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Abstract: Enzymes play a critical role in most complex biochemical processes. Some of them can be
regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission
(AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed
and synthesized for the detection and imaging of enzymes. In this work, we summarized the
advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes,
including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens
involve organic dyes and metal nanoclusters. This work provides valuable references for the design
of novel AIE-based sensing platforms.

Keywords: aggregation-induced emission; enzymes; fluorescent biosensors; organic dyes; metal
nanoclusters

1. Introduction

Enzymes are a family of proteins or RNA with specific catalytic activities toward the
substrates. They are involved in most of the complex biochemical processes, including
gene expression, metabolic pathways, cell growth and differentiation, and signaling [1].
Abnormal manifestations of enzyme activities could be indicative of humans’ health status.
Thus, enzymes can be used as biomarkers for disease diagnosis [2–4]. For example, changes
in the activity and content of proteases may cause some diseases, such as cancers, ac-
quired immune deficiency syndrome, and neurodegenerative diseases [5,6]. Phosphatases
have been considered important indicators for some diseases, including anemia, chronic
nephritis, hypothyroidism, and hepatobiliary as well as bone diseases [7]. Evaluated con-
centrations of γ-glutamyltranspeptidase have been found in hepatocellular carcinoma as
well as cervical and ovarian cancers [8]. Excessive use of organophosphorus pesticides
can cause the inhibition of acetylcholinesterase (AChE) activity and the accumulation of
neurotransmitter acetylcholine, eventually leading to the incidence of Alzheimer’s and
Parkinson’s diseases [9]. In acute pancreatitis, lipase concentration in serum is at least
three times the normal level [10]. Increased leucine aminopeptidase expression is closely
related to many diseases, such as hepatic dysfunction and liver cancer [11].

Owing to the importance of enzymes in clinical diagnosis, various novel methods
have been developed for the accurate and sensitive determination of enzymes, such as
fluorescence, colorimetry, electrochemistry, electrochemiluminescence, and photoelectro-
chemistry [12,13]. Among them, fluorescent biosensors have attracted extensive attentions
due to their excellent advantages of inexpensive equipment, rapid response, high sensitivity,
and real-time and on-site detection [14,15]. However, traditional fluorophores with planar
and intermolecular interaction may suffer from the aggregation-caused quenching (ACQ)
problem at high concentrations or in the solid state [16], which will decrease the sensitivity
and limit the applications of fluorescent biosensors in vivo detection and imaging of en-
zymes. Since Tang’s group first introduced the concept of aggregation-induced emission
(AIE) in 2001, AIE-based techniques have opened up the field with huge potential practical
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applications [17]. Unlike ACQ fluorophores, fluorogens with AIE features (AIEgens) exhibit
a remarkable optical property and strong resistance toward photobleaching. Generally,
AIEgens in the molecular state are non-emissive, because they can consume the excitation
energy through the active intramolecular motion in a non-radiative decay manner. How-
ever, under the restrictions of intermolecular motion, AIEgens in the aggregate state will
produce significantly enhanced and stable emission. Thus, versatile AIEgens have been
used as functional components to prepare light-up probes. They have been used in a broad
range of applications, including organic optoelectronic devices, biosensing, bioimaging,
photodynamic therapy, photothermal therapy, and so on [18–21].

Within the continuous exploration of the new AIE systems, more mechanisms have
been proposed as branches of AIE, including crystallization-induced emission, room-
temperature phosphorescence, clusterization-triggered emission, and so on [22,23]. Besides
tetraphenylsilols and tetraphenylethylene, versatile AIEgens with different structures
have been innovatively synthesized for various applications under the guidance of these
AIE mechanisms in recent years, such as tetraphenylpyrazines, perylene, organoboron or
carborane complexes, cyclooctatetrathiophene, and so on [24,25]. Through modification
of the π-conjugation systems with different functional groups, the absorption/emission
wavelengths of AIEgens can cover the whole visible and near-infrared range. When the
ACQ dyes were modified with AIEgens, the resulting probes may exhibit AIE characteristics.
Moreover, some nanomaterials have also been reported to possess AIE properties, including
quantum dots (QDs), copper nanoclusters (CuNCs), gold nanoclusters (AuNCs), silver
nanoclusters (AgNCs) and carbon quantum dots [26,27]. The aggregation of AIEgens can be
triggered by different stimuli, such as solubility change, hydrophobic assembly, hydrogen
bonding, target-receptor binding, and electrostatic interactions. By linking AIEgens to the
target ligands or reactive groups, many AIE light-up sensors have been developed for the
signal-on detection of various targets, including ions, small molecules, microenvironment
sensing (e.g., pH, temperature and viscosity), biological macromolecules (e.g., toxin, nucleic
acids, proteins, enzymes), cellular processes and pathogens [28,29]. Thereby, the in vitro
determination and in vivo monitoring of enzymes have been realized using AIEgens to label
peptide probes due to their good biocompatibility, adjustable fluorescence wavelength,
ultra-low background signal, and strong photobleaching resistance [30,31]. Moreover,
peptides can improve the hydrophilicity of AIEgens, especially in imaging applications. In
the presence of target enzymes, AIEgens-labeled peptide probes would be cleaved, causing
the aggregation of AIEgens and thus generating a bright AIE luminescence for the in situ
imaging of enzymes. Based on the approaches to activate the restriction of intramolecular
motion and trigger the AIE process, the detection mechanisms of the works involved in this
review could be classified into three categories: (i) the electrostatic interactions between
AIEgens themselves or between AIEgens and other charged species (e.g., polymers and
nanomaterials) cause the aggregation of AIEgens, (ii) enzyme catalysis adjusts the solubility
of AIEgens and triggers the appearance of nanoaggregates, and (iii) enzyme catalysis
induces the formation of intramolecular hydrogen bonds that can hamper the restriction
of intramolecular motion and produce the effect of excited-state intramolecular proton
transfer. These mechanisms have provided versatile approaches for the sensitive and
selective detection of enzyme activity in vitro or in vivo.

Some excellent reviews have summarized the progresses in AIE-based applications,
which mainly focus on the molecular design, detection mechanism, and AIEgens [32–36].
For instance, Liu et al. reported recent advances in AIE light-up probes for photodynamic
therapy [37]. The achievements of tetraphenylethylene (TPE)-based AIE-active sensing
probes have been reviewed by Bhosale’s group [32]. Wang et al. summarized the devel-
opment of Schiff base AIEgens for sensing applications [38]. In this work, we aimed to
highlight the advances in AIEgens-based probes and sensing platforms for the detection of
enzymes. According to the type of enzymes, AIE-based biosensors have been classified into
six categories: proteases, phosphatases, glycosidases, cholinesterases, telomerase and oth-
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ers. We mainly focus on the enzyme-responsive detection mechanisms and the analytical
performances.

