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Abstract: Hyperuricemia is a common feature in pregnancies compromised by pre-eclampsia, a
pregnancy disease characterized by hypertension and proteinuria. The role of uric acid in the
pathogenesis of pre-eclampsia remains largely unclear. The aim of this study was to investigate the
effect of elevated uric acid serum levels during pregnancy on maternal blood pressure and neonatal
outcome using two different murine knockout models. Non-pregnant liver-specific GLUT9 knockout
(LG9KO) mice showed elevated uric acid serum concentrations but no hypertensive blood pressure
levels. During pregnancy, however, blood pressure levels of these animals increased in the second
and third trimester, and circadian blood pressure dipping was severely altered when compared to
non-pregnant LG9KO mice. The impact of hyperuricemia on fetal development was investigated
using a systemic GLUT9 knockout (G9KO) mouse model. Fetal hyperuricemia caused distinctive
renal tissue injuries and, subsequently an impaired neonatal growth pattern. These findings provide
strong evidence that hyperuricemia plays a major role in the pathogenesis of hypertensive pregnancy
disorders such as pre-eclampsia. These novel insights may enable the development of preventive
and therapeutic strategies for hyperuricemia-related diseases.
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1. Introduction

Preeclampsia, characterized by hypertension and proteinuria, is a multisystemic
disorder affecting 2–8% of all pregnancies worldwide [1,2]. Contributing substantially to
maternal and fetal morbidity and mortality pre-eclampsia represents a heavy psychological
and socioeconomic burden for society [3]. Hyperuricemia, a typical feature of patients
affected by pre-eclampsia, is one of the earliest and most consistent laboratory findings in
pre-eclampsia [4]. Initial studies suggested that hyperuricemia in pre-eclampsia may be
based on inflammatory processes and altered renal clearance. There is a growing body of
evidence, however, that uric acid plays a role in the pathogenesis of pre-eclampsia [4,5].
Further it has been suggested that hyperuricemia is at least equally important as proteinuria
for the assessment of fetal and maternal risk [6,7]. However, its role as a biochemical marker
remains disputed [8].

In humans and higher apes, uric acid is the end product of nitrogen metabolism due
to mutational silencing of the liver enzyme uricase, which is responsible for the oxidation
of uric acid to allantoin in other mammalian species. This leads to substantially higher uric
acid serum levels in humans compared with the majority of mammals [9]. Uric acid acts a
potent antioxidant. Under hypoxic conditions or in higher concentration, however, uric
acid causes multiple complications such as gout disease, kidney stone formation, metabolic
diseases, cardiovascular complications and hypertension [10–15]. Serum uric acid levels
decrease in the first weeks of pregnancy, then increase, most likely due to fetal and placental
uric acid production and decrease towards the end of the pregnancy [16]. However,
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in pregnancies complicated by pre-eclampsia, elevated uric acid levels are commonly
found [4]. Hyperuricemia is usually considered secondary to altered kidney function,
but several studies have shown a link between the severity of the disease and uric acid
concentration [17–19] as well as uric acid concentration and fetal outcome [19,20].

The kidney is the major player in uric acid homeostasis. About 90% of the uric acid
secreted by the renal glomeruli is reabsorbed by the renal tubuli. GLUT9 belongs to the
glucose transporter family SLC2, which mediates the transport of small carbon molecules
across the membranes in various organs. Compared to the other glucose transporter family
members, GLUT9 is different since its primary transport substrate is not glucose/fructose
but uric acid [21,22]. GLUT9 was found to be expressed in the kidney, liver, placenta, leuko-
cytes, and chondrocytes [23] and has two primary sub-isoforms, GLUT9a and GLUT9b.
The only difference between these two splice-variants is the N-terminal domain [24,25]. We
have previously reported that the N-terminal domain of GLUT9a has a regulatory function
for iodine [26]. In the kidney, GLUT 9a is expressed on the basolateral side of the proximal
tubule, while GLUT9b is expressed on the apical side of the collecting duct [27]. Placental
GLUT9a and GLUT9b however co-localize with the villous (apical) membrane but not with
the basal membrane of the syncytiotrophoblast [28]. The simultaneous presence of GLUT9a
and GLUT9b in the microvillus membrane of syncytiotrophoblasts may enhance clearing
the syncytial epithelium and, in turn, facilitate the uric acid transport from the fetoplacental
unit into the maternal circulation.

