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Abstract: Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) promotes longevity
across species. In the nematode Caenorhabditis elegans, ablation of germline stem cells (GSCs) and ac-
tivity changes of the conserved signaling mediators unc-43/CaMKII (calcium/calmodulin-dependent
kinase type II) and egl-8/PLCβ (phospholipase Cβ) also increase lifespan. Like IIS, these pathways
depend on the conserved transcription factor daf-16/FOXO for lifespan extension, but how they
functionally interact is unknown. Here, we show that altered unc-43/egl-8 activity further increases
the lifespan of long-lived GSC-deficient worms, but not of worms that are long-lived due to a strong
reduction-of-function mutation in the insulin/IGF1-like receptor daf-2. Additionally, we provide
evidence for unc-43 and, to a lesser extent, egl-8 modulating the expression of certain collagen genes,
which were reported to be dispensable for longevity of these particular daf-2 mutant worms, but not
for other forms of longevity. Together, these results provide new insights into the conditions and
potential mechanisms by which CaMKII- and PLCβ-signals modulate C. elegans lifespan.
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1. Introduction

Studies in invertebrate model organisms, such as the roundworm Caenorhabditis elegans
and the fruit fly Drosophila melanogaster, provided key insights into the biology of lifespan
regulation that apparently are also applicable to human aging [1]. A prototypic example
is provided by reduced insulin/insulin-like growth factor 1 (IGF1) signaling (IIS). IIS
was first recognized in C. elegans to cause a dramatic, ~two-fold increase in lifespan and,
subsequently, was confirmed to promote longevity in mammals [1]. In C. elegans, lifespan
extension by reduced IIS, e.g., by reduction-of-function mutations in the daf-2 gene (the
common ortholog of mammalian insulin and IGF1 receptors), is dependent on daf-16 (the
ortholog of mammalian FOXO transcription factors) [1]. Of note, genetic variants in FOXO3
have been repeatedly and robustly associated with lifespan in humans [2].

Beyond daf-2 mutation, additional mechanisms for lifespan extension have been de-
scribed in C. elegans, including two pathways that can even further extend the extraordinary
long lifespan of daf-2 mutant worms: the absence of germline stem cells (GSCs) [3,4], and a
gain-of-function mutation in the calcium/calmodulin-dependent kinase type II (CaMKII),
unc-43 [5]. This further extension of daf-2 lifespan raises the possibility that the germline-
and the unc-43 signaling pathways are at least in part mechanistically different from the
IIS/daf-2 pathway. Interestingly, both the germline- and the unc-43 pathway, just as the daf-2
pathway, depend on daf-16 for lifespan extension [3,5]. Whether other factors that promote
longevity in GSC- and in daf-2 deficient animals, such as hlh-30 (TFEB), hsf-1 (HSF1), and
skn-1 (NRF2) [6–9], are also shared with the unc-43 pathway has not yet been investigated.

Several lines of evidence indicate that activation and function of the FOXO-transcription
factor DAF-16 differ between GSC(−) and daf-2(−) C. elegans. For example, only GSC(−)
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worms require the conserved adaptor protein KRI-1 and the translation elongation factor
TCER-1 for lifespan extension [10,11]. Moreover, whilst DAF-16 acts in the intestine to en-
sure GSC(−) longevity, it acts in the intestine and neurons to ensure daf-2(−) longevity [12].
DAF-16/FOXO function is strongly regulated by multiple protein kinases [13], includ-
ing, but not limited to, the CaMKII-ortholog UNC-43. UNC-43 promotes DAF-16 nuclear
localization by direct phosphorylation at a site different from the sites at which DAF-16
is phosphorylated and inhibited by the kinase AKT downstream of IIS [5]. CaMKII, in
turn, is activated upon a sudden increase in intracellular calcium ion (Ca2+) levels by
binding to Ca2+-calmodulin complexes [14]. Many additional mediators of Ca2+-signaling
are conserved across metazoans and present in C. elegans, including multiple types of
sarcoplasmic/endoplasmic reticulum or plasma membrane channels, G-protein coupled
receptors (GPCRs), phospholipase C (PLC) enzymes, and Ca2+-pumps [15]. Among these,
the G-protein α-subunit egl-30, the γ-aminobutyric acid type B (GABAB) receptor gbb-1,
and the PLCβ-ortholog egl-8, through their function in neurons, also contribute to intestinal
daf-16 activation and longevity [16–18].

Given that both, germline-ablation and unc-43 gain-of-function mutation, activate
DAF-16 and further extend daf-2(−) lifespan, we hypothesized that the two pathways are
largely overlapping. We tested this hypothesis in the present study and provide evidence
for a novel longevity-promoting mechanism triggered by unc-43(gf) and also, albeit more
weakly, by unc-43 and egl-8 loss, which may explain their different effects on various
lifespan-extending pathways in C. elegans.