2. Proteases

With AIEgens-labeled peptide as the probe, the fluorescent detection and imaging of
proteases has been achieved, including chymase, caspases, thrombin, metalloproteinase-2
(MMP-2), furin, carboxypeptidase Y (CPY), autophagy-related cysteine protease ATG4B, and
so on (Table 1). The AIEgens involve the derivatives of TPE, PyTPA, (2-(2′-hydroxyphenyl)-
4(3H)-quinazolinone (HPQ), pyrene and tetraphenylsilole (BATPS). Moreover, through the
integration of AIE and excited-state intramolecular proton transfer (ESIPT) characteristics,
some proteases such as aminopeptidase could be determined with leucine-conjugated
TPE or tetraarylimidazole scaffolds [39,40]. In this section, we primarily summarized
the AIEgen-labeled peptide probes for the detection and in vivo imaging of proteases.
Meanwhile, applications of the AIE probes for monitoring apoptosis and tracking drug
delivery were also discussed.

Among the different kinds of AIEgens, TPE is most the commonly used for the modifi-
cation of protease substrates because of its advantages of easy synthesis and functional-
ization and excellent AIE characteristics [41]. Zhang et al. designed a fluorescent light-up
probe for chymase detection. The probe contains the AIEgen TPE-thiophene (TPETH) with
red emission in the aggregation state and two chymase-specific peptide (CFTER) sequences
(Figure 1A) [42]. In order to improve the water-solubility and decrease the background,
three aspartic acid residues (D3) were introduced to the peptide sequence. The probe of
TPETH-2(CFTERD3) showed nearly no emission in buffer solution. After the enzymatic
cleavage, the released hydrophobic TPETH segments could readily assemble into aggre-
gates, lighting up the fluorescence. In order to promote the assembly of TPE and enhance
the sensitivity of AIE biosensors, a self-assembly peptide could be incorporated into the
probe. For example, Han et al. designed an AIEgen probe using a short self-assembly
peptide GFFY to conjugate the protease-responsive peptide and AIEgen residue [43]. After
responding to caspase-3, GFFY promoted the ordered assembly of AIEgen residues, substan-
tially restricting the intramolecular motion of AIEgens and greatly improving the sensitivity.
In addition, Li et al. designed an AIEgen probe named HPQF for the in situ detection and
imaging of endogenous furin (Figure 1B) [44]. The probe consists of a furin-specific peptide
(RVRR) and the fluorophore 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (Cl-HPQ).
The catalytic cleavage of peptide probes by furin caused the release of insoluble Cl-HPQ
precipitates, turning on the fluorescence through the AIE effect.
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with furin (top), and the molecular design strategy of the negative control non-cleavable probe HPQN
(bottom). Reprinted with permission from ref. [44]. Copyright 2018, American Chemical Society.
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In order to improve the sensitivity of AIE-based biosensors, Wu et al. developed a two-step
sensing system for protease detection based on the peptide probe of RRRRRRGGPLGLAGPra
(PyTPA)-NH2 (MP), negatively charged nanoparticles (NPs) and slippery lubricant-infused
porous substrates (SLIPS) (Figure 2) [45]. The water-soluble MP with an AIEgen of PyTPA
showed weak fluorescence. Cleavage of MP by MMP-2 promoted the aggregation of the
hydrophobic PyTPA-included residues. The aggregates were then electrostatically adsorbed
onto the negatively charged NPs on SLIPS. With MMP-2 as the analytical example, the
sensitivity was obviously improved in contrast to the previously reported AIE-based
methods.

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 24 
 

 
Figure 1. (A) Schematic illustration of the functional mechanism of the probe TPETH-2(CFTERDn). 
n = 2 or 3 for chymase sensing. Reprinted with permission from ref. [42]. Copyright 2016, American 
Chemical Society. (B) Chemical structure of the activatable probe HPQF and its working mechanism 
with furin (top), and the molecular design strategy of the negative control non-cleavable probe 
HPQN (bottom). Reprinted with permission from ref. [44]. Copyright 2018, American Chemical So-
ciety. 

 
Figure 2. Design of modular peptide-conjugated AIEgen MP and development of the MP/NPs–
SLIPS sensing system for sensitively detecting tumor marker MMP-2. Reprinted with permission 
from ref. [45]. Copyright 2021, American Chemical Society. 

Real-time monitoring of apoptosis can provide valuable insights for the early detec-
tion of therapeutic effects and the evaluation of disease progress. Shi et al. designed an 
AIEgen probe for the real-time imaging of cell apoptosis by monitoring the caspase activ-
ity (Figure 3A) [46]. The probe consists of a hydrophilic caspase-specific peptide (DEVD) 

Figure 2. Design of modular peptide-conjugated AIEgen MP and development of the MP/NPs–SLIPS
sensing system for sensitively detecting tumor marker MMP-2. Reprinted with permission from
ref. [45]. Copyright 2021, American Chemical Society.

Real-time monitoring of apoptosis can provide valuable insights for the early detection
of therapeutic effects and the evaluation of disease progress. Shi et al. designed an AIEgen
probe for the real-time imaging of cell apoptosis by monitoring the caspase activity
(Figure 3A) [46]. The probe consists of a hydrophilic caspase-specific peptide (DEVD)
and a hydrophobic AIEgen of TPE unit. The water-soluble probe showed almost no fluores-
cence in the aqueous phase. Cleavage of the probe by caspase-3/7 led to the formation of
hydrophobic TPE residues. The aggregation of TPE residues could restrict the intramolecu-
lar rotation of the TPE phenyl ring and populate the radiative decay channel, thus lighting
up the fluorescence. Moreover, Ding et al. designed an AIEgen probe for the imaging of cell
apoptosis by monitoring the activity of caspase-3 [47]. The probe (Ac-DEVD-TPS-cRGD)
consists of a caspase-specific hydrophilic peptide (DEVD), a cell-binding cyclic peptide
cRGD and an AIEgen of a tetraphenylsilole (TPS) unit. The two peptides were linked at
both ends of the TPS unit. Cleavage of the probe by caspase-3 led to the release of TPS-
cRGD. The aggregation of released TPS-cRGD residues lit up the fluorescence, enabling
real-time imaging of cell apoptosis. Lately, Yuan et al. reported a dual-signal AIEgen probe
for monitoring caspase activity. The probe (TPETH–DVEDIETD–TPS) includes three com-
ponents: a hydrophilic peptide (DVEDIETD) specific to apoptosis initiator caspase-8 and
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effector caspase-3 and two AIEgens with green (TPS) and red (TPETH) emission colors [48].
The probe could be cleaved into a TPETH–DVEDIETD and a TPS unit by caspase-8. The
product of TPETH–DVEDIETD could be further cut into a TPETH unit and DVEDIETD
by caspase-3. The aggregates of TPS and TPETH emitted green and red fluorescence,
respectively.
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Effective methods for cancer treatment largely depend on inducing the apoptosis
of cancer cells through chemotherapy and/or radiotherapy. Magnetic resonance (MR)
imaging is one of the frontiers of experimental and clinical radiology. It has unlimited
tissue penetration depth, excellent soft tissue contrast and time–space resolution, without
the use of ionizing radiation. Recently, Meade’s group reported a bimodal fluorescence–
magnetic resonance (FL-MR) probe named CP1 for apoptosis imaging by monitoring the
activity of caspase-3/7 (Figure 3B) [49]. The CP1 probe contains three parts: a DOTA-Gd(III)
chelate for MR signal enhancement, an AIEgen of the TPE unit, and an enzyme-specific
peptide, DEVD. In the presence of caspase-3/7, the water-soluble peptide DEVD was
removed, and the resulting Gd(III)-AIEgen (Gad-AIE) conjugates tend to aggregate, thus
inducing the increase of FL-MR signals. The dual-signal FL–MR probe was successfully
used for the fluorescent imaging of cell apoptosis.