The aim of the present study was to investigate the effect of elevated uric acid serum
levels on blood pressure during pregnancy. For this purpose, we used a liver-specific
GLUT9 knockout (LG9KO) mouse model, which in combination with inosine supplementa-
tion leads to severe hyperuricemia. Further, we used the systemic GLUT9 knockout (G9KO)
mouse model to investigate the postnatal development of fetuses exposed to higher uric
acid concentrations.

2. Materials and Methods
2.1. LG9KO Mice

LG9KO mice were a gift from Professor Bernard Thorens (Center for Integrative Ge-
nomics, University of Lausanne, Lausanne, Switzerland) and were characterized earlier [29].
All breedings and colony maintenance, and animal experimentation were performed in the
local animal facility under protocols approved by the authorities. Mice were housed with a
maximum of 5 animals per cage at 23 ◦C, with ad libitum access to water and food and a
12 h day/night cycle. At 10 weeks of age, all female LG9KO and control mice were injected
intraperitoneally (i.p.) once daily for three consecutive days with tamoxifen (1 mg/mouse)
and 100 µL of 10 mg/mL 1:10 EtOH:sunflower oil (Sigma-Aldrich, Buchs, Switzerland) to
induce liver-specific GLUT9 gene inactivation. The mice were mated one week after the
last injection. The animal experiments were permitted by the Ethical Committee of the
Canton of Bern, Switzerland (Kantonale Ethikkommission Bern; #BE100/14).

2.2. Telemetric Measurements

Pressure transmitters (DSI PhysioTel PA-C10, DSI, Saint Paul, MN, USA) were im-
planted in mice under anesthesia (isoflurane). The catheter tip was introduced into the
carotid artery and positioned in the aortic arch and the implant secured subcutaneously on
the flank. Mice were allowed to recover for 2 weeks. The DSI acquisition system (DSI) with
16 receiver plates was used for simultaneous measurements of heart rates and mean arterial
blood pressures. Two cohorts of mice were measured in the study. Heart rate and mean
arterial blood pressure were measured throughout the entire gestation. During gestation,
all mice received inosine-supplemented diets. Only mice showing a proper constant signal
transmission during the entire pregnancy were analyzed.



Cells 2022, 11, 3703 3 of 12

2.3. G9KO Mice

G9KO mice were also obtained from Professor Bernard Thorens (Center for Integrative
Genomics, University of Lausanne, Lausanne, Switzerland) and described earlier [30].
Heterozygous animals were crossbred, which resulted in wild-type (WT) and knockout
(KO) pups in the same litter. Pregnant mice were fed with either standard chow alone or
(to increase uric acid serum levels) with supplementation of 1 g/kg inosine after mating.
Following delivery, the diet of all pups was standard chow. The pups’ body weights
were assessed daily up to postnatal day 70. At day 70, animals were anesthetized and
perfused with 20 mL PBS through the right heart ventricle, followed by perfusion with 4%
paraformaldehyde (PFA) in PBS. Organs were dissected, weighed, and fixed in 4% PFA for
histological analysis. The animal experiments were permitted by the Ethical Committee of
the Canton of Bern, Switzerland (Kantonale Ethikkommission Bern; #BE100/14).