2. Materials and Methods
2.1. C. elegans Strains and Culture

Strains used in this study are listed in Supplementary Table S1. Worms were cultured
following standard protocols on NG agar plates seeded with E. coli OP50 [19]. Worms
carrying the glp-1(e2144ts) mutation served as a genetic model for germline ablation [4,9].
To eliminate germ cells, glp-1(ts) strains (referred to as GSC(−) in Results/Discussion), and
corresponding glp-1(+) (i.e., GSC(+)) control strains were incubated at 25 ◦C for the first
24 h of postembryonic development and subsequently shifted to 20 ◦C for the remainder
of the experiment. daf-2(e1370) worms and corresponding daf-2(+) control worms were
continuously cultured at 20 ◦C. For experiments, all strains were routinely cultured on
plates containing 20 µM 5-Fluoro-2′-deoxyuridine (FUDR; Sigma-Aldrich/Merck, Munich,
Germany) from L4 onward to avoid progeny development and internal hatching in fertile
strains carrying the unc-43(gf) mutation (allele n498).

2.2. Lifespan Analysis

Worms were synchronized by hypochlorite treatment, cultured under the appropriate
temperature regimen (cf. above), and scored for survival every other day starting on days
8–10 of adulthood. From the late L4 stage onward, animals were maintained on 6 cm plates
at a density of 40 worms/plate and every 10 days, they were transferred to fresh OP50-
seeded FUDR-containing NG agar plates to prevent progeny development and desiccation,
respectively. Worms were considered dead if they did not respond to gentle touching with
a worm pick. Animals that showed a protruding vulva or had ruptured, died from internal
progeny hatching (bagging), or escaped from the plate were censored.

2.3. Stress Resistance Assays

Worms were synchronized by hypochlorite treatment, cultured under the appropriate
temperature regimen (cf. above), and transferred to assay plates on day 2 of adulthood
(20–30 worms per 3 cm plate for heat stress experiments, 50–60 worms per 3 cm plate for
oxidative stress experiments). Survival was scored every 1–2 h. Oxidative stress assay
plates contained 15.4 mM tert-butyl hydroperoxide (TBHP) and were prepared 12 h before
starting the experiment.
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2.4. Growing Worms for RNA-Extraction

To obtain synchronized populations, gravid adults were treated with hypochlorite, and
eggs were allowed to hatch in M9 overnight. ~700 L1 larvae per strain were plated on 10 cm
NG agar plates seeded with concentrated E. coli OP50 (for RNA-seq: 1600 worms/2 plates)
and cultured at the required temperatures (cf. above). At the L4-stage, 500 worms per strain
were manually transferred to two E. coli OP50-seeded 6 cm NG agar plates supplemented
with 20 µM FUDR to inhibit germ cell proliferation and progeny production (for RNA-seq:
1500 worms to two 10 cm plates). At day 1 of adulthood, worms were harvested by washing
them off their plates with M9 buffer. After additional washing with M9 and RNAse-free
water, worms were suspended in 1 mL Trizol, snap-frozen in liquid nitrogen, and stored at
−80 ◦C until RNA extraction.

2.5. RNA-Extraction

RNA was extracted using Trizol and cleaned up with the Monarch Total RNA Miniprep
Kit or RNA Cleanup Kit (New England Biolabs, Ipswich, MA, USA) according to the man-
ufacturer’s instructions. Equal amounts of RNA extracted from three biological replicates
were pooled for RNA-sequencing to mitigate batch effects.

2.6. RNA-Sequencing

RNA quality control, library preparation, and 50-bp paired-end RNA-sequencing
on the Illumina HiSeq4000 platform were performed at Eurofins Genomics, Ebersberg,
Germany. For each sample, a minimum of 31.6 × 106 reads (maximum 39.1 × 106, median
37.4 × 106 reads) were obtained, resulting in at least 15.7× genome coverage (maximum
19.5×, median 18.7×). A minimum of 94.5% of reads (maximum 96.3%, median 95.7%)
could be mapped to the C. elegans reference genome (cf. below).

2.7. RNA-Seq Data Analysis

The following tools provided by the European Galaxy Server (Freiburg Galaxy Team,
Freiburg, Germany), at https://usegalaxy.eu (accessed on 30 May 2020) were used for
the initial analysis steps: FastQC (v0.72) and MultiQC (v1.7) for initial quality control;
Trimmomatic (v0.36.5; ILLUMINACLIP with default settings, LEADING:20, TRAILING:20,
SLIDINGWINDOW:5:20, MINLENGTH:20) for gentle trimming of reads; STAR (v2.7.2b)
for alignment to the C. elegans reference genome (WS276 release); and featureCounts (v1.6.4)
for read summarization [20–23]. All subsequent analysis steps were performed using
Bioconductor (v3.12; [24]) and custom R scripts (v4.0.4; R core team, Vienna, Austria).
Differential expression analysis was performed using NOIseq (v2.34.0; [25,26]). Low counts
(<5) were filtered by the CPM method, and replicate simulation was performed using
TMM- or UQUA-normalization [27], and otherwise default settings of NOIseq-sim. Dif-
ferentially expressed genes (DEGs) were defined as having a probability of differential
expression >95%. Only DEGs that were detected in 20 repetitions of replicate simulation
and that displayed an expression-fold chance ≥1.5 with each of the two normalization
methods in each of the three repetitions of the entire NOIseq-analysis were considered
further. PCA-analysis of CPM-filtered, TMM/UQUA-normalized RNA-seq count data
was performed using the NOIseq PCA function. Heatmaps of filtered, normalized, log-
transformed count data or of sample-to-sample distances were generated using the R pack-
age pheatmap (v1.0.12). Complete NOIseq-data is provided in Supplementary Table S14.
Supplementary Tables S15 and S16 list NOIseq M and probability values for all DEGs, along
with gene ontology (GO) term information.