In addition, Yuan et al. designed a protease-responsive chemotherapeutic Pt(IV)
prodrug with real-time in situ monitoring of drug release (Figure 4A) [50]. The chemother-
apeutic Pt(IV) prodrug was modified with a cell-binding cyclic tripeptide, cRGD, and
a TPS-labeled enzyme-specific peptide, DEVD. Pt(IV) could be reduced in active Pt(II)
in cells and release the TPS-DEVD simultaneously. The cell apoptosis induced by Pt(II)
activated the activity of caspase-3 to cleave TPS-DEVD. The released TPS residues tend
to aggregate, thus causing fluorescence enhancement. Chen et al. designed a protease-
responsive prodrug (DOX-FCPP-PyTPE, DFP) with AIE characteristics (Figure 4B) [51].
The drug delivery and release in living cells could be controlled and tracked. The DFP pro-
drug involved three parts: AIEgen PyTPE, functionalized cell-penetrating peptide (FCPP)
with a cell-penetrating peptide (CPP) and a short MMP-2-specific peptide (LGLAG), and
a therapeutic drug (doxorubicin, DOX). The prodrug itself cannot enter the cells. However,
the prodrug could be cleaved by MMP-2 into two components: DOX-linked CPP and
a PyTPE-containing peptide segment. The DOX-linked CPP could go inside the cells
through the interaction of CPP with cell membrane, thus realizing controlled drug delivery.
The hydrophobic PyTPE-containing peptide segments could self-assemble into aggregates
to yield yellow fluorescence, thereby achieving the real-time tracking of drug release. Re-
cently, Qin et al. prepared a self-assembly tracking micelle (TPR@DOX) by modifying the
RGD peptide and TPE AIEgen on both ends of a caspase-responsive amphiphilic polymer
(Figure 4C) [52]. The drug-induced apoptosis activated caspase to cut the DEVD-containing
peptide in the polymer, thus releasing the hydrophobic TPE residues to form fluorescent
aggregates. The turn-on of fluorescence indicated the successful delivery and release
of DOX.
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Table 1. Overview on AIE-based methods for the detection and imaging of different proteases.

Targets Probes Linear Range LOD Ref.

LAP DPA-TPE-Leu – 8.9 ng/mL [39]
LAP ASSI-Leu 0~0.05 U/mL 2.983 mU/mL [40]
CKII TPE-GRRRADDSDDDD 0.1~80 mU/µL 0.05 mU/µL [41]
chymase TPETH-2(CFTERD3) 0~9.0 ng/mL 0.1 ng/mL [42]
caspase-3 TPE-GFFYK(DVEDEE-Ac) 0~70 pM 0.54 pM [43]
Furin Ac-RVRR-linker-HPQ Imaging – [44]
MMP-2 RRRRRRGGPLGLAGPra(PyTPA)-NH2 Imaging – [45]
caspase-3/7 Ac-DEVDK-TPE Imaging – [46]
caspase-3 Ac-DEVD-TPS-cRGD 0~80 ng/mL – [47]
caspase-3/8 TPETH–DVEDLEHD–TPS Imaging – [48]
caspase-3/7 DOTA-Gd(III)-TPE-KDEVD Imaging – [49]
caspase-3 TPS-DEVD-Pt-cRGD – 1 pM [50]
MMP-2 DOX-FCPPs-PyTPE Imaging – [51]
ATG4B DPBP Imaging – [53]
trypsin TPE-2+/BSA 1~12.5 mU/mL 1.43 mU/mL [54]
trypsin TPE-2+ 0.1~1 nM 0.02 nM [55]
trypsin PSMA-PhB+TPE/heparin 0~1.5 U/mL 0.02 U/mL [56]

trypsin SiNPs@GSH-AuNCs/protamine 0.15~3.0 µg/mL
10~100 ng/mL

0.07 µg/mL
4.50 ng/mL [57]

Abbreviations: LAP, leucine aminopeptidase; DPA, diphenylamine; Leu, leucine; CKII, casein kinase; MMP-2,
matrix metalloproteinase-2; TPS, tetraphenylsilole; PyTPE, tetraphenylethene derivative; DOX, doxorubicin;
FCPPs, functionalized cell penetrating peptides; ATG4B, an autophagy-specific enzyme; PSMA, polystyrene-co-
maleic anhydride; PhB, phloxine B; SiNPs, silicon nanoparticles; GSH, glutathione; AuNCs, gold nanoclusters.
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Autophagy plays a crucial role in the metabolic process. ATG4B is an important
autophagy-related protease, which can be used to regulate autophagy for cancer treatment.
With a bis(pyrene)-derivative (BP)-labeled peptide (GKGSFGFTG) named DPBP as the AIE
probe, Lin et al. proposed an effective strategy for the determination of autophagy in living
objects by monitoring the activity of ATG4B (Figure 4D) [53]. The DPBP probe was modified
onto the fourth-generation poly(amidoamine) dendrimer (PAMAM) as the carrier. The
cleavage of DPBP led to the release of hydrophobic BP residues. The self-assembly of BP
residues could enhance the fluorescence by AIE process, thus achieving the determination
of autophagy in a living system.

Based on the electrostatic interaction-induced assembly of charged TPE derivatives,
several groups have reported the detection of proteases with bovine serum albumin (BSA),
protamine and heparin as the triggers. For example, Xu et al. demonstrated that BSA could
trigger the assembly of positively charged TPE salts named TPE-2+ through electrostatic
interactions, lighting up the fluorescence by AIE process [54]. The digestion of BSA by
active trypsin limited the assembly of TPE-2+, thus depressing the fluorescence signal.
Jiang’s group reported the fluorescent assay of trypsin through the histone-controlled
heparin-triggered aggregation of TPE-2+ by electrostatic interactions (Figure 5A) [55]. The
cationic protein of histone could electrostatically bind with the anionic polymer of heparin,
hindering the interaction between TPE-2+ and heparin. However, the cleavage of histone
by trypsin allowed for the heparin-triggered aggregation of TPE-2+, thus enhancing the
emission signal. Moreover, Zhao et al. reported the ratiometric fluorescence sensing of
heparin and trypsin with phloxine B (PhB) and TPE-modified electrospun fibrous strips
(Figure 5B) [56]. Protamine was attached to the modified fibers via electrostatic interactions,
causing the static quenching of PhB fluorescence and the AIE-induced enhancement of
TPE emission. The digestion of protamine by heparin or trypsin led to the increase of PhB
emission at 574 nm, which was accompanied by the decrease of TPE emission at 472 nm.
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With glutathione (GSH)-protected gold nanoclusters (GSH-AuNCs) as the AIEgens
and positively charged silicon nanoparticles (SiNPs) as the triggers to induce the assem-
bly of AuNCs, Xue et al. reported a ratiometric fluorescence sensing strategy for trypsin
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detection (Figure 5C) [57]. Protamine could electrostatically adsorb onto the surface of
GSH-AuNCs in order to disperse the assemblies, causing fluorescence quenching at 450 nm.
In this process, the emission signal of SiNPs as the internal reference showed a negligi-
ble change. Subsequently, the trypsin-catalyzed hydrolysis of protamine dissociated the
protamine/GSH-AuNCs complexes, facilitating self-assembly and recovering the fluores-
cence at 570 nm.