2.4. Immunohistochemistry

Mouse kidneys were fixed in formaldehyde solution (4% (v/v); Merck, Whitehouse
Station, NJ, USA) for 2–4 h at room temperature (RT) followed by 4 ◦C for a total time
of 24–48 h. Fixed kidney and placentae were embedded in paraffin, sectioned into 3 µm
coronal slices, deparaffinized (xylene, 2 × 5 min) and rehydrated (100% ethanol, 2 × 3 min;
95% ethanol, 1 min; 70% ethanol, 1 min; rinsed in distilled water). After deparaffinization
and rehydration of the slices, the target was retrieved in Tris-EDTA buffer (10 mM Tris-Base,
1 mM EDTA, 0.05% (w/v) Tween 20, pH 9.0) by heat treatment in a pressure cooker for
15 min. Slides were washed in PBS and Tween 20 0.1% (w/v) and blocked with goat serum
10% (v/v), BSA 1% (w/v) in PBS. Then, the slides were stained with antibodies against
human F4/80 (1:100, abcam ab6640) and CD3 (1:100, abcam ab16669) before they were
counterstained with either DAB or Mayer’s Hematoxilin Solution, the Dako Cytomation
EnVision System-HRP (Dako, Glostrup, Denmark). The slides were washed in PBS and
Tween20 0.1% (w/v, 2 × 5 min) and incubated with the endogenous peroxidase block
solution (Dako S2003) for 15 min at RT. Peroxidase-labeled polymer was applied to the
slides for 30 min at RT, followed by 3 washes in PBS (5 min each) and the addition of 3,3′-
diaminobenzidine in chromogen solution in buffer substrate (SigmaD 3939) for 10–30 min,
according to the manufacturer’s instructions. Slides were rinsed in H2O and counterstained
with hematoxylin and eosin (HE) (Fluka, Switzerland) for 2 min and then rinsed with tap
water for 1 min, dehydrated in a series of ethanol baths (70%, 95%, 100%, v/v) and xylene
and mounted with Eukitt (Sigma-Aldrich, St. Louis, MO, USA).

2.5. Statistical Analysis

The investigators performing the statistical analysis were blinded. Data are expressed
as mean ± SEM. Graph prism software was used for statistical analysis. Differences
between means were tested using Student’s t-test or repeated measures ANOVA where
appropriate. A p-value of <0.05 was considered to reach significance.

3. Results
3.1. Gestational Hyperuricemia Leads to Elevated Blood Pressure and Renal Injury

To address whether hyperuricemia leads to a preeclampsia-like phenotype, we used
the LG9KO mouse model, which lacks GLUT9 expression in the liver and therefore prevents
degradation by uricase. Challenging the pregnant LG9KO mice with inosine food supple-
mentation increased uric acid levels up to 195 ± 14 µmol/L compared to wild-type animals
(82 ± 8 µmol/L, supplementary Figure S1A). In the first gestational week, corresponding
to the first trimester of human pregnancy, wild-type (WT) mice and LG9KO mice showed
similar mean arterial pressure (MAP) values (Figure 1A). During the second gestational
week, blood pressure dropped in both groups, which occurs commonly during the second
trimester in humans as well as in mice [28]. This drop, however, was smaller in the LG9KO
mice than in WT mice, leading to significantly higher blood pressure values in the LG9KO
mice compared with WT mice. The discrepancy persisted during the second and third
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trimesters of pregnancy when blood pressure rose in both groups. Figure 1B depicts the
peripartal blood pressure values, which were substantially higher in the LG9KO mice than
in their WT peers. At birth, the blood pressures of LG9KO and WT mice were 126 ± 4 and
106 ± 4 mmHg, respectively (Student’s t-test, p < 0.001, Figure 1B). Immediately following
birth, WT mice showed blood pressure values similar to preconception and first-trimester
measurements, while LG9KO mice showed higher blood pressure values than WT mice
until the fourth postpartum day (Figure 1A).
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Figure 1. Time course of blood pressure values with and without hyperuricemia: (A) Blood pressure
diagram of WT (black, n = 7) and LG9KO (red, n = 8) animals during gestation. Each point represents
a 24 h average of the mean arterial pressure ± SEM. At day eight of gestation, the mean arterial
pressure of the LG9KO animals’ increases compared to the WT group; this difference disappears at
day 5 after birth. (B) One-hour averages (indicated timepoint ± 30 min) of peripartal blood pressure.
A difference of 19 mmHg was observed between LG9KO and WT groups at the time of birth (t = 0).
* p < 0.05.

To analyze the circadian blood pressure dipping, 3-hour averages in the middle of the
night (active phase) and day (resting phase) were compared in both groups. Both WT and
LG9KO showed dipping at the beginning of pregnancy (Figure 2). Nine days before birth,
LG9KO animals lost their dipping, which was restored at the fifth postpartum day, while
WT mice lost their dipping only 3 days before birth until postnatal day 3. A panel of all
single days is shown in Supplementary Figure S2.

