0.086 0.050 3.000 0.083 0.918 (0.833, 1.011)
AB1-42 0.004 0.004 0.778 0.378 1.004 (0.996, 1.012)

pTau-181 −0.015 0.012 1.686 0.194 0.985 (0.962, 1.008)
WML 0.988 0.209 22.25 <0.001 2.687 (1.782, 4.051)
CMBs
Lobar 3.071 0.677 20.608 <0.001 21.246 (5.728, 21.576)
Deep 3.288 0.812 16.418 <0.001 26.798 (5.462, 131.488)

Infratentorial 3.297 0.842 15.342 <0.001 27.028 (5.193, 140.690)
Mixed 4.811 0.806 35.632 <0.001 122.884 (25.317, 596.446)

Note: TC (Total cholesterol), HCY (Homocysteine), CMBs (Cerebral microbleeds), WML (White Matter Lesions).

3.2.4. The Relationship between the Number of CMBs and MoCA Scores

In the cognitive impairment group, the number of CMBs was 3 (0, 6) and the MoCA
score was 20.7 ± 3.42 points. The scatter diagram is depicted in Figure 2. Spearman
correlation results exhibited a linear correlation between the number of CMBs and MoCA
scores (r = −0.756, p < 0.001).
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3.2.5. The Relationship between CMBs in Different Regions and MoCA Scores

In the cognitive impairment group, the input method was utilized to construct the
multiple linear regression model1, with the MoCA score as the dependent variable, CMBs
in different regions as the independent variable, and patients without CMBs as reference
variables. The results manifested that lobar, deep, infratentorial, and mixed CMBs were
all risk factors influencing MoCA scores. After correction for the effects of age, years of
education, WML, and the number of CMBs, CMBs in the lobar and mixed regions remained
the risk factors influencing MoCA scores (Table 8).
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Table 8. The relationship between CMBs in different regions and MoCA scores.

Model 1

Regions Standardized β p-Value 95%CI

Lobar −0.487 <0.001 (−5.278, −2.605)
Deep −0.231 0.005 (−3.861, −0.715)

Infratentorial −0.301 <0.001 (−5.666, −1.846)
Mixed −0.306 <0.001 (−3.716, −1.100)

Model 2

Regions Standardized β p-Value 95%CI

Lobar −0.375 <0.001 (−4.188, −1.884)
Deep −0.201 0.081 (−0.772, 5.613)

Infratentorial −0.216 0.072 (−0.211, 4.814)
Mixed −0.292 <0.001 (−4.814, −0.211)

Note: Model 2 was obtained after correcting for the effects of WML, CMB number, age, and education years.
CMBs (Cerebral microbleeds), WML (White Matter Lesions).

3.2.6. The Relationship between CMBs in Different Regions and Specific Cognitive Domains

In the cognitive impairment group, a multiple linear regression model was generated
by the input method, with the individual cognitive domain scores of MoCA as dependent
variables, age, years of education, WML, the number of CMBs, and CMBs in different
regions as independent variables, and patients without CMBs as reference variables. These
results might not be exactly right due to the small sample size. After correction for the
influences of age, years of education, WML, and the number of CMBs, the results showed
that CMBs in each region might not be related to specific cognitive domains except for
CMBs in the mixed group, which were negatively correlated with attention (Figure 3).
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4. Discussion

Increasing cases of CMBs have been detected with the advancement of imaging
diagnosis technology. In the general population, the prevalence of CMBs is approximately
15.3% [3] and gradually increases as people age [20]. The risk factors of CMBs and their
relationship with cognitive impairment have been extensively studied. However, there
is currently no consensus on the risk factors of CMBs, especially Aβ1-42 and pTau-181
proteins. Our study is the first study in China comprehensively evaluating the questions
mentioned above. Our current study included a total of 406 patients with CMBs and
investigated the risk factors for CMBs and the association between CMBs and cognitive
impairment.

Cerebral amyloid angiopathy (CAA) predominantly affects cortical arteries and hence
is characterized by lobar microbleeds, whilst hypertensive arteriopathy typically influences
small perforating end arteries in deep brain areas and is featured by deep microbleeds [7]. In
a cross-sectional study of the elderly in Framingham, low total cholesterol levels increased
the risk of lobar CMBs, statin use increased the risk of lobar and mixed CMBs, and the
association was not affected by adjustment for cholesterol levels or concomitant medication
use. Nevertheless, a prior meta-analysis did not demonstrate such an association [21].
Another meta-analysis of 20,988 participants from 37 studies showed that CMBs were
more frequent in antiplatelet users than in non-antiplatelet users and that antiplatelet
therapy was significantly associated with lobar CMBs rather than deep or infratentorial
CMBs [22]. Although CMBs are a typical feature of CAA [23] and Aβ deposits and p-Tau
proteins are typical pathological markers of degenerative diseases, especially Alzheimer’s
disease [24], accumulating studies have elucidated that Aβ proteins, p-Tau proteins, and
CSVD, which occasionally coexist, are the most common reason for cognitive impairment
in the elderly [6].