3. Phosphatases

Phosphatases widely existing in mammalian body fluids and tissues can catalyze
the hydrolysis of phosphate ester during osteogenesis. The abnormal expression of
phosphatases is closely related to many diseases, such as liver dysfunction, diabetes,
bone tumors, and prostatic cancer [7]. As an important biomarker, alkaline phosphatase
(ALP) is one of the most commonly used enzymes in medical diagnosis. Taking ad-
vantage of AIE−based biosensors, a series of AIEgens have been designed and synthe-
sized for ALP detection, including phosphorylated TPE (TPE-PA, TPE-2PA and TPE-
4PA) [58–60], phosphate-modified quinolone–malononitrile (QMTP), and tyrosine phos-
phate (pY)−included TPEPy-peptide (TPEPy-FpYGpYGpY and TPEPy-DFDFPYDEGDK)
(Table 2). The AIE detection mechanism is based on the difference in the water solubility
between substrates and products. After removing the phosphate group from TPE-phos by
ALP−catalytic hydrolysis, the product emitted blue or green color due to the AIE effect
(Figure 6A) [59]. This light-up probe could be used for the clinical analysis of ALP with high
specificity. The auto-fluorescence from living cells may interfere with AIEgens emitting
blue or green color. For this reason, several groups have designed fluorescent probes with
red emission for ALP analysis [61–64]. ESIPT can induce redder emission by altering the
conjugation system of fluorophores. For this reason, Song et al. designed a ratiometric
strategy for ALP detection with greenish-yellow phosphorylated chalcone derivatives as
the probes (Figure 6B) [63]. The enzymatic products could assemble into red fluorescent
aggregates with ESIPT and AIE processes, realizing the visual and fluorescent detection of
ALP in living cells.

Table 2. Analytical performances of AIE-based methods for the detection of phosphatases.

Targets Probes Linear Range LOD Ref.

ALP TPE-PA 0~0.1 U/mL 18 mU/mL [58]
ALP TPE-2PA 3~526 U/L 0.2 U/L [59]
ALP TPE-4PA 10~50 mU/mL – [60]
ALP THP 0~200 U/L 1.21228 U/L [61]
ALP QMTP 0~1200 U/L 5.36 U/L [62]
ALP HCAP 0~150 mU/mL 0.15 mU/mL [63]
ALP FAS-P 1~100 U/L 0.6 U/L [64]
ALP TPEPy-DFDFPYDEGDK 1~106 CFU/mL 6.6 × 10−3 U/mL [65]
ALP TPE-Py-FpYGpYGpY 0~2 U/mL – [66]
ALP PET-Flu-PO4/TPE 0~100 mU/mL 5 mU/mL [67]
ALP BSPOTPE-PrS 0~36 mU/mL 28.7 µU/mL [68]
ALP H4TCPE/SR101/Cu-GMP ICP 0.01~0.1 U/mL 0.0032 U/mL [69]
ALP GSH-capped CuNCs 0.5~25 mU/mL 0.15 mU/mL [70]
ACP CuNCs 2.2~100 U/L 0.8 U/L [71]
ALP P-Glu/CuNCs 0.56~30 U/L 0.17 U/L [72]
ALP PAH-AuNCs 0.5~100 U/L 0.2 U/L [73]
ACP GSH-AuNCs 0.005~2.4 U/L 0.001 U/L [74]
PPase AgNCs 2.1~35 U/L 0.7 U/L [75]
PKM2 TEPC466 0~20 µg/mL 21.25 ng/mL [76]

Abbreviations: ALP, alkaline phosphatase; TPE, tetraphenylethylene; PA, phosphate; THP, 2-(benzo[d]thiazol-
2-yl)-4-(1,4,5-triphenyl-1H-imidazole-2-yl)phenyl dihydrogen phosphate; QMTP, the conjugate of quinolone–
malononitrile and phosphate-modified thiophene; HCAP, phosphorylated conjugate of 2′-hydroxyacetophenone
and 4-dimethylaminobenzaldehyde; FAS-P, (E)-2-(((9H-fluoren-9-ylidene) hydrazono)methyl) phenyl dihydro-
gen phosphate; BSPOTPE, 1,2-Bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene; pY, tyrosine phosphate;
PrS, protamine sulphate; H4TCPE, 1,1,2,2-tetra(4-carboxylphenyl)ethylene; SR101, sulforhodamine 101; GMP,
guanosine-5-monophosphate; P-Glu, D-glucose 6-phosphate; CuNCs, copper nanoclusters; GSH, glutathione;
PAH, polyallylamine hydrochloride; AuNCs, gold nanoclusters; ACP, acid phosphatase; PPase, inorganic py-
rophosphatases; PKM2, pyruvate kinase.
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ref. [65]. Copyright 2020, American Chemical Society.

The above AIE probes may suffer from complex design, low sensitivity and limited sol-
ubility in 100% aqueous solution. Compared to them, TPE-based peptide probes exhibited
weak emission in a solution state and simple structure with easy synthetic modification.
In addition, the ordered self-assembly of peptides can limit the intramolecular rotation
of AIEgens, thus enhancing the luminescence. In this aspect, AIEgens−conjugated pep-
tides have been used for the design of various AIE-based biosensors [65,66]. For example,
Zhang et al. reported the detection of ALP activity in bacteria with a TPEPy-conjugated
peptide probe TPEPy-DFDFPYDEGDK (Figure 6C) [65]. To enhance the resistance of the
probe to proteases, D-amino acids were used instead of natural L-amino acids in the pep-
tide sequence. The dephosphorylated peptide probes could assemble into fibers on the
bacterial surface due to their hydrophilicity, thus activating the AIE process and turning on
the fluorescence.