To assess the potential impact of hyperuricemia on maternal outcome, histologic
examination of the kidneys was performed following sacrifice of the animals on postnatal
day 6. F4/80-staining of renal tissue obtained from LG9KO animals showed distinct signals
reflecting macrophage invasion as a sign of inflammation, while no immunohistochemistry
signals were detected in WT mice (Supplementary Figure S1B).

3.2. Fetal Hyperuricemia Leads to Postnatal Growth Restriction

To evaluate the impact of fetal hyperuricemia on fetal and/or postnatal development,
we used a systemic G9KO animal model lacking GLUT9 expression in all fetal organs,
including the liver and the placenta. Heterozygous mice were crossed, and the pups were
genotyped. In the 422 offspring, no change in the Mendelian ratio could be observed (WT:
n = 103, heterozygous: n = 221, KO: n = 98 animals), indicating no increased fetal lethality due
to a systemic G9KO. Uric acid levels in G9KO homozygous fetuses were 5.3-fold and 4.7-fold
higher than in WT or heterozygous animals, respectively (homozygous G9KO 142 ± 6, WT
27 ± 2, heterozygous G9KO 30 ± 2 mmol/L mean ± SEM, Figure 3A). Further homozygous
G9KO fetuses showed a 5-fold higher uric acid serum concentration than their mothers
(142 ± 6 versus 28 ± 3 mmol/L, p < 0.0001). Heterozygous and WT fetuses did not differ in
their uric acid levels compared to their mothers (heterozygous or WT fetuses versus mother
animals: 30 ± 2 or 27 ± 2 versus 28.3 mmol/L, respectively, p > 0.05 and p > 0.05).
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Figure 2. Blood pressure dipping: (A–D) are dipping plots at days −10, −9, −3, and +5. The LG9KO
animals (red) lose the dipping at day −9, and it returns at day 5, while the WT animals (black) lose
the dipping at day −3, returning on day 3 (Supplementary Figure S2). (E) ∆MAP of MAPactive–
MAPsleep from day −13 to day 6. LG9KO animals (red) lose their dipping much earlier than the WT
animals (black). * statistically significant dipping (passive vs. active), p < 0.05. NS, not significant.

To evaluate the offspring’s growth pattern, body weight was measured from postnatal
day 7 until day 70, and a histologic examination was performed following sacrifice. While
the female KO offspring showed a significantly lower body weight during the accelerated
growth period (postnatal day 19 until day 40) compared to the WT peers (Figure 3B), daily
weight measurements revealed no difference between WT, heterozygous, and KO male
animals (Figure 3C).

To assess whether growth patterns are modulated by different degrees of hyper-
uricemia, pregnancies were challenged by inosine food supplementation to increase uric
acid levels in the fetal circulation. Following chow with inosine, uric acid levels in
WT, heterozygous, and KO fetuses were increased up to 46 ± 3, 61 ± 3, and 195 ± 8
(mean ± SEM) mmol/L, respectively (Figure 3A). There was a 4.2-fold increase in uric acid
serum levels in homozygous G9KO fetuses when compared with WT peers (homozygous
G9KO versus WT: 195 ± 8 versus 46 ± 3, p < 0.0001), whereas no differences in serum
levels were observed between heterozygous G9KO or WT fetuses and those of their moth-
ers (WT or heterozygous G9KO fetuses versus mother animals: 61 ± 3 or 46 ± 3 versus
48 ± 4, p > 0.05 and p > 0.05). Homozygous G9KO fetuses showed a 4-fold higher uric
acid serum concentration than their mothers (homozygous G9KO fetuses versus mother
animals: 195 ± 8 versus 48 ± 4, p < 0.0001).
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Figure 3. Fetal hyperuricemia and growth pattern: (A) Serum uric acid levels at day 18.5 of the
pregnant mice fed with standard chow and fetuses of all three genotypes. To increase the KO fetuses’
uric acid levels, the pregnant dams’ chow was supplemented with 1 mg/g inosine during the whole
gestation. Inosine supplementation further increases the uric acid level of KO animals. (B,C) Analysis
of weight development of female (B) and male (C) pups, under control conditions (circles) and inosine
supplementation (triangles) during gestation. WT (female n = 7, male n = 7) are shown in black,
and KO animals (female n = 5, male n = 8) in red. Data represent mean ± SEM. In female animals
(B), a statistical significance could be observed during days 19–40 after birth between KO and WT
animals without inosine supplementation. No statistical difference could be observed between KO
animals with and without inosine. In male animals (C), only KO animals exposed to high uric acid
concentration during fetal development show a significant difference in body weight from days 18–70
after birth compared to WT controls (+inosine) (female n = 10, male n = 10). No difference could be
observed in KO animals (female n = 10, male n = 7) exposed to lower uric acid concentration during
fetal development when compared to WT controls (−inosine). * p < 0.05, *** p < 0.001, **** p < 0.0001.