Prior studies have unraveled that CSVD can contribute to the upregulation of Aβ and
p-Tau proteins [6,7]. Moreover, any combination of concurrent lobar and deep microbleeds
illustrates hypertensive angiopathy [25]. This provides conditions for us to investigate the
relationship of CMBs with Aβ and p-Tau proteins. Our study found that subjects with
CMBs were older than subjects without CMBs and that the smoking rate, the proportion of
individuals with a history of hypertension and use of antithrombotic drugs, and the levels
of Hcy, Aβ1-42, and p-Tau181 were higher and TC levels were lower in the CMB group
than in the non-CMB group, consistent with previous studies. However, no statistically
significant difference was found in the use of antiplatelet drugs and the levels of Hcy and
p-Tau181 after multivariate logistic regression analyses. We suspect that the occurrence and
progression of CMBs are not directly triggered by these factors and may be correlated with
some known or unknown indirect effects. As discussed in one article, CMBs may represent
not only the damage of a certain blood vessel but also a downstream product of both
severe vascular and neurodegenerative pathologies [3]. In the univariate and multivariate
analyses of CMBs in different regions, it was found that aging elevated the risk of CMBs in
each region. Additionally, we also observed that hypertension mainly enhanced the risk
of deep CMBs, and that Aβ1-42 protein upregulation increased the risk of lobar CMBs. It
is still unclear whether elevated Aβ1-42 protein is related to CAA, but research on CAA
has elaborated that CMBs resulting from CAA are majorly associated with Aβ1-40. Strictly,
lobar CMBs only accounted for 16.5% of our research subjects. Consequently, there is no
longer a clear distinction between vascular pathology and degenerative diseases.

Accumulating studies have reported that CMBs are related to a decline in cognitive
function [3,26–28]. A longitudinal study on the general population unveiled that partic-
ipants with more than three CMBs, regardless of their locations, had a higher incidence
of all-cause dementia and vascular dementia [29]. A study conducted by Chung et al. on
959 elderly people in the community revealed that strictly lobar, but not deep or infraten-
torial, CMBs were associated with changes in cognitive function, especially visuospatial
executive function [10]. A study of Wang et al. on patients with cerebral infarction/transient
ischemic attack demonstrated that attention deficits are particularly prominent in patients
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with deep CMBs [30]. Nevertheless, a prior study has also manifested that mixed CMBs
or a higher load of CMBs with some specificity for location is correlated with accelerated
cognitive function decline in the elderly [29]. In short, there remains poor identification
of the relationship between the number and location of CMBs with overall cognitive
function and various cognitive domains. In this study, age was older in the cognitive
impairment group than in the non-cognitive impairment group, accompanied by shorter
years of education, a higher proportion of people with a history of hypertension, higher
Hcy, Aβ1-42, and pTau-181 levels, and lower TC levels. Conversely, after multivariate
analyses, only years of education, CMBs, and WMLs were the independent risk factors
for cognitive impairment, concurrent with previous research [26]. These results suggested
an independent role of microbleed-associated vasculopathy in cognitive impairment and
that CMBs were an independent risk factor for cognitive impairment. Then, a correlation
analysis was conducted to clarify the relationship between the number of CMBs and MoCA
scores, and the data indeed demonstrated that the overall cognitive function of patients
worsened as the number increased. Multiple linear regression analysis results uncovered
that CMBs in each region were correlated with a decline in overall cognitive function. After
the influence of other meaningful variables was adjusted, only lobar and mixed CMBs
were statistically significantly associated with a decline in cognitive function. Likewise,
each cognitive domain was also analyzed, which showed that CMBs in specific regions
were unrelated to the damage of specific cognitive domains, concordant with previous
observations [29]. It has been previously reported that both WML and lacuna elevated
the prevalence of CMBs [30–32]. Combined with our research results, we speculate that
cognitive impairment caused by CMBs is not mainly attributed to the destruction of local
cortical function and brain network structure but marks the presence of diffuse vascular
injury and neurodegenerative brain damage.

Although CMBs play an independent role in the risk of cognitive impairment, the
mechanism is still controversial. The question is how vascular pathology interacts with
amyloid pathology to cause clinical cognitive deterioration. Vascular diseases can result in
reductions in amyloid clearance and deposition, and hemorrhagic and ischemic changes can
occur when amyloid acts on blood vessels [3]. Some previous studies have demonstrated
that CMBs in patients with cognitive function decline may present several features of
blood-brain barrier dysfunction [33–35]. A study on Tau proteins suggested that both Aβ

and CSVD were independently associated with increased Tau accumulation and that Tau
burden plays a pivotal role since it was the final common pathway for cognitive impairment
in patients with subcortical vascular cognitive impairment [6]. Conclusively, CMBs are
closely related to Aβ1-42 and pTau-181, and they often coexist and cooperate in impairing
cognitive function.

Several limitations deserve consideration. First, our research is a cross-sectional
study without follow-up observation. In this context, we were not able to obtain the
longitudinal data of the patients. Therefore, the cross-sectional design of this analysis limits
the inference of the causal relationship between CMBs and cognitive impairment. Secondly,
due to the limitation of conditions, we only obtained the data on serum Aβ1-42 protein
levels, which precluded us from comparing the relationship between Aβ1-42, Aβ1-40, and
Aβ1-38 in different regions of CMBs. Thirdly, selection bias between the two groups might
be introduced when the two groups were established. Fourth, some important potential
confounders, such as atrial fibrillation, have not been considered in this analysis. Finally,
our research population is limited to patients with CSVD, and our results and values are
no longer applicable to patients with other diseases and the general population.
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