2.8. Overlap of DEG-Lists

The statistical significance of overlaps between gene lists was calculated as the hyper-
geometric probability of detecting at least as many common genes as observed in the two
lists using the phyper function in R. Representation factors were calculated as the number
of overlapping genes divided by the expected number of overlapping genes in the two lists

https://usegalaxy.eu
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(http://nemates.org/MA/progs/overlap_stats.html; accessed on 31 August 2020). For
all calculations, the number of genes in the genome was set to 10,602, i.e., the number of
genes in Wormbase WS276 that passed CPM-filtering during NOIseq-analysis. DEG-lists
from published studies were, if necessary, converted to WBGene-IDs using WormMine
(http://intermine.wormbase.org/tools/wormmine/begin.do; accessed on 10 August 2020)
and adjusted to genes in WS276 using custom R-scripts and manual curation.

2.9. GO Term Enrichment Analysis and Collagen/Matrisome Classification of DEG-Lists

GO term enrichment analysis was performed using the enrichment tool provided by Worm-
base (https://wormbase.org/tools/enrichment/tea/tea.cgi; accessed on 27 May 2021) [28].
The q-value threshold was set to <0.05. GO term categories were retrieved using REViGO
([29]; http://revigo.irb.hr/; accessed on 27 May 2021). For WormCat analysis [30], the re-
spective R package was downloaded and installed as described on www.wormcat.com (ac-
cessed on 9 January 2022). Collagen and matrisome classification [31] was performed using
the lists provided at http://CeColDB.permalink.cc/ (accessed on 3 January 2022) and http:
//ce-matrisome-annotator.permalink.cc/ (accessed on 4 January 2022) and custom R scripts.

2.10. Dauer Analysis

Synchronized (hypochlorite treatment) L1 larvae were plated at a density of ~50 lar-
vae/6 cm plate (2 plates per strain), incubated at 20 ◦C or 25 ◦C, and inspected for the presence
of dauers every 12 h. At the 60 h (20 ◦C) or 48 h (25 ◦C) timepoint, when wildtype worms
reached adulthood, worms were morphologically classified as “dauer” or “non-dauer”. Daf-2(−)
strains, which all formed 100% dauers when incubated at 25 ◦C, were allowed to recover from
dauer by incubation at 15 ◦C for 120 h before classification. Experiments in daf-2(+) strains were
either conducted in parallel with experiments in daf-2(−) strains or included daf-2(−) control
plates to provide a reference for the typical dauer morphology.

2.11. qPCR

A total of 1 µg total RNA was reverse transcribed using LunaScript RT SuperMix
(New England Biolabs, Ipswich, MA, USA). qPCR-reactions were performed in duplicates
or triplicates in a 20 µL reaction volume on an CFX Connect Real-Time PCR Detection
System (Bio-Rad Laboratories, Hercules, CA, USA) with iTaq Universal SYBR Green Super-
mix (Bio-Rad Laboratories). The thermal cycling protocol comprised one activation step
at 95 ◦C for 3 min, followed by 40 cycles of denaturation at 95 ◦C for 10 s and combined
annealing/extension at 60 ◦C for 30 s. Melting curve analysis was performed from 65 ◦C to
95 ◦C with 0.5 ◦C increments at 5 s per step. Data were analyzed by the ∆∆Ct method, and
target gene expression levels were normalized to the geometric means of cdc-42, tba-1, and
Y45F10D.4 expression [32,33]. Primer sequences are listed in Supplementary Table S2.

2.12. Statistical Analysis

Statistical analysis was performed using Prism 5 or 9 (GraphPad Software, San Diego,
CA, USA). Details on the particular tests used are specified in the figure legends.

3. Results
3.1. Unc-43(gf) and Unc-43(−) Further Extend Lifespan of Germline-Deficient C. elegans

To test the hypothesis that germline ablation extends C. elegans lifespan at least in part
by activating unc-43/CaMKII, we generated a set of relevant double mutants and measured
their lifespans. Thereby, we took advantage of a widely used genetic model for germline
stem cell deficiency, glp-1(e2144ts) (hereafter referred to as GSC(−); [4]) and combined this
allele with the previously studied [5] unc-43 alleles n498 and n498n1186 (referred to as
unc-43(gf) and unc-43(−), respectively). All experiments were conducted in the presence of
FUDR (cf. Materials and Methods), to avoid internal progeny hatching in fertile unc-43(gf)
worms and to facilitate comparison with similar previous studies that also took advantage
of FUDR to prevent progeny development in fertile strains [5,8,17,18,34]. In GSC(+), i.e.,