Interestingly, upon inosine supplementation, body weight gain in male offspring was
reduced in homozygous G9KO pups compared to WT controls (Figure 3C), while in female
pups, the reduction in body weight gain observed in homozygous G9KO mice at days 19–
40 was not further aggravated by inosine supplementation (Figure 3B). Regarding the body
weight gain, the female homozygous G9KO offspring were able to catch up with their WT
mates, whereas the male homozygous G9KO offspring showed substantial neonatal growth
retardation from day 18–70, yielding a difference of 13% in body weight at postnatal day 70.

3.3. Fetal Hyperuricemia Causes Renal Injury

To assess tissue damage upon hyperuricemia, the kidneys of the offspring were macro-
scopically and histologically examined. In females, kidneys obtained from homozygous
G9KO show a wizened surface (Figure 4A) and less weight than those from WT following
a diet with or without inosine (Figure 4B). Compared to controls, female homozygous
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KO offspring showed a kidney weight reduction of 15% under the standard chow diet,
whereas homozygous KO mice showed a reduction of 28% under the inosine diet. Kidneys
of homozygous G9KO offspring revealed distinct hydronephrosis as well as renal cellular
swelling, tubular atrophy, and interstitial fibrosis predominantly in the superficial cortex
(Figure 4C). Compared to WT mice, homozygous G9KO peers showed a distinct immuno-
histological signal for F4/80 and CD3, revealing macrophage and T-cell invasions reflecting
signs of chronic inflammation in fibrotic areas (Figure 4C). Following the challenge with the
inosine diet, F4/80 macrophage signals in the homozygous G9KO offspring were 3.7-fold
higher than in controls (homozygous G9KO versus WT: 10.8± 0.9 versus 2.9± 0.2, arbitrary
numbers, p < 0.001, Supplementary Figure S3).
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Figure 4. Female kidney status: (A) Kidneys isolated at day 70 after birth from WT and G9KO female
mice under a control diet and inosine supplementation. Mice show severe morphological changes,
which worsen under inosine supplementation. (B) Summary of total kidney weight (mean ± SEM) in
WT (+/+) and KO (−/−) females. Inosine supplementation further reduces kidney weight in G9KO
animals. (C) HE, F4/80, and CD3 stainings of WT (+/+) and KO (−/−) animals exposed to inosine
during fetal development. Scale bar: 25 µm; * p < 0.05.

Similarly, homozygous G9KO male kidneys weighed less than those from their WT
peers following a diet with or without inosine (Figure 5A): Compared to control males,
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homozygous KO offspring showed a kidney weight reduction of 18% under the standard
chow diet and reduction of 46% under inosine diet (Figure 5B). These kidneys were also
characterized by hydronephrosis and by altered histological findings such as tubular at-
rophy and interstitial fibrosis in the superficial cortex. Immunohistological staining for
F4/80 and CD3 showed a marked chronic inflammation, which was even more pronounced
than in females (Figure 5C). Following the challenge with the inosine diet, the macrophage
signals in the homozygous G9KO offspring were 4.0-fold higher than in controls (ho-
mozygous G9KO versus WT: 13.6 ± 2.6 versus 3.4 ± 0.4, arbitrary numbers, p < 0.01,
Supplementary Figure S3).
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Figure 5. Male kidney status: (A) Kidneys isolated at day 70 after birth from WT and G9KO male
mice under a control diet and inosine supplementation. The morphological changes observed
in G9KO male animals are significantly higher than the morphological changes observed in fe-
male G9KO animals. (B) Inosine supplementation results in a higher reduction in kidney mass in
KO compared to WT animals. (C) HE, F4/80 (macrophages), and CD3 (T cells) stainings of WT
(+/+) and KO (−/−) animals exposed to inosine during fetal development. Scale bar: 25 µm size;
** p < 0.01, *** p < 0.001.