Based on the self-assembly of anionic and cationic AIEgens mediated by phosphory-
lated products via electrostatic interactions, ALP could be determined with low background.
For example, Zhao et al. found that the phosphorylation of fluorescein (Flu) on the polyethy-
lene terephthalate (PET) fiber allowed for the attachment of bisquaternary ammonium salt
of tetraphenylethylene (TPE-2N+) through electrostatic interaction [67]. The assembled
TPE-2N+ on the phosphorylated PET-Flu fiber (PET-Flu-PO4) showed an emission peak at
471 nm. Compared to methods based on the absolute change of the fluorescence intensity,
the ratiometric fluorescent assays exhibited minimized environmental fluctuation and
enhanced sensitivity. Kaur et al. reported a sensing system for ALP detection involving
the AIEgen of di-anionic 1,2-Bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene salt
(BSPOTPE) and polycationic protamine sulphate (PrS) [68]. The supramolecular complexes
of BSPOTPE-PrS showed strong fluorescence. Hexametaphosphate (HMP) could compete
with BSPOTPE to bind PrS, thus leading to the release of BSPOTPE from the supramolecu-
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lar complexes and a decrease in fluorescence intensity. In contrary, the cleavage of HMP
facilitated the formation of supramolecular BSPOTPE-PrS complexes, thus turning on the
fluorescence. Moreover, Luo et al. reported the detection of ALP based on the stimulus
response–regulated simultaneous ACQ and AIE effects from infinite coordination polymer
(ICP) nanoparticles (Figure 7) [69]. The nanoparticles were formed by the self-assembly
of 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE), sulforhodamine 101 (SR101), Cu2+

ions, and guanosine-5-monophosphate (GMP). The encapsulation of Cu-GMP made the
H4TCPE/SR101/Cu-GMP nanoparticles emit blue fluorescence from the AIE of H4TCPE at
450 nm, while the ACQ-induced red fluorescence emission of SR101 was inhibited. The
enzymatic dephosphorylation of GMP to produce adenosine and PO4

− destructed the
networks of Cu-GMP hosts, leading to the separation of two guests (H4TCPE and SR101).
Consequently, the AIE of H4TCPE with blue fluorescence was quenched, while the ACQ of
SR101 with red fluorescence was recovered.
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Taking advantage of metal nanoclusters with AIE characteristics, several groups have
reported the detection of ALP activity through the phosphorylated product-mediated
assembly of CuNCs and AuNCs. Based on the competitive interaction between GSH-
CuNCs and PPi with Al3+, Geng et al. reported the signal-on detection of ALP [70]. The
complexation of Al3+ by PPi prevented the Al3+-induced aggregation of CuNCs. The
enzymatic hydrolysis of PPi allowed for the formation of Al3+/CuNCs nanoaggregates,
thus activating the AIE process and turning on the fluorescence. Based on a similar
sensing mechanism, acid phosphatase was analyzed using penicilamine-capped CuNCs
as the AIEgens [71]. The AIE progress of CuNCs was activated by adjusting the pH. The
bright red luminescence of the AIE of CuNCs could be quenched by Fe3+ ions but not
PPi-Fe3+ complexes. The enzymatic hydrolysis of PPi released Fe3+ ions, thus quenching
the fluorescence of CuNCs aggregates. Phenylboronic acids can form boronate ester bonds
with the cis-diols of glucose (Glu) molecules. Based on the Glu-triggered assembly of p-
mercaptophenylboronic acid, (MBA)-stabilized CuNCs to activate the AIE process. Huang
et al. reported the detection of ALP using D-glucose 6-phosphate (P-Glu) to modify the
CuNCs (Figure 8A) [72]. In this method, a part of the MBA groups on CuNPs reacted
with the cis-diol on P-Glu molecules through the formation of boronate ester bonds. After
dephosphorylation, P-Glu was converted into Glu, which triggered the assembly of CuNPs.
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The method with dual recognitions (ALP/P-Glu and 5,6-diol/MBA) was applied for the in
situ imaging of ALP activity in cells.

AuNCs have provided a series of platforms for various fluorescence assays. Han et al.
reported a fluorescent and colorimetric dual-signal system for ALP assay through via
2, 6-dichlorophenolindophenol (DCIP)-mediated fluorescence resonance energy transfer
(FRET) (Figure 8B) [73]. The positively charged polyallylamine hydrochloride (PAH)-
capped AuNCs (PAH-AuNCs) with AIE characteristics showed an emission at 570 nm. The
negatively charged DCIP could adsorb on the PAH-AuNCs via electrostatic interaction,
thus quenching the fluorescence of PAH-AuNCs by fluorescence resonance energy transfer
from PAH-AuNCs to DCIP. L-Ascorbic acid (AA), produced by ALP-catalytic hydrolysis of
2-phospho-L-ascorbic acid (AAP), reduced DCIP and can cause color change from blue to
colorless, thereby recovering the quenched fluorescence from PAH-AuNCs. Moreover, it
was found that Ce3+ but not Ce4+ ions could enhance the fluorescence of GSH-protected
AuNCs via the AIE process [74]. The enzymatic product of AA could reduce Ce4+ into
Ce3+, thus turning on the fluorescence and achieving the detection of acid phosphatase.
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Figure 8. (A) Schematic illustration of (top) the proposed mechanism for specific recognition between
MBA-stabilized CuNCs and glucose and (bottom) the cleancap-regulated AIE strategy for the imaging
of ALP activity. Reprinted with permission from ref. [72]. Copyright 2020, American Chemical Society.
(B) Schematic illustration of the detection strategy for ALP activity based on FRET. Reprinted with
permission from ref. [73]. Copyright 2019, Elsevier. (C) Schematic illustration of AIEE-based AgNC
nanoswitches in response to multiple stimuli and a detection strategy for PPase activity based
on ion-triggered switch. Reprinted with permission from ref. [75]. Copyright 2017, American
Chemical Society.

Inorganic pyrophosphatase (PPase) can catalyze the conversion of pyrophosphate (PPi)
into phosphate (Pi) ions. It plays an important role in lipid synthesis and decomposition,
calcium absorption, bone formation and DNA synthesis, and other biochemical transfor-
mations. With glutathione-capped silver nanoclusters (AgNCs) as the AIEgens, Tang et al.
reported the assays of PPase by Al3+-triggered luminescence switch (Figure 8C) [75]. The
Al3+/AgNCs aggregates showed bright red luminescence. Complexation of Al3+ by PPi
but not Pi prevented the aggregation of AgNCs, while the decomposition of PPi by PPase
facilitated the formation of Al3+/AgNCs aggregates. Moreover, the AIE effect of AgNCs is
dependent upon the change of solution pH and temperature.
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4. Glycosidases

Glycosidases are responsible for removing the monosaccharide residues from gly-
coconjugates [2]. They are involved in many biological and pathological processes. For
example, β-galactosidase is a key enzyme for monitoring gene transcription and transfec-
tion efficiency [77]. It is also an important biomarker of cell aging, ovarian cancer and other
pathological processes. Several groups have reported the detection of β-galactosidase with
AIE-active fluorescent probes, such as TPE-ETh-R-GFFY(gal)ERGD, TPE–DCM, HBTTPAG,
TPh-PyBz-βgal, SA-βGal, and QM–βgal (Table 3) [78–82]. The enzymatic hydrolysis of
the hydrophilic substrates could cause the release of hydrophobic fluorophores (e.g., TPE,
SA or QM moieties), thus facilitating the formation of AIE aggregates with intensive emis-
sion. Some of the probes have been used for the on-site sensing and long-term imaging
of β-galactosidase in living cells with low background interference. Moreover, the AIE
luminogens (AIEgens) have been synthesized and used for the detection of other glycosi-
dases. Typically, α-amylase can hydrolyze the α-1,4-glycosidic bonds in starch for the
production of maltose, glucose, syrup, beer, rice wine, soy sauce, vinegar, juice, and so on.
It can also be regarded as the biomarker for psychological stress (e.g., eustress, distress,
anxiety, and depression) [83]. Shi et al. developed an AIE-based method for the assay of
α-amylase with water-soluble TPE-labeled maltotriose as the probe (Figure 9A) [84]. The
enzymatic cleavage of α-1,4 glycosidic bonds by α-amylase led to the release of maltotriose
units and the production of insoluble TPE residues. Based on the AIE of TPE residues, the
activity of α-amylase in a patient’s body fluid has been determined.
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Figure 9. (A) Schematic illustration of the sensing mechanisms of the probe S2 in α-amylase activity
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Table 3. Analytical performances of AIE-based methods for the detection of glycosidases.