http://nemates.org/MA/progs/overlap_stats.html
http://intermine.wormbase.org/tools/wormmine/begin.do
https://wormbase.org/tools/enrichment/tea/tea.cgi
http://revigo.irb.hr/
www.wormcat.com
http://CeColDB.permalink.cc/
http://ce-matrisome-annotator.permalink.cc/
http://ce-matrisome-annotator.permalink.cc/
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otherwise wildtype worms, unc-43(gf) robustly extended lifespan (36–87%; Figure 1A,
Supplementary Table S3), consistent with a previous report [5]. However, in contrast to this
previous report, unc-43(−) also consistently produced a small to moderate lifespan increase
in otherwise wildtype worms (6–21%; Figure 1A, Supplementary Table S3). Similarly, in
GSC(−) worms, unc-43(gf) substantially extended lifespan (67–92%), while unc-43(−) had a
more modest effect (2/3 experiments; 22–24%; Figure 1B, Supplementary Table S3). Collec-
tively, these data cannot easily be reconciled with our original hypothesis and instead indi-
cate that unc-43(gf) and unc-43(−) both trigger longevity-promoting mechanisms. Moreover,
these mechanisms apparently are not, or are not maximally, triggered by germline ablation.
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Figure 1. Modulating CaMKII- or PLCβ-activity extends lifespan in wildtype and GSC(−), but
not in daf-2(−) C. elegans. Lifespan analysis was performed on (A) GSC(+), (B) GSC(−), (C) daf-
2(+), and (D) daf-2(−) strains carrying mutations in CaMKII/unc-43 or PLCβ/egl-8 or no additional
mutation (control) as indicated. Egl-8(−) refers to allele md1971. Data shown are representative
of three independent experiments, each comprising ≥ 74 worms per strain. *** indicates p < 0.001
(Mantel–Cox test). See Supplementary Table S3 for complete statistical analysis.

3.2. Loss of Egl-8 Also Extends Lifespan of Germline-Deficient C. elegans

In parallel with the unc-43 alleles, we investigated how loss of egl-8/PLCβ influences the
lifespan of GSC(−) worms. As unc-43(−), egl-8(md1971), a putative loss-of-function allele, ex-
tended the lifespan of otherwise wildtype worms (13–38%; Figure 1A, Supplementary Table S3),
in agreement with published work [16–18]. Moreover, egl-8(md1971) further extended lifes-
pan in GSC(−) worms (30–43%, Figure 1B, Supplementary Table S3). Similar results were
obtained with another putative loss-of-function allele, egl-8(e2917) (Supplementary Figure S1A,B,
Supplementary Table S3). Thus, egl-8(−), similar to unc-43(−) and unc-43(gf) appears to induce
lifespan-extending programs that are not, or not fully, active in GSC(−) worms.

3.3. Unc-43(gf), Unc-43(−) and Egl-8(−) Do Not Further Extend Lifespan of Daf-2(−) Worms

In addition to our lifespan analyses on unc-43(gf), unc-43(−) and egl-8(−) in intact
and in GSC-deficient animals, we examined the effect of these alleles on the lifespan
of worms harboring a strong reduction-of-function mutation in the insulin/IGF-1 like
receptor daf-2 (allele e1370) [35]. As mentioned above, in wildtype (daf-2(+)) animals, unc-
43(gf) substantially and unc-43(−) more modestly extended lifespan (34–82% and 5–23%;
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Figure 1C, Supplementary Table S3). In daf-2(−) worms, however, unexpectedly in the
light of published work by others [5], unc-43(gf) did not further extend but rather slightly
decrease lifespan (9–13%; Figure 1D, Supplementary Table S3). Moreover, unc-43(−) did
not significantly decrease daf-2(−) lifespan. Consistent with our previous observations
(Figure 1A), both egl-8(−) alleles extended lifespan in daf-2(+) worms (27–39%; Figure 1C,
Supplementary Figure S1C, Supplementary Table S3). Finally, egl-8(−), similar to unc-
43(−), had essentially no effect on daf-2(−) lifespan (Figure 1D, Supplementary Figure S1D,
Supplementary Table S3). In summary, irrespective of the discrepancies with previously
published work [5], our results suggest that unc-43(gf), unc-43(−) and egl-8(−) all trigger
longevity-promoting pathways that are already highly active, or that are dispensable for
longevity, in daf-2(−) worms.

3.4. Unc-43(gf), Unc-43(−) and Egl-8(−) Differentially Affect Stress Resistance of Wildtype,
GSC(−) and Daf-2(−) Worms

Longevity frequently correlates with stress resistance [1]. Therefore, we examined how
our gain- and loss-of-function alleles in unc-43 and egl-8 affect the resistance of GSC(−),
daf-2(−) and otherwise wildtype worms to selected forms of physical stress. Specifically,
we examined heat and TBHP-induced oxidative stress. Only in daf-2(−) background, unc-
43(gf) slightly increased heat stress resistance, while only in otherwise wildtype worms,
unc-43(−) conferred heat sensitivity (Figure 2, Supplementary Table S4). On the other
hand, upon oxidative stress, unc-43(gf) and unc-43(−) both consistently caused at least
trends towards sensitivity in most or all backgrounds, with only the GSC(−); unc-43(gf)
strains being clearly not sensitive (Figure 3 and Supplementary Table S4). All egl-8(−)
strains consistently tended to be or were more resistant than controls to oxidative stress
but more sensitive to heat stress, with the exception of daf-2(−); egl-8(−) strains, which did
not consistently show heat sensitivity (Figures 2 and 3, Supplementary Figures S2 and S3,
Supplementary Table S4). In summary, in all backgrounds in which they (further) extended
lifespan, unc-43(gf), unc-43(−) and egl-8(−) did not confer broad stress resistance but rather
sensitivity to at least one of the two physical stressors examined.
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(control) as indicated. Egl-8(−) refers to allele md1971. Data shown are representative of three
independent experiments, each comprising ≥ 75 worms per strain. *** indicates p < 0.001, * p < 0.05
(Mantel–Cox test). See Supplementary Table S4 for complete statistical analysis.
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Figure 3. CaMKII- and PLCβ modulate C. elegans oxidative stress resistance in a genetic background-
dependent manner. Survival in the presence of TBHP was scored for (A) GSC(+), (B) GSC(−), (C) daf-
2(+), and (D) daf-2(−) strains carrying mutations in CaMKII/unc-43 or PLCβ/egl-8 or no additional
mutation (control) as indicated. Egl-8(−) refers to allele md1971. Data shown are representative
of four independent experiments, each comprising ≥ 70 worms per strain. *** indicates p < 0.001,
* p < 0.05 (Mantel–Cox test). See Supplementary Table S4 for complete statistical analysis.