Cells 2022, 11, 3703 9 of 12

To determine whether these observed damages appear already prenatally, fetuses
were sacrificed at day 18.5 following cesarean section, and their kidneys were analyzed
histologically. Already prenatally, G9KO fetuses exhibit distinct inflammation signs, such as
disturbed nephron formation and substantial swelling of renal cells, resulting in a reduction
in the nephron lumen (Supplementary Figure S4).

4. Discussion

Our data demonstrate that in murine pregnancies compromised by maternal hyper-
uricemia, blood pressure levels increase during the second and third trimesters compared
to controls. Moreover, these hypertensive mice lose their circadian blood pressure dipping
during the third trimester, while WT mice omit the dipping only for three prenatal and
three postnatal days. In our animal model, fetuses exposed to hyperuricemia during preg-
nancy were already prenatally affected by distinct renal tissue injuries. Moreover, offspring
following pregnancies upon fetal hyperuricemia were compromised by neonatal growth
retardation and by substantial renal lesions.

These findings demonstrate that elevated maternal uric acid serum levels during
pregnancies lead to increased blood pressure and loss of circadian blood pressure dipping,
at least in our rodent model. These clinical signs are typical features observed in human
pregnancies affected by pre-eclampsia. In normal pregnancies, blood pressure levels
decrease in the first trimester, whereas in pre-eclampsia, blood pressure levels remain
stable during the first trimester and increase continuously during the second and third
trimesters [31]. Of note, several studies reported decreased circadian blood pressure
dipping in human pregnancies affected by hypertensive pregnancy disorders such as pre-
eclampsia [31,32]. In our pregnant mice with hyperuricemia, the rise of blood pressure
and loss of blood pressure dipping started at 9 days of gestational age. Since a murine
pregnancy lasts 21 days, the occurrence of these clinical signs is comparable with pre-
eclampsia, which evolves in the second half of human pregnancy. The highest differences
with up to 20mmHg in MAP between maternal animals with and without hyperuricemia
were observed around birth. This dynamic pattern of altered blood pressure levels in
pregnant mice under hyperuricemia parallels human gestation.

Our findings are of great interest since, upon hyperuricemia, LG9KO mice do not
exhibit hypertension while not pregnant. Even by challenging these animals with a con-
siderable amount of inosine supplementation (15 g/kg per chow diet), reaching uric acid
levels up to 300 µmol/l, they do not alter their blood pressure levels, even though they
exhibit severe renal tissue damage [29]. In our study setting, however, pregnant mice
fed with 15-fold less inosine (i.e., 1 g/kg) yielding uric acid concentrations of 195 µmol/l
show a distinct phenotype with elevated blood pressure levels and loss of dipping, which
are typical features of (human) pregnancies affected by pre-eclampsia. These findings
corroborate our hypothesis that hyperuricemia or pregnancy per se do not lead to elevated
blood pressure levels, whereas the coincidence triggers the development of hypertension.
Although an association between uric acid and an increased risk for adverse pregnancy
outcomes, including hypertensive pregnancy disorders, has been known for more than a
century [19,33,34], the exact causative relationship remained largely elusive. Based on our
data, we have solid evidence that uric acid plays an important role in the pathogenesis of
hypertensive pregnancy disorders in our animal model.