Targets Probes Linear Range LOD Ref.

β-gal TPh-PyBz-βgal 0.2~2 U/mL 0.22 U/mL [78]
β-gal HBTTPAG 0~3.15 U/mL 3.7 mU/mL [79]
β-gal SA-βgal 0~0.1 U/mL 14 mU/mL [80]
β-gal QM-βgal 0~6 U 1 mU/mL [81]
β-gal TPE-DCM 0~7 U/mL 1.5 U/mL [82]
α-amylase TPE-maltotriose 0~45.5 U/L 0.14 U/L [84]
β-gal CuNCs 0~200 U/L 0.9 U/L [85]
β-gal CuNCs 2.3~96 U/L 0.7 U/L [86]
β-gal DTE/β-CD CuNCs 0~50 U/L 0.56 U/L [87]
GUS BTBP-Gluc 0~7 U/mL – [88]

Abbreviations: β-gal, β-galactosidase; SA, salicylaldehyde azines; QM, qnoline-malononitrile; TPE,
tetraphenylethene; DCM, dicyanomethylene-4H-pyran; CuNCs, copper nanoclusters; DTE, dithioerythritol;
β-CD, β-cyclodextrin; GUS, β-glucuronidase.
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In contrast to organic AIEgens, it has been found that some metal nanoclusters show
unique AIE properties with longer wavelength emission, which may decrease the inter-
ference of fluorescent proteins in biological systems. For example, Zhao et al. found
that CuNCs with weak emission could assemble into particles with bright luminescence
through hydrophobic interactions [85]. Unlike the thiolated CuNCs, the intense red lumi-
nescence of the 4-methylthiophenol protected CuNCs AIE particles and remained stable
in neutral and alkaline solution. β-Galactosidase could trigger the substrate hydrolysis
to produce galactose and 4-nitrophenol. The resulting 4-nitrophenol could adsorb on the
surface of CuNC particles, thus quenching the luminescence and achieving the quantifi-
cation of β-galactosidase. Qian’s group found that Al3+ could induce the aggregation of
GSH-capped CuNCs to activate the AIE process [86]. 4-Nitrophenol produced from the en-
zymatic hydrolysis of 4-nitrophenyl-β-D-galactopyranoside by β-galactosidase quenched
of the emission of CuNCs aggregates. The method could be applied for the assay of
β-galactosidase activity under physiological condition. However, CuNCs-based assays only
show one function, which may limit the detection sensitivity to a certain extent. Recently,
Huang et al. developed an on-off-on fluorescent method for the detection of β-galactosidase
with multi-functional dithioerythritol (DTE) and β-cyclodextrin (β-CD)-covered CuNCs
as the probes (Figure 9B) [87]. Al3+ cations caused the aggregation of CuNCs through the
formation of Al-O bonds, thus triggering the AIE property. The product of p-nitrophenol
from the enzymatic hydrolysis of 4-nitrophenyl-β-D-galactopyranoside could bind with
β-CD to quench the fluorescence of aggregated CuNPs through photoelectron transfer.
This is the first report integrating AIE and host–guest interaction in one system.

5. Cholinesterases

Cholinesterases are a class of key enzymes for biological nerve transmission. Typically,
AChE can degrade acetylcholine between cholinergic synapses, prevent the excitatory effect
of neurotransmitters on the postsynaptic membrane, and ensure the normal transmission
of neural signals in the organism [9]. Organophosphorus pesticides (OPs) are widely used
in agricultural production because of their advantages of effectively controlling pests and
improving crop yield. Unfortunately, the abuse of OPs has caused the pollution of water re-
sources, fruits, vegetables and processed food, thus causing great damage to the ecological
environment and human health. Serine on AChE can be phosphorylated by OPs, thus in-
hibiting the enzyme activity and preventing the decomposition of neurotransmitters. Based
on the AChE substrate or product-induced aggregation of AIEgens, three TPE derivatives
have been designed and used for the evaluation of AChE activity and the detection of OPs
content (Table 4), including sulfonated TPE, maleimide-functionalized TPE (TPE-M) and
leucine–conjugated TPE (TPE-Leu). In the first report, myristoylcholine was used as the
AChE substrate, which can assemble into an aggregate or heteroaggregation complex in
the presence of sulfonated TPE through electrostatic interactions (Figure 10A) [89]. The
formation of TPE assemblies turned on the fluorescence. However, the AChE-catalytic hy-
drolysis of myristoylcholine limited the formation of assembles, thus causing the decrease
in the fluorescence signal. The method could be used for screening of AChE inhibitors
in a signal-on detection format. In the second work, acetylthiocholine (ATCh) was used
as the AChE substrate [90]. The hydrolysis product of thiocholine could react with the
maleimide ring of TPE-M to form an AIE molecule named TPE-M-S. The resulting TPE-M-S
on a paper-based fluorescent sensor significantly enhanced the fluorescence. Additionally,
a pH-responsive AIE probe of TPE-Leu has also been used for the assay of AChE [91]. The
protonated TPE-Leu was water-soluble under basic conditions, showing poor fluorescence.
However, the AIEgen would exhibit strong fluorescence in an acidic environment due to
its hydrophobic properties. The AChE-catalytic hydrolysis of acetylcholine into choline
and acetic acid decreased the pH value of the solution, thus promoting the formation of
TPE-Leu aggregates and turning on the fluorescence.