3.5. Unc-43(gf) and Egl-8(−) Globally Shift Gene Expression towards Daf-2(−)

In our hands, unc-43(−) and egl-8(−) extended C. elegans lifespan more modestly, but
in the same genetic background-dependent manner as unc-43(gf). To identify novel factors
and pathways that may mediate unc-43′s and/or egl-8′s lifespan-regulatory functions
in addition to daf-16, we performed an exploratory RNA-sequencing (RNA-seq) study
in daf-2(−) and otherwise wildtype (daf-2(+)) worms with normal or altered unc-43/egl-
8 activity. GSC(−) worms were omitted from this study since unc-43/egl-8 mutations
changed their lifespan in essentially the same way as the lifespan of otherwise wildtype
worms. Out of the two egl-8 loss-of-function alleles, md1971 was chosen, and hereafter,
egl-8(−) refers to md1971 unless otherwise stated. Initial comparison of gene expression
between daf-2(−) and wildtype worms revealed highly significant overlaps of differentially
expressed genes (DEGs) from our study with published work [36,37], thus validating our
data (Supplementary Tables S5 and S6). Hierarchical clustering and principal component
analysis clearly separated the wildtype and daf-2(−) control strains from each other, and
strikingly, egl-8(−) and especially unc-43(gf) single mutant worms appeared closer to daf-
2(−) in these analyses (Figure 4A–C). In line with this result, genes induced by unc-43(gf)
and egl-8(−) in otherwise wildtype worms significantly overlapped with genes induced by
daf-2(−) in our and in published studies (Supplementary Table S7). Similarly, unc-43(gf)/egl-
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8(−)- and most to all lists of daf-2(−) repressed genes significantly overlapped with each
other. Interestingly, in otherwise wildtype worms, unc-43(−) induced and repressed genes
also significantly overlapped with most to all lists of daf-2(−) induced and -repressed genes
(Supplementary Table S7). In daf-2(−) worms, unc-43(gf), unc-43(−) and egl-8(−) seemed to
support some gene expression changes already induced by daf-2(−), while opposing others
(Supplementary Table S7). Similar overlap patterns resulted when comparing our lists
of unc-43(gf), unc-43(−) and egl-8(−)-regulated DEGs to genes regulated by daf-2(−) in a
daf-16 dependent manner [38–41] (Supplementary Table S7). Taken together, our RNA-seq
results indicate that unc-43(gf) and egl-8(−) globally shift gene expression towards daf-2(−),
and they are consistent with previously reported roles of unc-43(gf) and egl-8(−) as positive
regulators of daf-16 [5,16–18].
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Figure 4. unc-43(gf) and egl-8(−) globally shift gene expression towards daf-2(−). Gene expression
was analyzed by RNA-seq in the strains indicated. (A) Heatmap of the filtered, tmm-normalized,
log10-transformed RNA-seq count data of all genes evaluated during downstream analysis (cf.
Materials and Methods). (B) Pairwise distances between the samples (strains) analyzed. (C) Principal
component analysis of the samples analyzed. (D) GO term enrichment analysis among genes
upregulated or (E) downregulated relative to the wildtype or daf-2 single mutant control strain in
response to the genetic mutations indicated. The graphs show the five most significantly enriched
GO terms for each strain, plus their occurrences in all other strains. See Supplementary Table S8 for a
complete analysis.