Furthermore, following pregnancies complicated by hyperuricemia, the kidneys of our
maternal hypertensive mice showed distinct end-organ damage. Similarly, acute kidney
disease is the most common renal complication in human pregnancies compromised by pre-
eclampsia [35]. Moreover, loss of circadian blood pressure dipping is associated with severe
end-organ damage and aggravation of cardiovascular risk [36]. The clinical relevance
of hypertension during pregnancy lies in an increased risk for metabolic changes and
cardiovascular diseases later in life [37]. The common clinical and pathohistological features
highlight that LG9KO mice may represent a useful model to investigate the underlying
pathomechanisms leading to hypertensive pregnancy disorders.
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To elucidate the impact of hyperuricemia on the perinatal outcome, we used a G9KO
mice model in which both the fetus and its placenta lack GLUT9. Since uric acid has no
access to the liver enzyme uricase and, in turn, cannot be metabolized in G9KO fetuses,
the only way to eliminate uric acid from fetal circulation is via transplacental transport.
We have previously shown that the placenta efficiently maintains uric acid equilibrium
between maternal and fetal circulation [28]. Placental GLUT9 plays a major role in fetal
uric acid homeostasis since G9KO fetuses (lacking hepatic and placental GLUT9) show
substantially higher uric acid serum levels than their mothers. We hypothesized that
fetal exposure to elevated uric acid levels might also have deleterious effects on renal
development. Therefore, we aimed to assess the impact of fetal hyperuricemia on kidney
development. Kidney examination of 70-day-old offspring prenatally exposed to hyper-
uricemia revealed macro- and microscopical changes representing severe chronic kidney
injury. These end-organ damages were (at least partly) already prenatally detectable in
hyperuricemia-exposed fetuses (Supplementary Figure S3), indicating that hyperuricemia
impairs renal organogenesis.

Any increased inflammatory state during early pregnancy may facilitate the devel-
opment of pre-eclampsia [38]. This concept is corroborated by preventive strategies with
anti-inflammatory agents, such as aspirin, showing a beneficial impact on pregnancy out-
comes [39]. Resveratrol, another agent with anti-inflammatory properties, was shown to
ameliorate an oxidative-stress reaction in a rodent pregnancy model with hypertension
and proteinuria [40] and might stimulate the invasive capability of human trophoblasts
by promoting EMT and mediating the Wnt/β-catenin pathway in PE [41]. It is plausible
that uric acid is involved in these processes since resveratrol was shown to lower uric
acid serum levels in mice compromised by hyperuricemia [42]. The question of whether
resveratrol directly regulates the GLUT9-mediated uric acid transport or acts via other
pathways remains to be elucidated.

To address the question of whether the observed renal changes impact postnatal devel-
opment, we assessed the growth patterns of prenatally hyperuricemia-exposed offspring.
Upon fetal hyperuricemia with a mean of 142 ± 6 µmol/L uric acid, postnatal growth was
compromised in females, whereas growth patterns in males stayed unaffected. Increased
mean uric acid levels of 195 ± 12 µmol/L, however, lead to postnatal growth retardation in
males, while females were not affected by growth retardation when compared with their
peers exposed to moderate uric acid levels of 142 ± 6 µmol/L. These findings indicate
that female offspring seem more vulnerable to mild hyperuricemia than male offspring.
Following initial growth restriction, however, females tend to accelerate their body weight
gain. We speculate that this accelerated growth pattern may be due to the sequelae of
prenatal exposure to elevated uric acid levels. Indeed, children born following pregnancies
affected by pre-eclampsia show metabolic and cardiovascular alterations such as increased
BMI and elevated blood pressure [43], a concept known as fetal programming [44,45].

In summary, our data provide strong evidence that hyperuricemia plays an impor-
tant role in the pathogenesis of hypertensive pregnancy disorders, at least in our ro-
dent model. Moreover, our findings indicate that hyperuricemia during pregnancy has
a deleterious impact on fetal renal development and adequate neonatal growth pattern.
Similarly, also in human pregnancies, hyperuricemia may trigger the development of
pre-eclampsia and impacts fetal programming. Hence, we encourage further animal and
clinical studies to investigate the role of uric acid in the pathogenesis of hypertensive preg-
nancy disorders. The gaind insights may help develop novel therapeutic and preventive
strategies for hyperuricemia-related (pregnancy) disorders such as pre-eclampsia, gout,
and metabolic syndrome.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11223703/s1; Figure S1: Uric acid serum levels and
renal injuries; Figure S2: Time course of circadian blood pressure dipping pattern (Day −10–Day 5);
Figure S3: Macrophage invasion; Figure S4: Status of fetal kidneys.
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