Gold nanoparticles (AuNPs) show excellent fluorescence quenching efficiency. By
integrating AIE with nanotechnology, AChE has been detected with AIE nanoparticles and
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AuNPs as the sensing platforms [92]. The AIE-Au nanoconjugates showed weak fluores-
cence due to the fluorescence resonance energy transfer from AIE (QAU-1) nanoparticles
to AuNPs. The hydrolysis product of thiocholine could interact with AuNPs by the Au-S
interaction to separate AIE nanoparticles from the nanoconjugates, thus recovering the
fluorescence. Cai et al. reported a metal−organic framework (MOF)-based system for the
detection of AChE with AuNCs as the AIEgens (Figure 10B) [93]. The encapsulation of
AuNCs on the ZIF-8 MOF to form AuNCs@ZIF-8 nanocomposites triggered the AIE effect
and turned on the fluorescence. In the presence of choline oxidase (CHO), H2O2 was pro-
duced during the enzymatic oxidation of choline. The produced H2O2 decomposed ZIF-8
and destroyed the AuNCs aggregates on MOF, thus reducing the fluorescence. Moreover,
the released AuNCs could be used as peroxidase mimics to catalyze the oxidization of
3,3′,5,5′-tetramethylbenzidine (TMB), thus achieving the visual detection of AChE activity
in parallel.
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Butyrylcholinesterase (BChE) is an important cholinesterase in the process of metabolism
and regulation. It is associated with various diseases, such as liver disease, diabetes and
Alzheimer’s disease [94]. Recently, Xiang et al. designed a ratiometric fluorescent probe
(TB-BChE) for imaging of BChE based on AIE mechanisms [95]. The TB-BChE probe
showed a low intramolecular charge transfer effect because of the poor electron-donating
ability of the ester group. Once the cyclopropyl group in TB-BChE was removed by BChE,
the resulting tricyanofuranyl iminosalicylaldehyde (TCFIS) showed strong intramolecular
charge transfer and caused the blue-shifted enhanced fluorescence. The probe was further
employed for the ratiometric imaging of endogenous BChE in a nonalcoholic fatty liver
mouse model.

Table 4. Analytical performances of AIE-based methods for the detection of cholinesterases.

Targets Probes Linear Range LOD Ref.

AChE Sulfonated TPE 0.5~2 U/mL 0.5 U/mL [89]

AChE TPE-Maleimide 0.3~3 mU/mL 2.5 mU/mL [90]

AChE TPE-Leu 0~100 mU – [91]

AChE AIE-AuNPs 0~8 mU/mL 0.015 mU/mL [92]

BChE TB-BChE 0~70 µg/mL 39.24 ng/mL [95]
Abbreviations: AChE, acetylcholinesterase; TPE, tetraphenylethylene; Leu, leucine; AuNPs, gold nanoparticles;
BChE, butyrylcholinesterase.
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6. Telomerase

Telomerase is a basic nuclear protein reverse transcriptase responsible for telomere
elongation in cells [3]. It can add telomere DNA (TTAGGG)n to the chromosome ends of
eukaryotic cells, fill in the telomeres lost in DNA replication, and extend telomere repair.
Telomerase plays an important role in maintaining chromosome stability and cell activity
in different kinds of cells. Its activity in normal human tissues is inhibited, but it can be
reactivated in tumors and participates in malignant transformation. Therefore, telomerase
is believed to be a tumor biomarker for the early diagnosis, treatment and monitoring of
cancers. Based on the electrostatic interactions between positively charged fluorogens and
negatively charged extended DNA sequences, Lou and co-workers developed a series of
AIE-based sensing systems for telomerase detection [96–100]. In their first study, a water-
soluble tetraphenylethene salt (TPE-Z) with two positive charges was used as the AIEgen
(Figure 11A) [97]. The fluorescence signal of TPE-Z was poor in the presence of telomerase
substrate oligonucleotides (TS primers). When the repeated (TTAGGG)n stands were added
to the end of TS primers by telomerase, TPE-Z molecules were bound to the extended
DNA backbone, resulting in the increase of fluorescence intensity. Based on the same
sensing principle, they reported a more specific strategy for telomerase detection using
Silole-R as the AIE indicator (Figure 11B) [98]. In contrast to TPE-Z, Silole-R shows a higher
fluorescence quantum yield. Thus, the sensitivity and specificity have been remarkably
improved for the detection of telomerase extracted from different cell lines.
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Figure 11. (A) Schematic illustration of the AIE-based simple one-pot technique for telomerase activity
detection. Reprinted with permission from ref. [97]. Copyright 2015, American Chemical Society.
(B) Schematic illustration of the quencher group-induced high specificity fluorescence strategy for the
detection of telomerase activity. Reprinted with permission from ref. [98]. Copyright 2015, American
Chemical Society. (C) Schematic Illustration of the AIE-based in situ telomerase activity detection
and imaging. Reprinted with permission from ref. [99]. Copyright 2016, American Chemical Society.
(D) Schematic illustration of the ratiometric fluorescent bioprobe for telomerase activity detection.
Reprinted with permission from ref. [100]. Copyright 2016, American Chemical Society.
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For the application of fluorescence probes in a complex biological environment, light-
emitting dyes with long wavelengths are particularly popular due to their low background
interference from optical self-absorption and autofluorescence. To overcome this limita-
tion, Lou’s group proposed an AIE sensing system for the fluorescent analysis and in
situ imaging of telomerase in normal and tumor cells with yellow-emissive AIE dyes
(Figure 11C) [99]. The AIEgen (TPE-Py) was synthesized by coupling a pyridinium unit to
TPE with vinyl functionality. The positively charged TPE-Py could bind with the free TS
primer or quencher-labeled primer (QP) via electrostatic interactions. Without the extension
reaction, the emission of TPE-Py aggregates in the primer backbone was quenched due to
the fluorescence–resonance energy transfer from TPE-Py to quencher. After the extension re-
action, TPE-Py aggregates bound to the repeat units of (TTAGGG)n which are relatively far
away from the quencher, thus producing a distance-dependent fluorescence emission. Fur-
thermore, Lou’s group reported an AIE-based ratiometric fluorescent probe for telomerase
detection by using Cy5-labeled TS primer and AIEgen Silole-R (Figure 11D) [100]. When
the Silole-R molecules were attached onto the extended primer to form the aggregates,
a strong blue emission was observed, while the red emission from the internal reference
(Cys5) had no change. In the contrast to previous methods, the ratiometric probe showed
higher reproducibility and positive result rate for urine samples from bladder cancers.

7. Others

γ-Glutamyltranspeptidase (GGT) is believed to be a biomarker of hepatocellular
carcinoma (HCC). Its imaging is of great significance for the early monitoring of precise
medicine and intraoperative navigation. Based on the enzymatic generation of hydrophobic
products, GGT has been determined with TPE derivatives functionalized with γ-glutamyl
amide residues. The substrates dispersed in aqueous solution exhibited no or a poor
fluorescence peak. When the γ-glutamyl amide group was removed through enzymatic
cleavage, the hydrophobic TPE derivatives were assembled into aggregates with blue
fluorescence. The probe could be used to determine GGT in serum samples and image
endogenous GGT in living cells [101]. In addition, Zeng’s group reported a near-infrared
fluorescence probe for GGT imaging by combining AIE and ESIPT (Figure 12A) [102]. The
glutamic acid-conjugated ABTT, named ABTT-Glu, is water-soluble and showed almost
no fluorescence emission. The GGT-mediated cleavage of ABTT-Glu caused the formation
of ABTT aggregates via intramolecular hydrogen interactions, thereby enhancing the
fluorescence emission. The probe was further used to detect GGT in HepG2 cells for
precision medicine in surgery. Moreover, fluorophores with AIE and ESIPT characteristics
have been designed and synthesized for the fluorescent sensing of other enzymes such as
lactamase esterases (Table 5) [103–105]. For example, esterases are a kind of hydrolase
enzyme which participate in a variety of biochemical reactions, depending on the receptors
and protein structures and functions; several AIEgen probes have been prepared for esterase
detection with the combination of AIE and ESIPT effects by the hydrolysis of esters into
acids and alcohols (Figure 12B) [104,105].