Cells 2022, 11, 3527 9 of 16

3.6. Unc-43 and Egl-8 Regulated Genes Are Enriched for Collagen-Related Processes

To functionally categorize unc-43(gf), unc-43(−) and egl-8(−) DEGs in otherwise wild-
type and in daf-2(−) worms, we performed gene ontology (GO) term enrichment analy-
sis [28] (Figure 4D,E, Supplementary Table S8). This analysis revealed overrepresentation
of GO terms reminiscent of known functions of unc-43 and egl-8 in neurons, muscle, and
immunity, respectively [16,42]. Moreover, multiple GO terms enriched among DEGs from
unc-43(gf), unc-43(−) or egl-8(−) strains were also enriched among DEGs between daf-2(−)
and wildtype worms, consistent with the previously observed overlaps between the respec-
tive DEG-lists (Supplementary Table S9). Strikingly, the most significantly enriched GO
term among upregulated DEGs in all three daf-2(+) strains was “structural component of
cuticle”, followed by additional GO terms containing many collagen genes (e.g., “collagen
trimer”, “cuticle development”, and “molting cycle”), and by multiple GO terms related
to pathogen defense. “Structural component of cuticle” and pathogen defense-related
GO terms were also enriched among upregulated DEGs of most to all daf-2(−) strains.
On the other hand, unc-43(gf), unc-43(−) and egl-8(−) downregulated DEGs were most
significantly and commonly enriched for pathogen defense related GO terms in all daf-2(+)-
and in the daf-2(−); egl-8(−) strain, and for organic acid-metabolism-related GO terms in
daf-2(−); unc-43(gf) and daf-2(−); unc-43(−) worms. Enrichment of similar functional cate-
gories was detected by a different analysis tool, WormCat [30], including, most prominently
among unc-43(gf), unc-43(−) and egl-8(−)-induced genes, “extracellular material: collagen”
(Supplementary Figure S4 and Table S9). Given the conditional requirement of collagens
for C. elegans longevity [34], we focused on these genes for subsequent analyses.

3.7. Unc-43 and Egl-8 Modulate the Expression of Non-Dauer Longevity-Associated
Collagen Genes

Certain cuticle-forming collagens have been shown to be required for longevity, specifically
under conditions that do not induce processes related to dauer, an extremely stress-resistant
alternative developmental stage, during adulthood [34]. Expression of these collagens appears
to be indirectly controlled by the conserved transcription factor SKN-1/NRF2 [34]. Non-dauer-
associated, collagen-dependent lifespan-extending conditions include germline deficiency and
certain means of reducing IIS, but not the daf-2(−) allele analyzed by us, daf-2(e1370), at least
not at the standard culture temperature of 20 ◦C at which we conducted our study [34]. Unc-
43(gf), unc-43(−), and egl-8(−) do not sensitize C. elegans to dauer entry at 20 ◦C or 25 ◦C
(Supplementary Figure S5 and Table S9). Therefore, we examined the effect of these alleles on
the expression of “SKN-1 upregulated daf-2(−) collagens” ([34], subsequently referred to as “non-
dauer longevity-associated collagens”). Significant numbers of these collagens were present in
our lists of unc-43(−), egl-8(−) and especially unc-43(gf) upregulated DEGs from daf-2(+), as well
as among unc-43(gf) upregulated DEGs from daf-2(−) worms (Supplementary Tables S10–S12).
Up- and downregulated genes from these strains also significantly overlapped with the complete
lists of genes up/downregulated by skn-1 under non-dauer longevity conditions. Yet, only egl-
8(−) appeared to up- and downregulate significant numbers of genes that are up- or downregu-
lated by skn-1 under normal conditions (Supplementary Table S11). Classification of collagen-
genes [31] induced by unc-43(gf), unc-43(−) and egl-8(−), especially in daf-2(+) backgrounds,
revealed strong overrepresentation of cuticular collagens, as also seen for skn-1 upregulated
(non-dauer longevity-associated) collagens ([34], Supplementary Table S12). When more broadly
examining genes of the extracellular matrix, i.e., the matrisome [31], similar patterns were ob-
served as well for unc-43(gf), unc-43(−), egl-8(−) and skn-1(−) induced DEG-sets, all of which
showed particular enrichment of nematode-specific core matrisome genes (Supplementary Table
S12). Of note, collagen or core-matrisome genes were not overrepresented in 5/6 published
sets of daf-16-induced genes (Supplementary Table S12). qPCR analysis of selected non-dauer
longevity-associated collagens [34] confirmed the picture suggested by our RNA-seq data: col-
120, col-133, col-141, and col-176 all were strongly upregulated in unc-43(gf) relative to otherwise
wildtype worms, while induction in unc-43(−) and egl-8(−) was less consistent and/or weaker
(Figure 5A,C, Supplementary Table S13). In GSC(−) and daf-2(−) worms, col-120, col-141, and
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col-176 upregulation by unc-43(gf) was repeatedly observed, while unc-43(−) did not trigger
strong alterations (Figure 5B,D, Supplementary Table S13). Additionally, in daf-2(−) worms,
egl-8(−) appeared to at least mildly suppress all four collagen genes examined (Figure 5D, Sup-
plementary Table S13). Relative to wildtype, both GSC(−) and daf-2(−) worms displayed
at least trends towards elevated mRNA levels for most of the collagen genes examined
(Supplementary Figure S6). Collectively, these results suggest that unc-43(gf), and to a smaller
extent, unc-43(−) and egl-8(−), promote the expression of non-dauer longevity-associated colla-
gens. Moreover, the effects of the three alleles appear strongest in GSC(+)/daf-2(+), and weakest,
or even lost, in daf-2(−) background.
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Figure 5. unc-43 and egl-8 modulate the expression of non-dauer longevity-associated collagens.
mRNA levels relative to the control strain of the same genetic background were determined by
qPCR for selected non-dauer longevity-associated collagen genes in (A) GSC(+), (B) GSC(−), (C)
daf-2(+), and (D) daf-2(−) strains carrying the genetic mutations indicated. Bars and error bars indicate
mean ± SEM across 3 biological replicates. # indicates p < 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001
(unpaired t-tests, FDR 10%). See Supplementary Table S13 for complete statistical analysis.