Additionally, AIEgen probes have been synthesized for the detection and imaging of
other enzymes such as lipase [106,107], fucosidase [108], cyclooxygenase-2 (COX-2) [109]
and β-N-acetylhexosaminidase (Hex) [110]. For example, lipase plays an important role in
industrial catalysis, drug discovery and disease diagnosis; two AIEgens have been designed
and used for the detection of lipase, including TPE and benzophenone derivatives [106,107].
It has been documented that COX-2 is an effective biomarker for the early diagnosis of some
cancers. It is overexpressed in cancer cells but not in normal tissues. Xie et al. reported
an AIEgen with COX-2 binding ability using the modification of rofecoxib (Figure 12C) [109].
The rofecoxib analogues showed good AIE properties due to the introduction of a phenyl
ring. β-N-acetylhexosaminidase (Hex) is a kind of glucoside hydrolase which participates
in the catalytic release of N-acetylhexose at the non-reducing end of the substrate. Human
Hex (HsHex) plays a key role in lysosomal storage disorders, which can mediate the
degradation of GM2 ganglioside in neuronal lysosome [111]. The dysfunction of HsHex
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can lead to severe neurodegenerative lipid storage disorders. Wang et al., for the first
time, designed a lysosome-targeting Hex-lighting-up AIE-active probe (GlcNAc-TPE) for
Hex detection (Figure 12D) [110]. The Hex-catalyzed hydrolysis of GlcNAc-TPE produced
hydrophobic Py-TPE with poor water solubility. The Py-TPE aggregates boosted the bright
emission with large Stokes shift and excellent photostability.

Based on the electrostatic interactions, methyltransferases (MTase) and hyaluronidase
(HAase) have also been determined by the AIE mechanism. For example, DNA MTase is
a type of enzyme involved in the regulation of gene expression. It can lead to aberrant DNA
methylation of tumor-suppressor genes, thus becoming highly methylated and transcrip-
tional silenced in some blood cancers. With the combination of AIE and target-initiated
template-free DNA polymerization, Nie et al. designed an AIE probe of TPE-Z to detect
MTase [112]. The positively charged TPE-Z bound with single-stranded DNA through
electrostatic interactions. Then, DNA MTase catalyzed the polymerization of a sequence-
specific hairpin DNA, thus turning on the fluorescence through the AIE effect. The method
was used to detect DNA MTase activity in serum samples and evaluate the inhibition effi-
ciency of 5-fluorouracil inhibitor. HAase can catalyze the hydrolysis of hyaluronic acid (HA)
into small pieces. It can reduce the activity of hyaluronic acid in the body, thus improving
the liquid permeability of tissues. HAase is associated with a variety of physiological and
pathological processes, including embryogenesis, inflammation, and wound healing. It
has been demonstrated that HAase was overexpressed in some cancer patients, such as
those with cancers of the bladder, colon, and prostate [113]. Thus, the evaluation of HAase
activity has attracted much attention. Li et al. reported the detection of HAase through the
HA-triggered assembly of TPE-4N+ compounds via electrostatic interactions [114]. The
resulting assemblies showed a yellow-greenish emission. The enzymatic digestion of HA
was limited the assembly of TPE-4N+, causing the fluorescence quenching. Moreover,
based on the quenching ability of AuNPs, Wang et al. reported the detection of HAase
with AIE-dot-based nanoprobes (AIEDs) [115]. In this method, the negatively charged HA
stabilized AuNPs and promoted their assembly on AIEDs to form HA-AuNPs@AIEDs,
thus quenching the fluorescence through fluorescence resonance energy transfer. HAase-
induced degradation of HA to small pieces caused the dissociation of AuNPs and thus
recovered the fluorescence. Moreover, the HA-AuNPs@AIEDs assemblies could specifically
recognize the HA receptors on the cells, thus facilitating endogenous detection and in vitro
imaging of HAase.

Table 5. Analytical performances of AIE-based methods for the detection of other enzymes.

Targets Probes Linear Range LOD Ref.

GGT ABTT-Glu 10~90 U/L 2.9 U/L [101]

GGT TPE 0~80 U/L 0.59 U/L [102]

β-lactamase DNBS-CSA 0~10 mU/mL 0.5 mU/mL [103]

Lyso AIE-Lyso-1 0.1~0.5 U/mL 2.4 mU/mL [104]

esterase probe 4 0.01~0.15 U/mL 5 mU/mL [105]

lipase TPE−COOC6H13 0.1~1.3 mg/mL 0.1 mg/mL [106]

lipase benzophenone 0.1~4 U/mL 50 mU/mL [107]

α-fuc QM-NHαfuc 0~1.75 U/mL 10 mU/mL [108]

Hex GlcNAc-TPE 0~0.2 U/mL 3 mU/mL [110]

MTase TPE-Z 0.5~100 U/mL 0.16 U/mL [112]

HAase TPE-4N+ 0.05~2 U/mL 20 mU/mL [114]

HAase HA-AuNPs@AIEDs 0.01~60 U/mL 7.2 mU/mL [115]
Abbreviations: GGT, γ-glutamyltranspeptidase; Glu, γ-glutamate; Lyso, lysosomal esterase; CSA, salicylaldehyde
azine derivative; α-fuc, α-L-fucosidase; QM, quinoline malononitrile; Hex, β-N-acetylhexosaminidase; MTase,
methyltransferases; TPE-Z, tetraphenylethene salt; HAase, hyaluronidase; HA, hyaluronic acid; AuNPs, gold
nanoparticles.
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8. Conclusions

This review has summarized the recent advances in AIEgen-based biosensors for the
detection and imaging of enzymes. When triggered by certain stimulus, the well-designed
AIEgens in aggregate state exhibit the unique advantages of excellent signal-to-noise ratio,
strong photostability and large Stokes’ shift. By simply adjusting the molecule structures,
the optical properties of AIEgens can be easily modulated to meet the requirement of
enzyme sensing. By selecting the corresponding substrate probes to conjugate with AIEgens,
different enzymes have been sensitively detected in vitro and in vivo, including proteases,
phosphatases, β-galactosidases, cholinesterases, telomerase, and others. However, there are
still some shortcomings and challenges in the AIE-based detection and imaging of enzymes.
For example, in order to decrease the back fluorescence from proteins in cells, AIEgens
with far-red or near-infrared emission and multiphoton excitation characteristics should
be extensively explored for the in vivo sensing and monitoring of enzymatic processes.
Second, more detection mechanisms should be proposed in order to detect other types of
enzymes, such as redox enzymes and isomerases. Third, aiming to monitor the dynamic
enzymatic process, it is necessary to explore reversible enzyme-responsive AIE probes.
Lastly, the undefined degradation and cell toxicity of AIEgens-based probes in cells and
tissues needs more detailed assessments.
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