4. Discussion

In this study, we report lifespan-regulatory functions of the conserved signaling medi-
ators unc-43 and egl-8 in long-lived GSC-deficient C. elegans. Moreover, our experiments
confirm previously published positive roles of unc-43 hyperactivation and egl-8 loss for
longevity of otherwise wildtype animals and further support the concept that unc-43 and
egl-8 modulate the activity of the conserved lifespan-regulatory key transcription factor
DAF-16 [5,16–18]. In addition, gene expression analyses indicate, to at least some extent,
the induction of specific non-dauer longevity-associated collagens in response to unc-43
and egl-8 mutations. Currently available data do not support a prominent role for daf-16 in
promoting expression of these collagens, raising the interesting possibility that they consti-
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tute a second, largely independent mechanism through which unc-43 and egl-8 regulate C.
elegans lifespan (Figure 6).
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Figure 6. Proposed model for genetic background-dependent lifespan regulation by unc-43 and egl-8
mutations. Germline ablation [GSC(−)], unc-43(gf), and, more moderately (thin arrows), unc-43(−)
and egl-8(−) promote the expression of at least a subset of specific collagens. These specific collagens
have been shown to promote longevity under conditions that do not predispose to dauer, such as
GSC(−), and may also contribute to unc-43(gf), unc-43(−) and egl-8(−)-triggered lifespan extension.
Thereby, these specific collagens may act in parallel with other longevity-promoting factors, e.g.,
daf-16. Daf-16, but not these specific collagens, is also required for the dauer-predisposing daf-2(e1370)
mutation to extend lifespan. Note that daf-16 dependency of lifespan extension has been shown for
GSC(−), unc-43(gf) and egl-8(−), but not yet for unc-43(−). See the main text for details and references.

A key finding of our study consists in the observation that altered unc-43 and egl-8
activities further extend the lifespan of wildtype and GSC-deficient but not of daf-2(−) (i.e.,
daf-2(e1370) at 20 ◦C) worms. This result may be explained by at least two, not mutually
exclusive, models. First, unc-43(gf), unc-43(−) and egl-8(−) all may trigger processes that
are already maximally induced by daf-2(−), but not by GSC(−) and wildtype worms. This
model is supported by the fact that all three mutations induce similar gene expression
changes than daf-2(−). Alternatively, processes triggered by unc-43(gf), unc-43(−) and egl-
8(−) may not be critical to daf-2(e1370) longevity. Consistent with this possibility, unc-43(gf)
and, to a lesser extent, unc-43(−) and egl-8(−), induce the expression of certain collagen
genes, which are required for longevity under conditions that do not induce dauer-like traits
in adults. These conditions include germline deficiency but not the daf-2(e1370) allele under
our culture conditions of 20 ◦C [34]. Thus, it is tempting to speculate that these collagens
constitute a second mechanism besides the regulation of daf-16, by which in particular
unc-43(gf), but also unc-43(−) and egl-8(−) modulate lifespan. Of note, overexpression of a
single key collagen, such as col-120, also examined by us by qPCR, is sufficient for lifespan
extension [34]. Conversely, in daf-2(e1370), mild induction of collagen expression, which is
still observed, at least in response to unc-43(gf), may not be functionally relevant. Clearly, it
will be extremely interesting to directly examine the role of non-dauer longevity-associated
collagens in unc-43(gf), unc-43(−) and egl-8(−) dependent C. elegans lifespan regulation and,
eventually, to define the mechanisms that link unc-43/egl-8 to expression of these collagens.
Although we have not yet experimentally confirmed or excluded the possibility that the
known mediator of unc-43(gf)/egl-8(−) longevity, daf-16, regulates non-dauer longevity-
associated collagen expression in the specific context of unc-43/egl-8 mutation, even though
it does not do so in other contexts, an alternative candidate is emerging from the literature:
skn-1 [34]. In support of this hypothesis, we already showed that unc-43(gf), unc-43(−)



Cells 2022, 11, 3527 12 of 16

and egl-8(−) modulate the expression of similar gene sets, including similar collagens,
than skn-1.

Yet, our study and a previous report [5] on the longevity effects of unc-43(−) and
unc-43(gf) differ from each other in several details despite the use of the same alleles. In
the case of unc-43(−), these discrepancies may be explained by different experimental
conditions, i.e., different temperatures, and by the use of FUDR, both of which have been
shown to affect lifespan in certain genetic backgrounds [43,44]. Specifically, we conducted
the respective assays at 20 ◦C rather than 25 ◦C [5] and analyzed the unc-43(−) and unc-
43(gf) alleles within the same experiments, which required the addition of FUDR not just to
unc-43(gf) and corresponding control [5], but also to unc-43(−) strains. Importantly, FUDR
does not affect wildtype lifespan nor daf-2(−)’s and GSC(−)’s basic ability to promote
longevity [8,34,43].

Beyond different assay temperatures, our choice of daf-2(e1370), rather than daf-2
RNAi [5] to inhibit daf-2 activity may account for unc-43(gf) in our hands not extending
the lifespan of worms with reduced IIS. Differential interactions of “strong” (e.g., e1370)
and “weak” (e.g., RNAi) daf-2 inhibition with other lifespan-regulatory mechanisms are
not unprecedented in the literature, e.g., with somatic gonad signaling and collagen expres-
sion [3,34,45]. Moreover, in contrast to genetic mutations, daf-2 RNAi does not efficiently
reduce daf-2 activity in neurons [12,46,47]. Yet, activity of the common daf-2(−)- and
unc-43(gf) lifespan-extending factors daf-16 in neurons accounts for a fraction of daf-2(−)
longevity [12]. Thus, unc-43(gf) may trigger daf-16 regulated processes in neurons that are
already active in daf-2(e1370), but not in daf-2 RNAi worms, which may explain why it
further extends daf-2 RNAi- but not daf-2(e1370) lifespan.

The observation that both, unc-43(−) and unc-43(gf) extend lifespan, at least in certain
genetic backgrounds under certain experimental conditions, appears paradoxical at the first
glance. On the other hand, the moderate to strong longevity increase of unc-43(−) and unc-
43(gf) worms can be expected, based on the nature of the—relatively moderate to relatively
large—changes in gene expression triggered by these two mutations. Indeed, as discussed
above, unc-43(−) and unc-43(gf) regulated gene sets are similar to each other and to daf-2-
and daf-16-regulated gene sets. In addition, both mutations, although to different extents,
induce non-dauer longevity-associated collagens. How unc-43(−) and unc-43(gf) affect
collagen expression and/or its indirect regulator skn-1 is currently unclear [34]. Previous
work [5] suggested UNC-43 as a direct activator of DAF-16, implying that the induction
of some daf-16 targets upon unc-43(−) loss, as observed in our RNA-seq study, represents
additional, indirect effects of unc-43 on daf-16. Moreover, UNC-43′s direct contribution to
DAF-16 activity appears to be dispensable for the maintenance of a normal/normally long
lifespan in all genetic backgrounds tested, as unc-43(−), GSC(−); unc-43(−) and daf-2(−);
unc-43(−) worms are long-lived, in contrast to daf-16(-), GSC(−); daf-16(-) and daf-2(−); daf-
16(-) worms, which are short- to normal-lived [3,48]. As proposed previously for reduced
IIS [5], GSC loss and other mechanisms induced by unc-43 loss may “overpower” (direct)
DAF-16 regulation by UNC-43.

In agreement with published studies [16–18], we found that loss of egl-8 further extends
wildtype lifespan. However, in contrast to previous work [16], we did not observe decreased
oxidative stress resistance upon egl-8 loss. Again, this difference may be explained by
different experimental conditions, such as different egl-8(−) alleles (md1971 vs. n488),
different assay temperatures (20 ◦C vs. 25 ◦C) and treatment with different chemicals to
impose oxidative stress (TBHP vs. arsenite). Indeed, TBHP and arsenite have already been
shown to trigger different transcriptional responses [49]. In a current model, egl-8 modulates
lifespan cell non-autonomously through its function in neurons: egl-8 loss reduces neuronal
secretion of insulin-like peptides, which in turn increases daf-16 activity in the intestine; in
addition, evidence suggests that this pathway is further mediated by the EGL-8-generated
second messenger diacylglycerol (DAG) and the DAG-dependent kinase dkf-2 [16–18,50].
This model predicts that worms with compromised insulin/IGF1-like receptor function in
the intestine will not display increased longevity upon an egl-8(−) mutation, while GSC(−)
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worms may display further intestinal daf-16 activation and lifespan extension. Results from
our lifespan analyses are in line with this prediction. Conceptually, egl-8 loss also decreases
the levels of another second messenger, inositol-1, 4, 5-trisphosphate and subsequently,
intracellular Ca2+ levels, and CaMKII/UNC-43 activity [15]. Yet, additional studies are
necessary to determine how egl-8(−) and unc-43(−) interact to modulate daf-16 activity and
C. elegans lifespan.

In summary, our study identified new genetic backgrounds in which unc-43 and egl-8
can/cannot modulate lifespan in C. elegans and suggests collagen expression as a second
lifespan-regulatory mechanism functioning downstream of unc-43 and egl-8, in addition to
the known regulator daf-16.
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43(gf), unc-43(−) and egl-8(−) do not sensitize daf-2(+) worms to dauer entry, but unc-43(gf) enhances
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in this study; Table S6: Overlap of genes regulated by daf-2(−) in this study and in published work;
Table S7: Overlap of genes regulated by unc-43/egl-8 and daf-2/daf-16 in this study and in published
work; Table S8: GO term enrichment among unc-43(gf), unc-43(−) and egl-8(−)-dependent DEGs in
daf-2(+) and daf-2(−) background; Table S9: Statistical analysis of dauer formation data; Table S10:
Expression of skn-1 regulated collagen genes in strains analyzed by RNA-seq; Table S11: Overlap of
genes regulated by unc-43/egl-8 and skn-1; Table S12: Classification of collagen- and matrisome genes
regulated by unc-43/egl-8 and comparison to skn-1; Table S13: Statistical analysis of qPCR data. File S3,
containing Table S14: Complete NOIseq analysis of RNA-seq data. File S4, containing Table S15: GO
term information and NOIseq-data on differentially expressed genes. File S5, containing Table S16:
WormCat category information and NOIseq-data on differentially expressed genes.
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